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Héctor Palacios
Departamento de Tecnologı́a

Universitat Pompeu Fabra
08003 Barcelona, SPAIN

hector.palacios@upf.edu
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Abstract

Focusing on the computation of conformant plans whose ver-
ification can be done efficiently, Palacios and Geffner have
recently proposed a polynomial scheme for mapping con-
formant problems P with deterministic actions into classical
problems K(P ). The scheme is sound as the classical plans
are all conformant, but is incomplete as the converse relation
does not always hold. In this paper, we build on this work,
and consider an alternative, more powerful translation based
on the introduction of tagged literals KL/t where L is a lit-
eral in P and t is a set of literals in P unknown in the initial
situation. The translation ensures that a plan makes KL/t
true only when the plan makes L certain in P given the as-
sumption that t is initially true. We show that a conformant
planner based on this translation solves some interesting do-
mains that cannot be solved apparently by other planners.1

Introduction
Conformant planning is the problem of finding a sequence of
actions for achieving a goal in the presence of uncertainty in
the actions or initial state (Goldman & Boddy 1996). While
few practical problems are purely conformant, the ability
to find conformant plans appears to be a necessity in con-
tingent planning where conformant situations are an special
case (null observability being an special case of partial ob-
servability) and where relaxations into conformant planning
appear to provide useful heuristics (Brafman & Hoffmann
2004).

In this paper, we build on the work of (Palacios & Geffner
2006) and consider an alternative translation scheme Ki(P )
that overcomes some of the theoretical and practical limita-
tions of that approach. In particular, we define a parameter
w(P ) that we call the conformant width of P . The confor-
mant width of a problem P measures the maximum number
of explicit and implicit disjunctions in the initial situation
that are relevant to a precondition or goal. The translation
Ki(P ) is complete for problems with width i, being expo-
nential only in i. We will see that almost all conformant
benchmarks have actually width equal to 1. We then take
advantage of this for developing and testing a conformant
planner based on this translation.
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General Translation Scheme KT,M(P )
Following (Palacios & Geffner 2006), a conformant plan-
ning problem P is a tuple P = 〈F,O, I, G〉 where F stands
for the fluent symbols in the problem, O stands for a set of
actions a, I is a set of clauses over F defining the initial sit-
uation, and G is a set of literals over F defining the goal. In
addition, every action a has a precondition given by a set of
fluent literals, and a set of deterministic conditional effects
C → L where C is a set of fluent literals and L is a literal.

We consider a family of translations that can all be un-
derstood as arising from a common pattern that we refer
as KT,M (P ), where T and M are a set of tags and a set
of merges respectively. A tag t ∈ T is a set of literals L
from P whose truth value is not known in the initial situa-
tion I . The tagged literals KL/t, where L is a literal in P
and t ∈ T is a tag, capture the conditional ’it is known that
if t is true initially, then L is true’, which we would write
in logic as K(t0 ⊃ L). The key issue is that tags can be
sets of literals and they all refer to conditions in the initial
situation only. Roughly ¬KL/t means that the conditional
K(t0 ⊃ L) is not true, while K¬L/t means that the condi-
tional K(t0 ⊃ ¬L) is true.

Each merge mR,L ∈ M is a pair mR,L = 〈R,L〉 where
where L is a literal in P and R ⊆ T is a collection of tags
in T . A collection of tags R is valid when one of the tags
t ∈ R must be true in I; i.e., when

I |=
∨
t∈R

t .

We say that a merge m = 〈R,L〉 is valid when its collec-
tions of tags R is valid. We assume that all merges are valid
in this sense. Merges mR,L will map into ’merge actions’
mR,L with effects

mR,L :
∧
t∈R

KL/t → KL .

For example, a valid merge m = 〈R,L〉, with R as the
set of literals of a clause C ∈ I , and one tag corresponding
to each literal l ∈ C.

We assume that T always includes a tag t that stands
for the empty collection of literals, that we call the empty
tag. If t is empty, we denote KL/t simply as KL. Simi-
larly, for a set (conjunction) C of literals L1, L2, . . . ; KC/t



stands for KL1/t, KL2/t, . . . , while ¬K¬C/t stands for
¬K¬L1/t,¬K¬L2/t, . . ..

Wrapping up, the general translation KT,M (P ) is:
Definition 1 (KT,M (P )) Let P = 〈F,O, I, G〉 be a confor-
mant problem, then KT,M (P ) = 〈F ′, I ′, O′, G′〉 is defined
as:
• F ′ = {KL/t,K¬L/t | L ∈ F and t ∈ T}
• I ′ = {KL/t | if L ∈ I or L ∈ t}
• G′ = {KL | L ∈ G}
• O′ = {a : KC/t → KL/t, a : ¬K¬C/t →
¬K¬L/t | a : C → L in P}∪ {mR,L : [

∧
t∈R KL/t] →

KL|mR,L ∈ M}
where KL is a precondition of action a in KT,M (P ) if L is
a precondition of a in P .
The translation scheme KT,M (P ) reduces to the core trans-
lation K0(P ) (Palacios & Geffner 2006), which is equiva-
lent to 0-approximation (Baral & Son 1997). On the other
hand, for suitable choices of T and M , we will see that the
new translation scheme is complete, and under certain con-
ditions, both complete and polynomial. At the same time the
scheme is simpler than K(P ) (Palacios & Geffner 2006).
Theorem 2 (Soundness KT,M (P )) If π is a plan that
solves the classical planning problem KT,M (P ), then the
action sequence π′ that results from π by dropping the merge
actions is a plan that solves the conformant planning prob-
lem P .

Example 1 Consider the problem of moving an object from
an unknown origin to a destination. For instance, let I =
at1 ∨ at2 and G = at3. We can use actions: pick(l) that
picks up the object if the object is at l and the hand is empty,
while if the hand is not empty, pick(l) just releases the object
at l, and drop(l) that drops the object in a location if the
object is being held. Let us assume that these are conditional
effects, and that there are no preconditions.

Let us consider now the translation KT,M (P ) with T =
{at1, at2}, and the single merge mT,L ∈ M with L = at3
that is valid as at1 ∨ at2 is true in I . We can show now that
the plan π′

2

{pick(l1), drop(l3), pick(l2), drop(l3),mT,L}

for L = at3 solves the classical problem KT,M (P ) and
hence, from Theorem 2, that the plan π2 obtained from π′

2
by dropping the merge action, is a valid conformant plan for
P . We can see how some of the literals in KT,M (P ) evolve
as the actions in π′

2 are done:
0:Kat1/at1,Kat2/at2 true in I ′

1:Khold/at1,Kat2/at2 true after pick(l1)
2:Kat3/at1,Kat2/at2 true after drop(l3)
3:Kat3/at1,Khold/at2 true after pick(l2)
4:Kat3/at1,Kat3/at2 true after drop(l3)
5:Kat3 true after merge mT,L

where the merge mT,L is the action with the conditional ef-
fect

Kat3/at1 ∧Kat3/at2 → Kat3

whose condition is true before Step 5 producing Kat3

The Translation KS0(P )
A complete instance of the translation scheme KT,M (P ) can
be obtained in a simple manner by setting
• T to the union of the empty tag and the set of possible

initial states s0 (understood as the maximal consistent set
of literals in I), and

• M to the merges mT,L with T as above and each literal L
in P .

We will denote this instance, where the tags t range over
the possible initial states s0, as KS0(P ), which is not only
sound but complete: for every conformant plan π for P ,
there is a plan π′ for KS0(P ), obtained by extending π with
merge actions.

Width: Exploiting Relevance and Structure
The translation KS0(P ) introduces a number of literals
KL/t that is exponential in the worst case : one for each
possible initial context t. If for each literal L we could then
remove all literals L′ that are irrelevant to L from the tags t
in the translation KS0(P ), we could end up with a bounded
number of tagged literals KL/t while retaining complete-
ness.
Definition 3 (Conformant Relevance) The relevance rela-
tion L −→ L′ in P , read L is relevant to L′, is defined
inductively as

1. L −→ L
2. L −→ L′ if L −→ L′′ and L′′ −→ L′

3. L −→ L′ if a : C → L′ in P with L ∈ C
4. L −→ L′ if L −→ ¬L′′ and L′′ −→ ¬L′

5. L −→ L′ if both ¬L and L′ in a clause in I .
The first two clauses defining relevance stands for reflexivity
and transitivity, the third captures conditions relevant to the
effect, and the last captures deductive relevance in the initial
situation. The fourth clause, which is the least obvious, cap-
tures conditions under which L preempts conditional effects
that may delete L′. This definition is equivalent to the one
in (Son & Tu 2006). For more details, see the full paper.

Let CI the set of non-unary clauses in I along with the
tautologies L ∨ ¬L for complementary literals L and ¬L
that do not appear as unary clauses in I .2 We will denote by
CI(L) the set of clauses in CI relevant to the literal L in P .

Let us also say that a clause c ∈ CI subsumes another
clause c′ ∈ CI , written c � c′, if for every literal L ∈ c and
for some literal L′ ∈ c′, I |= L ⊃ L′, and let us keep in
C∗

I (L), a minimal set of clauses from CI(L), such that all
clauses in CI(L) are subsumed by a clause in C∗

I (L). We
can then define the conformant width parameter w(P ) of a
problem P in terms of the number of ’irredundant’ clauses
in CI(L) over all preconditions and goal literals L:
Definition 4 (Conformant Width) Let the width of a literal
L in P , written as w(L), be w(L) = |C∗

I (L)|, and let the
width of the conformant problem P , w(P ), be the max width
of any precondition or goal literal L.

2In order to have polynomial but complete translations we need
to assume that I is in prime implicate (PI) form. More details in
the full paper



The Translation Ki(P )
The translations Ki(P ), parametrized with the non-negative
integer i, are complete for problems with width no greater
than i and have a complexity that is exponential only in i.

For example, assuming i = 1 we get Ki(P ) is KT,M

where
• T is the union of the empty tag and the set of literals L

(i.e., singletons) in some clause in CI(L) for some pre-
condition or goal literal L,

• M is the set of merges mR,L where L is a precondition
or goal literal L and R is the set of literals in a clause in
CI(L).
The translation Ki(P ) applies to problems P of any

width, remaining in all cases exponential only in i but poly-
nomial in both the number of fluents and actions in P .
Theorem 5 (Soundness and Completeness of Ki(P ))
For conformant problems P with width bounded by i, the
translation Ki(P ) is sound, complete, and exponential only
in i.

The Planner T0

The conformant planner T0 is an optimized and slightly ex-
tended version of the Ki(P ) translation for i = 1 com-
bined with the FF classical planner v2.3 (Hoffmann & Nebel
2001). T0 won the conformant track of the IPC-5 (Bonet &
Givan 2006). The K1(P ) translation is provably complete
for problems with width 1, but may also solve problems with
higher widths as well (later on we discuss such examples).
The optimization in the K1(P ) translation comes from a
simple observation: all the schemes considered above are
uniform in the sense that the same set of tags T is used over
all the literals in P . Yet, whenever a tagged literal KL/t
has a tag t that includes literals L′ that are not relevant to L,
such literals can be removed from t so that literals KL/t are
encoded by means of tagged literals KL/t′ where t′ is the
relevant part of t. This simplification decreases the size of
the resulting encoding considerably without affecting the se-
mantics of the translation. In particular, in K1(P ), the tags t
have a size no greater than 1 so that all literals KL/t where
t contains a literal that is not relevant to L are represented
effectively by the same literal KL.

Experimental Results
Table 1 shows the plan times and lengths obtained by T0

and Conformant FF (Brafman & Hoffmann 2004) on several
standard domains, taken from the Conformant-FF distribu-
tion and from the recent competition (Bonet & Givan 2006).
In all these domains, T0 scales up very well. The results of
T0 over a family of grid problems in (Palacios & Geffner
2006) are not presented. We found solutions for them with
plans from one hundred to thousands of actions, but Confor-
mant FF could not solve them within the time limits.

Summary
While few practical problems are purely conformant, the
ability to find conformant plans fast appears to be a neces-
sity in contingent planning where conformant situations are

problem T0 len CFF len
Bomb-100-60 5,6 140 9,38 140

Sqr-8-ctr 0,07 26 70,63 50
Sqr-12-ctr 0,1 32 > 2h
Sqr-64-ctr 10,68 188 > 2h

Log-3-10-10 3,42 109 4,67 108
Log-4-10-10 6,52 125 4,36 121

Ring-4 0,09 13 1,37 26
Ring-5 0,1 17 27,35 45

UTS-K10 1,09 58 16,53 58
UTS-L10 0,33 88 1,64 59
Comm-24 0,7 418 37,52 359
Comm-25 0,84 453 56,13 389

Table 1: Plan times in seconds and lengths over standard
domains. Run on a Linux machine running at 2.33 Ghz with
8Gb of RAM, with a cutoff of 2h or 1.8G of memory.

a special case. We have built on the work proposed by Pala-
cios and Geffner, to introduce a novel and general transla-
tion scheme that maps conformant problems into classical
problems; these can then be solved efficiently by an off-
the-shelf-planner. The translation scheme depends on two
parameters: a set of tags, referring to local contexts in the
initial situations, and a set of merges that stand for exhaus-
tive sets of tags. We have seen how different translations can
be obtained from suitable choices of tags and merges, have
introduced a measure of complexity in conformant planning
called conformant width, and have introduced a translation
scheme Ki(P ) that involves only tags of size i that is com-
plete for problems of width ≤ i. We observed that that
most conformant benchmarks have width 1, have developed
a conformant planner based on the Ki(P ) translation that
uses the FF classical planner, and have shown that this plan-
ner exhibits good performance over the existing domains
and some challenging new domains.
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