
Case-Based Search Control for Heuristic Planning

Tomás de la Rosa
Departamento de Informática, Universidad Carlos III de Madrid

Avda. de la Universidad, 30. Leganés (Madrid). Spain
trosa@inf.uc3m.es

Abstract

The great success of heuristic search as an approach to AI
planning is due to the the right design of domain-independent
heuristics. Although many heuristic planners perform reason-
ably well with the only guidance of the heuristic function, few
planners incorporate additional domain-dependent heuristics
generated through a domain-independent automatic proce-
dure in order to improve their performance in terms of time
or plan quality. In this work we present a case-based reason-
ing approach that learns abstracted sub-state transitions that
serve as domain control knowledge for improving the plan-
ning process. Search nodes matching the retrieved episodes
are recommended as good choices when decisions of prun-
ing or ordering nodes are done in the search algorithm. We
show that the concept of recommended nodes can be applied
in different algorithms depending on whether the aim of the
planning task is finding a solution rapidly or achieving a plan
of good quality.

Introduction
Past IPCs have shown heuristic search as one of the top ap-
proaches in automated planning. This great success mostly
relies on the domain-independent heuristic used for guid-
ing the search. The heuristic of the relaxed planning graph
introduced in FF (Hoffmann & Nebel 2001) is the most
used heuristic and some state-of-the-art planners use vari-
ations of FF or its heuristic. Although heuristic planners
perform reasonably well in many benchmark domains, ad-
ditional domain-dependent control knowledge can be used
to improve the search process. Given that manually defin-
ing this control knowledge is a difficult task, we advocate
for learning it with machine learning techniques that take
some planning examples and extract knowledge from them.
Recently, macro-actions approaches in MACRO-FF (Botea et
al. 2005) and MARVIN (Coles & Smith 2007), show that do-
main specific control knowledge can speed up the planning
process. Another example is learning the heuristic function
(Yoon, Fern, & Givan 2006) through observing in a particu-
lar domain the error between the estimation and the real cost
of achieving the goals. Although we find in the literature
many case-based planners (Cox, Muñoz-Avlia, & Bergmann
2005), no recent case-based reasoning (CBR) approach has

Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

been developed to support state-of-the-art-planners. We ar-
gue that heuristic planning offers some learning opportuni-
ties which can be learned within a CBR cycle of storing,
retrieving and reusing planning episodes. We present in this
paper a summary of our PhD work at its current stage. The
aim of this work is to integrate CBR techniques in a heuris-
tic planner to improve the planning process. We will show
that a case-based search control can be useful depending on
whether the target of the planning task is rapidly finding a
solution or finding a plan of good quality.

Learning Typed Sequences
The basic piece of knowledge in a CBR system is a case. So,
we describe our cases, called typed sequences, as abstracted
sub-state transitions relative to an object type. A typed se-
quence of a given type is formed by an ordered list of pairs
(typed sub-state, action to reach the state) which partially
collects a planning episode from an object instance perspec-
tive. A typed sub-state is the set of all properties that an
object has in a particular state. A property, first introduced
by the domain analysis in TIM (Fox & Long 1998), is de-
fined as a predicate subscripted with the object position of
a literal (e.g., at1 is a property of object truck1 in the lit-
eral (at truck1 depot0)). In addition, an object sub-state is
the set of the state literals in which the object is present.
Then, the set of object properties that forms the typed sub-
state is extracted from the object sub-state. For instance,
suppose we have an initial state like [(at truck1 depot1) (on
crate0 crate1) (at crate0 depot0) (available hoist1) (clear
crate0). . . ]. Then, the object sub-state of crate0 would be
[(on crate0 crate1) (at crate0 depot0) (clear crate0)]. This
is generalized to (on1 at1 clear1) which is a typed sub-state
of type crate. If the action lift(hoist1,crate0,crate1,depot0)
is applied in the initial state, we would generate first a pair
with the initial sub-state and no action, [(on1 at1 clear1),∅],
and a second pair with the next sub-state and its correspond-
ing action: [(lifting1), lift].

The basis of the CBR cycle (Aamodt & Plaza 1994) is
that past experience is stored in a case base and when a
new problem needs to be solved, the most similar case is
retrieved. Then, the retrieved case is adapted and reused to
solve the new problem. In this sense, we obtain the expe-
rience from solved problems as follows. For each object
instance in the problem, a typed sequence is generated. This



process is straightforward, since each step in the sequence
is created with the corresponding object sub-state from the
solution path. If we consider U(o, S) the transformation
function that gets the typed sub-state (properties of object o)
from the state S, we say that given a plan P = {a1, . . . .an},
Q = {(U(o, S0), ∅), . . . , (U(o, Sn), an)} is a typed se-
quence where the state Si is the resulting state of applying
action ai to the state Si−1. Sequences are grouped in the case
base by domain types, so a new case is inserted in the type
of object from which it was generated. Fig.1 shows an ex-
ample of a typed sequence extracted from an object of type
crate. If the object sub-state does not change when an ac-
tion is applied, a no-op is saved to represent a void action
from the object perspective. A merge process verifies that
equivalent sequences only varying in the number of no-op
do not repeat in the case base.

Figure 1: An example of a typed sequence relevant to a crate.

The next step in the CBR cycle is the retrieval. For each
object instance in the new problem a typed sequence is re-
trieved. For this purpose, we have a simple retrieval scheme
that only considers the first step of the sequence referred
to the initial state and the last step of the sequence refer-
ring to the goal state. The system performs two matches
to retrieve a sequence. The first one matches the typed
sub-state generated from the goals against the last step of
all sequences of the corresponding type. For the second
match the typed sub-state generated from the initial state
is matched against the first step of the sequences resulting
from the first match. Thus, if we consider an object o of
type t and Q = {(q0, ∅), . . . , (qn, an)} an arbitrary typed
sequence in the case base of type t, the first match holds
when U(o,G) ⊆ qn where G is the set of goals, and the
second match holds when q0 ⊆ U(o, S0).

Before using retrieved sequences, they must be adapted
to fit into the new problem. To achieve this, sequences are
partially re-instantiated using the information from the re-
laxed planning graph of the initial state. The idea consists of
transforming a typed sub-state back into an object sub-state,
so the replay of sequences can be more accurate during the
search. A relaxed planning graph is formed by a sequence
of layers of actions and propositions. If we take only the

facts achieved by applying the relaxed plan we get a sub-
set M of the graph that represent the goals and sub-goals
achieved by the relaxed plan. Then, for each layer j in M ,
and for each retrieved sequence Q, if U(o,Mj) ⊆ qi then we
augment the step i information including the corresponding
object sub-state from layer Mj. Since facts in the relaxed
planning graph are not ordered as they appear in a real so-
lution path, not all steps can be re-instantiated. Therefore
we differentiate since this stage between a typed step (the
pair (qi, ai)) and instantiated step (the set (qi, ai, wi) where
wi represents the instantiated object sub-state). Since the
retrieval and the adaptation are performed once at the begin-
ning of the search, they do not produce considerable over-
head in the overall performance of the search process. For
additional explanation of these processes see (De la Rosa,
Garcı́a-Olaya, & Borrajo 2007).

Typed sequences are used during the search as control
knowledge that supports exploring decisions together with
the heuristic function. The search control is performed with
recommendations given by the retrieved sequences, which
are replayed while the search is advancing. We say that a
successor node is recommended when it matches the next
step of a sequence retrieved for any object involved in the
applied action to reach the node state. Thus, we say that
a child node S′ achieved by applying action a′ is a recom-
mended node when qk+1 ⊆ U(oj, S) where oj is the param-
eter (object instance) j of the action a′ and k is the current
step number for the sequence retrieved for oj. The notion of
recommended node is independent of the search algorithm,
so it can be used for different types of search control like
selecting, pruning or ordering nodes. According to this, we
explain in the next sections how these CBR recommenda-
tions can be used in different search algorithms.

Advising Local Heuristic Search
Local heuristic search is used in planning to find a solu-
tion as soon as possible. Therefore, the use of learning
knowledge is focused on improving the planning time. Since
computing the heuristic value of a node is expensive, skip-
ping node evaluations is one the main learning opportuni-
ties in this kind of search. The first straightforward appli-
cation of recommended nodes is directly selecting a recom-
mended one for following the search. For instance, in the
hill-climbing algorithm, after a node expansion, if a succes-
sor is recommended, it is selected and no evaluations are
performed. If there is no advise, all nodes are evaluated and
the one with the best heuristic value is selected. The main
drawback of this hill-climbing variation is that the heuristic
function is not been used to complement the selection. Al-
though this approach can reduce node evaluations in many
problems (De la Rosa, Borrajo, & Garcı́a-Olaya 2006), in
some others the plan quality decays, since a bad recommen-
dation usually can not be recovered in a local search.

Another option of CBR search control is deciding the
node evaluation ordering in a greedy algorithm like the en-
forced hill-climbing (EHC) used in FF. This algorithm per-
forms a breadth-first search from a node S until it finds a
node that has a better heuristic value. Thus, the idea con-
sists of trying to evaluate first the most promising nodes in



order to skip the evaluation of the rest of siblings. In our
EHC variation, instead of evaluating nodes in the standard
way, we only compute the heuristic function if the node is
recommended. If none of the recommended nodes improves
h(S), the rest of nodes are evaluated in their standard order.
The EHC supported by CBR improves EHC performance in
some domains as shown in (De la Rosa, Garcı́a-Olaya, &
Borrajo 2007).

Advising Best First Search
A systematic global search like the best-first algorithm
(BFS) is used in planning when the aim of the planning task
is to find an optimal solution or at least a plan of good qual-
ity, (i.e., the metric optimization in numeric versions of the
IPC benchmarks). One learning opportunity in this algo-
rithm resides in which tree branches should be preferred to
explore first, since the number of nodes that need to be ex-
panded before finding a solution is very high. One basic
difference with local search recommendations is that since
different branches may receive different recommendations,
each node must keep track of the pointers to current steps in
the sequences.

A first variation over BFS is the case-based pruning
BFS, which discards tree branches when there are sib-
ling recommended nodes. After each node expansion, no-
recommended nodes are pruned. Recommended nodes are
evaluated and inserted into the open list. If there is no advise,
all successors are inserted into the open list. The open list is
resorted and the node with the best value of the evaluation
function f(S) is selected. This algorithm is not complete,
but if the case base has good and enough planning episodes,
the performance time can be improved without losing plan
quality. The complete version for this algorithm is the case-
based ordering BFS, in which no-recommended nodes are
not pruned, but evaluated and postponed in a delayed-list.
This algorithm follows a similar scheme, but no nodes are
inserted in the open list if no advise is received. If the open
list becomes empty at some point, the node with the best
f(S) in the delayed list is selected for expansion. In prac-
tice, this algorithm spends more time than the case-based
pruning BFS, but at least it guarantees a complete search.

Future Work
The refinement of a case-based system usually involves im-
proving some features particular to any CBR-cycle stage.
For instance, a way of enhancing the retrieval phase is find-
ing a more accurate similarity measure, permitting a more
precise case retrieval. In this sense, the retrieval mechanism
in our system only takes care of features from the initial state
and the goals. We are currently developing a more complex
retrieval scheme, that takes into account the intermediate
steps of sequences. The idea consists of using the achieved
facts layers of the relaxed planning graph of the initial state
(explained before when sequences are adapted), as an extra
key for retrieving typed sequences. Hence, if two sequences
have the same first and last steps, they can be discriminated
by their intermediate steps.

Another issue we have to address is the training of the

system when we want to populate the case base with quality-
oriented sequences in order to advise search algorithms that
are optimizing a metric. The A* algorithm can only solve
small problems in numeric domains, so we can not learn
from medium or large problems. This drawback is also
present when the case-based search control is applied to a
complete algorithm due to the large size of the search tree
and imprecise guidance of the heuristic. We are testing with
alternative algorithms, so we can solve more problems with-
out compromising too much the plan quality. One option is
the real-time A* (RTA*), which is used in the search com-
munity to tackle this kind of problems. A different option is
performing iterative search restarts with a branch and bound
technique, so plans are refined gradually. In both cases we
can use the case-based search control, since the storing and
retrieving phase will remain the same, and the concept of
recommended node is applicable to any search algorithm.

Acknowledgments
This work has been partially supported by the Spanish MEC
project TIN2005-08945-C06-05 and regional CAM-UC3M
project CCG06-UC3M/TIC-0831.

References
Aamodt, A., and Plaza, E. 1994. Case-based reasoning:
Foundational issues, methodological variations, and sys-
tem approaches. AI Communications 7, no.1:39–59.
Botea, A.; Enzenberger, M.; Müller, M.; and Schaeffer, J.
2005. Macro-ff: Improving ai planning with automatically
learned macro-operators. Journal of Artificial Intelligence
Research (JAIR) 24:581–621.
Coles, A., and Smith, A. 2007. Marvin: A heuristic search
planner with on-line macro-actions learning. Journal of
Artificial Intelligence Research 28:119–156.
Cox, M.; Muñoz-Avlia, H.; and Bergmann, R. 2005.
Case-based planning. Knowledge Engineering Review
20(3):283–287.
De la Rosa, T.; Borrajo, D.; and Garcı́a-Olaya, A. 2006.
Replaying type sequences in forward heuristic planning.
In Ruml, W., and Hutter, F., eds., Technical Report of the
AAAI’06 Workshop on Learning for Search. Boston, MA
(USA): AAAI Press.
De la Rosa, T.; Garcı́a-Olaya, A.; and Borrajo, D. 2007.
Case-based recommendation for node ordering in plan-
ning. In Dankel II, D., ed., Proceedings of the 20th Inter-
national FLAIRS Conference. Key West, FL (USA): AAAI
Press.
Fox, M., and Long, D. 1998. The automatic inference of
state invariants in TIM. Journal of Artificial Intelligence
Research 9:317–371.
Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: Fast plan generation through heuristic search. Journal
of Artificial Intelligence Research 14:253–302.
Yoon, S.; Fern, A.; and Givan, R. 2006. Learning heuristic
functions from relaxed plans. In Proceedings of the Inter-
national Conference on Automated Planning and Schedul-
ing (ICAPS-2006).


