From Task Definitions and Plan Traces to HTN Methods

Chad Hogg
Lehigh University

Introduction

Hierarchical Task Network (HTN) planning is an important,
frequently studied research topic in artificial intelligence.
Researchers have reported work on its formalisms and ap-
plications (Erol, Hendler, & Nau 1994; Smith, Nau, & Erol
1998; Nau et al. 2005). In HTN planning, complex tasks
are decomposed into simpler tasks until a sequence of prim-
itive actions is generated. HTN planning is frequently stud-
ied because it is analogous to a common model of human
thought and because it has allowed impressive gains in exe-
cution time when compared to classical planners.

Despite these advantages, a major hurdle for the use of
HTN planning is the need for an HTN domain description.
In fact, a controversy in the Al planning research community
surrounds the recent efficiency gains obtained with HTN
planning because the domain descriptions sketch the under-
pinnings of the solutions. Therefore, it has been argued that
a significant knowledge engineering effort is required to ob-
tain such domain descriptions. A domain description is a
collection of knowledge constructs describing the target do-
main. In HTN planning, a domain description consists of the
action model and the task model. The action model encodes
knowledge about valid actions or primitive tasks changing
the world state. The task model encodes knowledge about
how to decompose tasks into subtasks, and is the part of the
domain description that has been argued to be difficult to
obtain. Given the large interest in HTN planning, it is sur-
prising that little research has been done on learning task
models. The bulk of research involving planning and learn-
ing has focused on search control knowledge (Zimmerman
& Kambhampati 2003).

We present HTN-MAKER (Hierarchical Task Networks
with Minimal Additional Knowledge Engineering Re-
quired), an offline and incremental algorithm for learning
task models. HTN-MAKER receives as input a collection of
plans generated by a STRIPS planner, an action model, and
a collection of task definitions, and it produces a task model.
When combined with the action model, this task model re-
sults in an HTN domain model that may be used by an HTN
planner to solve problems in the domain. An extended ver-
sion of this paper has been submitted to the Planning and
Learning workshop at ICAPS-07, which includes a descrip-
tion of the learning algorithm and empirical evaluation.

Related Research

Learning task decompositions means eliciting the hierarchi-
cal structure relating tasks and subtasks. Existing work on
learning hierarchies elicits a hierarchy from a collection of
plans and from a given action model (Choi & Langley 2005;
Reddy & Tadepalli 1997; Ruby & Kibler 1991). A partic-
ularity of the existing work on learning task models is that
the tasks from the learned hierarchies are the same goals that
have been achieved by the plans. Reddy and Tedepally’s
1997 X-Learn, for example, uses inductive generalization
to learn task decomposition constructs, which relate goals,
subgoals, and conditions for applying d-rules. By grouping
goals in this way, task models are learned that lead to speed-
up in problem-solving. However, it is possible to solve the
same problems without the learned task models.

Two recent studies (Ilghami et al. 2005; Xu & Munoz-
Avila 2005) propose eager and lazy learning methods re-
spectively to learn the preconditions of HTN methods.
These systems require as input the hierarchical relationships
between tasks and learn only the conditions under which a
method may be used. Another recent work by Langley &
Choi 2005 learns a special case of HTNs known as teleoreac-
tive logic programs. Rather than a task list, this system uses
a collection of Horn clause-like concepts. The means-end
reasoning that is tightly integrated with this learning mech-
anism is known to be incapable of solving some problems
that general HTNss are able to solve, such as the register as-
signment problem.

Work on learning macro-operators (e.g., (Mooney 1988;
Botea, Muller, & Schaeffer 2005)) falls in the category of
speed-up learning, as do work on learning search control
knowledge ((e.g., (Mitchell, Keller, & Kedar-Cabelli 1986;
Minton 1998)). Search control knowledge does not increase
the number of problems that theoretically can be solved.
However, from a practical stand point, these systems in-
crease the number of problems that can be solved because
of the reduction in runtime. Other researchers assumed that
hierarchies are given as inputs for learning task models.
(Garland, Ryall, & Rich 2001) uses interactive elicitation in
which the user provides examples showing how to correctly
perform a task and annotates other ways to perform the task
in the examples.

Another related work is abstraction in planning such as
the Alpine (Knoblock 1993) and the Paris (Bergmann &



Wilke 1995) systems. These systems take a concrete plan
and generalize it. This allows the reuse of the general-
ized plan in different problems by instantiating its condi-
tions. These systems require both an action model and an
abstraction model that indicates how to abstract and special-
ize plans.

Learning Hierarchical Relations From Tasks

We will first specify the problem of extracting hierarchies.
In previous work for learning task hierarchies, tasks are
goals and therefore the semantics of the learned hierarchies
were clear. Given an HTN H with a goal g at the top level,
the plan P obtained by collecting the actions in the leaves
of H must achieve g to be correct. That is, one can exam-
ine the plan, regardless of the hierarchy, to determine if it is
correct. This is not the case in general HTN planning. In-
formally, a plan is correct if an HTN exists that decomposes
the top-level task(s) of the problem such that the HTN en-
tails the plan. The top-level tasks represent complex goals
that may not be in the vocabulary of the preconditions and
effects of the actions in the plans. This means that the only
way to verify if a plan is correct is by finding an HTN that
entails it. This poses a problem for defining the kinds of
tasks that are given in the task taxonomy so that the seman-
tics of the resulting hierarchy unambiguously relates to the
input problem-solution plan pairs.

Task Definitions

To address this problem, we have adopted the definition of
tasks from process models. Loosely speaking, a process
is the means by which tasks are accomplished via a series
of actions or operations. In particular, we chose the task-
method-knowledge (TMK) variant of process models. In
TMKSs, tasks indicate what they accomplish by stating their
preconditions and effects. Task semantics are the following:
if the preconditions are true in the state of the world and the
task is accomplished, the effects must be true in the result-
ing world state. The task definitions used as input for the
hierarchy learning problem consist of a collection of tasks
in this form. These tasks form the nonprimitive tasks of the
domain, while the heads of the operators in the action model
form the primitive tasks in the domain. Note the distinction
between tasks, which are provided and specify what should
be accomplished, and methods, which are learned and spec-
ify how to accomplish a task.

Learning Problem

The task model learning problem is defined as follows:
given a collection of task definitions, a collection of STRIPS
problems, a collection of plans solving these problems, and
the action model used to generate these plans, obtain a task
model. Under these preconditions and given a learned task
model, one can check if a plan P correctly solves an HTN
planning problem where ¢ ...%,, are the tasks to achieve,
and S is the initial state. To do this, one checks if the pre-
conditions of ¢; are satisfied in S and if the effects of ¢; are
satisfied in a state S;. The state .S; is obtained by execut-
ing the plan P, on S, where P; is the plan entailed by the

deliver-pkg(pl,12)

PN

deliver-pkg(pl,12)
deliver-pkg(pl, 11) !

\

deliver-pkg(pl, 12)

N\

deliver-pkg(pl,12)

fly-plane al 11 12 /

unload-plane(pl,al,l12)

unleoad-truck(pl,tl,11)

load-plane{pl,al,1ll)

Figure 1: Example of HTN obtained by HTN-MAKER

portion of the HTN that accomplishes ¢;. One can continue
by checking task to starting from Si, and so forth for the
remaining tasks.

The HTN-MAKER Algorithm

The HTN-MAKER algorithm traverses forward through a
STRIPS plan, generating the new state after each action by
applying it to the previous state. For each substitution of
variables such that the current state includes all effects of a
task it is possible to learn a set of methods: one that encap-
sulates the previous operator, another for the previous two
operators, and so on. The subtasks of these learned methods
are the encapsulated operators or previously learned meth-
ods and the preconditions are determined by regressing the
task effects through the subtasks.

Example

Figure 1 exemplifies a resulting HTN for the logistics-
transportation domain. The initial state in this case con-
sists of a package p/ in a truck ¢/ at an airport /] that con-
tains an airplane al, and the goal is to deliver the pack-
age to a different airport /2. The plan consists of four
actions: wunload-truck(pl,tl,ll), load-plane(pl,al,ll), fly-
plane(al,ll,l2), and unload-plane(pl,al,l2).

Suppose that there is a single task, deliver-pkg(?p,?l),
with preconditions that ?p be a package and ?/ be a location,
and effects that ?p be at ?[. After the first operator, package
pl has been delivered to location /1. Thus, HTN-MAKER
will learn a method for solving this task bound to these con-
stants. The operator unload-truck(pl,t1,11) produces the ef-
fect at(pl,11), so it will be selected as a subtask. The learned
method will be applicable when the types of variables are
correct (from the task preconditions), and the package is in
a truck that is at the destination (from the preconditions of
the operator). In the next two states, there are no valid in-
stantiations of the task effects.

In the final state, the package p/ has been delivered to lo-
cation /2. A recursive series of methods is learned. The first
delivers a package that is in an airplane at the destination by



unloading the airplane. The next delivers a package that is
in an airplane at the wrong location by flying to the desti-
nation, which must be an airport, and then delivering. The
third requires that the package be at an airport that is not
the destination and that contains an airplane, and proceeds
by loading the package into airplane and then continuing to
deliver. The final first delivers to an airport, and then from
there to the final destination.

An HTN planner presented with this initial state, goal,
and collection of methods might build the same hierarchical
structure from the top task down to the primitive actions.
With a different initial state or goal, an HTN planner might
use pieces of this structure integrated with other methods
learned from other problems.

Open Questions And Future Work

While we have been able to produce good results in the
logistics-transportation domain, these do not translate well
to the blocks-world domain. In all cases the soundness of the
learned domain description in terms of producing only valid
STRIPS plans is guaranteed!, but it is often far from opti-
mal. Specifically, there are two significant difficulties. The
first is the very large number of methods that will be learned
and that must be considered by an HTN planner using the
domain description. The second, more serious problem is
the possibility for the planner to use methods in an infinitely
recursive manner.

The general question to be studied is the appropriate level
of generality. A domain description that is too general al-
lows infinite recursion and erodes the advantages of HTN
planning over classical planning. A highly specific domain
description is less likely to be capable of solving new prob-
lems and will require a much larger set of methods than
should be necessary. Finding appropriate techniques for re-
taining generality while making the learned domains more
like those a domain expert would write remains a challeng-
ing problem, and I expect it to be the majority of my disser-
tation.

Acknowledgments

This research was in part supported by the National Science
Foundation (NSF 0642882) and the Defense Advanced Re-
search Projects Agency (DARPA).

References

Bergmann, R., and Wilke, W. 1995. Building and refin-
ing abstract planning cases by change of representation lan-
guage. Journal of Artificial Intelligence Research 53—118.

Botea, A.; Muller, M.; and Schaeffer, J. 2005. Learning
partial-order macros from solutions. In Proceedings of the
Fifteenth International Conference on Automated Planning
and Scheduling (ICAPS-05). AAAI Press.

Choi, D., and Langley, P. 2005. Learning teleoreactive
logic programs from problem solving. In Proceedings of

IThe proof of correctness is omitted here, but follows from the
way preconditions are effects are regressed through the learned
methods

the Fifteenth International Conference on Inductive Logic
Programming. Springer.

Erol, K.; Hendler, J.; and Nau, D. S. 1994. Htn planning:
complexity and expressivity. In AAAI’94: Proceedings of
the twelfth national conference on Artificial Intelligence
(vol. 2), 1123-1128. Menlo Park, CA, USA: American
Association for Artificial Intelligence.

Garland, A.; Ryall, K.; and Rich, C. 2001. Learning hi-
erarchical task models by defining and refining examples.
In Proceedings of the First International Conference on
Knowledge Capture, 363-391.

Ilghami, O.; Munoz-Avila, H.; Nau, D.; and Aha, D. W.
2005. Learning approximate preconditions for methods
in hierarchical plans. In Proceedings of the International
Conference on Machine Learning (ICML).

Knoblock, C. 1993. Abstraction Hierarchies: An Auto-
mated Approach to Reducing Search in Planning. Norwell,
MA: Kluwer Academic Publishers.

Minton, S. 1998. Learning Effective Search Control
Knowledge: an Explanation-Based Approach. Ph.D. Dis-
sertation, Carnegie Mellon University.

Mitchell, T.; Keller, R.; and Kedar-Cabelli, S. 1986.
Explanation-based generalization: A unifying view. Ma-
chine Learning 1.

Mooney, R. J. 1988. Generalizing the order of operators in
macro-operators. Machine Learning 270-283.

Nau, D. S.; Au, T.-C.; Ilghami, O.; Kuter, U.; Munoz-
Avila, H.; Murdock, J. W.; Wu, D.; and Yaman, F. 2005.
Applications of shop and shop2. IEEE Intelligent Systems
20(2):34-41.

Reddy, C., and Tadepalli, P. 1997. Learning goal-
decomposition rules using exercises. In Proceedings of the
Internation Conference on Machine Learning (ICML-97).

Ruby, D., and Kibler, D. F. 1991. Steppingstone: An
empirical and analytic evaluation. In Proceedings of the
Ninth National Conference on Artificial Intelligence, 527—
531. Morgan Kaufmann.

Smith, S. J. J.; Nau, D. S.; and Erol, K. 1998. Control
strategies in htn planning: theory versus practice. In IAAI
'98: Proceedings of the tenth conference on Innovative
applications of artificial intelligence, 1127-1133. Menlo
Park, CA, USA: American Association for Artificial Intel-
ligence.

Xu, K., and Munoz-Avila, H. 2005. A domain-independent
system for case-based task decomposition without domain

theories. In Proceedings of the Twentieth National Confer-
ence on Artificial Intelligence (AAAI-05). AAAI Press.

Zimmerman, T., and Kambhampati, S. 2003. Learning-
assisted automated planning: Looking back, taking stock,
going forward. Al Magazine 73-96.



