Using Decision Procedures Efficiently for Optimization

Matthew Streeter Stephen F. Smith
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
{matts,sf$@cs.cmu.edu

Introduction > 100 hours

Optimization problems are often solved by making repeated

calls to a decision procedure that answers questions of the

form “Does there exist a solution with cost at mé3t. Each

query to the decision procedure can be represented as a pair

(k,t), wheret is a bound on the CPU time the decision pro-

cedure may consume in answering the question. The result

of a query is either a (provably correct) “yes” or “no” answer

or a timeout. Aquery strategys a rule for determining the

next query(k, t) as a function of the responses to previous

queries. L
The performance of a query strategy can be measured in o s n 6 o o6

several ways. Given a fixed query strategy and a fixed mini- Makespan bound (k)

mization problem, let(7") denote the lower bound (i.e., one

plus the largesk that elicited a “no” response) obtained by

running the query strategy for a total ®ftime units; and Figure 1: CPU time required bsiege as a function of:

let u(T') be the corresponding upper bound. A natural goal (instancepl7 from thepathways domain).

is for u(T") to decrease as quickly as possible. Alternatively

we might want to achieve(7') < «l(7') in the minimum

possible time for some desired approximation ratio 1. does not find a feasible plan after running for 100 hours,
In this paper we study the problem of designing query hile the ramp-down strategy returns a feasible plan but
strategies. Our goal is to devise strategies that do well with goes not yield any non-trivial lower bounds on the optimum
respect to natural performance criteria such as the ones justmakespan. On the other hand, executing the quérieso)
described, when applied to decision procedures whose be-and (23, ~o) takes less than two minutes and yields a plan
havior (i.e., how the required CPU time varies as a function \yhose makespan is provably at mqﬁ—1 ~ 1.21 times op-
of k) is typical of the procedures used in practice. timal. For planning problems where provably optimal plans
are currently out of reach, obtaining provably approximately
optimal plans quickly is a natural goal.

1200 4
M no

yes
[timeout

CPU time (seconds)
g

Motivations

The two winners from the optimal track of last year’s Inter-

national Planning Competition were SatPlan and MaxPlan.

Both planners find a minimum-makespan plan by making a Related work

series of calls to a SAT solver, where each call determines

whether there exists a feasible plan of makespan(where The ramp-up strategy was used in the original GraphPlan al-
the value ofk varies across calls). One of the differences gorithm (Blum & Furst 1997), and is conceptually similar to
between the two planners is that SatPlan uses the “ramp-up” iterative deepening (Korf 1985). Alternatives to the ramp-
query strategy (in which th&” query is(i, 00)), whereas up strategy were investigated by Rintanen (2004), who pro-

MaxPlan uses the “ramp-down” strategy (in which the posed two algorithms. Algorithm A runs the decision pro-
query is(U — i,00), whereU is an upper bound obtained cedure on the first decision problems in parallel, each at
using heuristics). equal strength, where is a parameter. Algorithm B runs

To appreciate the importance of query strategies, con- the decision procedure on all decision problems simultane-
sider Figure 1, which shows the CPU time required by ously, with thei’” problem receiving a fraction of the CPU
siege (the SAT solver used by SatPlan) as a function of time proportional toy?, wherey € (0, 1) is a parameter.
the makespan bounkl on a benchmark instance from the Rintanen found that Algorithm B could yield dramatic per-
competition. On this instance, the ramp-up query strategy formance improvements relative to the ramp-up strategy.

Preliminaries

Let 7(k) denote the time required by the decision procedure
on inputk. For most decision procedures used in practice,
we expectr(k) to be an increasing function far < OPT

and a decreasing function fé&r > OPT (e.g., see Figure

1), and our query strategy was designed to take advantage
of such behavior. More precisely, our query strategy is de-
signed to work well wher is close to itshull.

Definition (hull). Thehull of 7 is the function

k
g?g(0)

hull” (k) = mm{ ,gg}éT(kl)} :

Figure 2 gives an example of a functier{gray bars) and
its hull (dots). The functions andhull” are identical ifr is
monotonically increasing (or monotonically decreasing), or
if there exists an: such thatr is monotonically increasing
for k£ < z and monotonically decreasing for> z.

10 4

T(k)

Figure 2: A functionr (gray bars) and its hull (dots).

Definition (stretch). Thestretchof 7 is the quantity
hull” (k)
(k)

The functionr depicted in Figure 2 has a stretch of 2 be-
causer(2) = 1 while hull” (2) = 2.

A = max
k

A New Query Strategy

We now describe a new query strategydesigned to work
well when A is low. S, maintains an interval, «] that is
guaranteed to contai PT, and maintains a valug that is
periodically doubledsS; also maintains a “timeout interval”
[ti, t,,] with the property that the queriés, T') and(t,,, T')
have both been executed and returned a timeout response.

Each query executed b, is of the form(k, T), where
ke [l,u—1] butk ¢ [t;,t,]. We say that such &-value
is eligible. The queries are selected in such a way that the
number of eligiblek-values decreases exponentially. Once
there are no eligiblé: values,T is doubled andt;, t,] is
reset to the empty interval (so eakhe [I,u — 1] becomes
eligible again).

Pseudocode faf, follows. HerelUU denotes an initial up-
per bound obtained using heuristics.

Query strategy Ss:
1. Initialize T «— 2,1 «— 1,u «— U, t; «— oo, and
ty — —OQ.
2. Whilel < u:
@ If[l,u —1] C [t;,t,) then setl’ — 2T, set
t; <+ oo, and set,, «— —oo.
(b) Letw’ = u — 1. Define

el

Ll-‘y—tl—l

ol

tut+14+u’
2

(c) Execute the queryk,T). If the result is “yes”
setu « k; if the result is “no” setl «—
k + 1; and if the result is “timeout” sef; «—
min{¢;, k} and set,, «— max{t,, k}.

I+u’
2

if [I,«/] and[t;,t,] are
disjoint ort; = oo

if [I,«'] and[t;, t,] intersect
andt; — 1l > u' —t,

otherwise.

We now analyze&,. Whenevet; # oo andt,, # —oo, it
holds thatr(t;) > T and7(t,) > T. For anyk € [t;,t,],
this implieshull” (k) > T (by definition of hull) and thus
(k) > % (by definition of stretch). Now consider some
arbitraryk. OnceT > Ar(k) it cannot be thak € [t;, t.],
so we must havé ¢ [I,u — 1] beforeT can be doubled
again. Furthermore, there can be at mOslog U) queries
in between updates t6 (because the number of eligibte
values decreases exponentially). It follows that for &ny
we have to waiD (A7 (k) -log U) time beforek ¢ [I, u—1].
This implies the following theorem.

Theorem 1. Suppose there exists a query strategy that ob-
tains a lower bound and upper bouna after running for a
total of ' time steps. Then, after running fér- O(A log U)
time steps,S; will obtain a lower bound’ and an upper
boundv’ such that’ > [andv’ < w.

In particular, Theorem 1 implies that if some query strat-
egy achieves: < ol intime T (for some desired approxi-
mation ratioa), thenSs will achieve a ratio as good or better
intimeT - O(AlogU). This resultis tight in that any query
strategyS’ must run for time"-Q(A log U) in order to make
the same guarantee (we omit the proof of this fact).

Experimental Evaluation

In this section we evaluat§, experimentally by using it
to create modified versions of state-of-the-art solvers in two
domains: job shop scheduling and STRIPS planning.

Job shop scheduling

In this section, we use query stratefy to create a modi-
fied version of a branch and bound algorithm for job shop
scheduling. We use the algorithm of Brucker et al. (1994),
henceforth referred to &rucker .

Given a branch and bound algorithm, one can always cre-
ate a decision procedure that answers the question “Does
there exist a solution with cost at mds?” as follows: ini-
tialize the global upper bound fo+ 1, and run the algorithm
until either a solution with cost & is discovered (in which

case the result of the query is “yes”) or the algorithm ter-
minates without finding such a solution (in which case the
result is “no”). A query strategy can be used in conjunction
with this decision procedure to solve the original minimiza-

Table 1: Performance of two query strategies on benchmark
instances from the OR library.

tion problem Instance Brucker (S2) Brucker (original)
We evaluate two versions @&@rucker : the original and lower,upper] _ [lower,upper]
a modified version that usés. We ran both versions on the abz7 (650712 [650,726]
instances in the OR library with a one hour time limit per in- abz8 p22729 [597,767]
stance, and recorded the upper and lower bounds obtained. abz9 b44728 [616,820]
On 50 of the benchmark instances, both query strategies ft20 [11651169 [1164,1179]
found a (provably) optimal solution within the time limit. la21 [10381070] [9951057
Table 1 presents the results for the remaining instances. Bold la25 [971,979] 977977
numbers indicate an upper or lower bound that was strictly la26 [1218,1227] [1218219
better than the one obtained by the competing algorithm. la27 [1235,1270] [1235,1270]
With the exception of just one instandaZ5), the modi- la28 [12161227 [1216,1273]
fied algorithm using query strateds obtains better lower la29 [1118§1228] [11141207
bounds than the original branch and bound algorithm. This la38 [11761232] [10771229
is not surprising, because the lower bound obtained by run- la40 [12111243] [1170]1229
ning the original branch and bound algorithm is simply the swv0l 13911531 [1366,1588]
value obtained by solving the relaxed subproblem at the root swv02 [14751479 [1475,1719]
node of the search tree, and is not updated as the search pro- ~ SWv03 [L3731629] [1328]617
gresses. What is more surprising is that the upper bounds swv04 [14101637 [1393,1734]
obtained byS, are also, in the majority of cases, substan- swv05 [14141554 [1411,1733]
tially better than those obtained by the original algorithm. swv06 [15721943 [1513,2043]
This indicates that the speculative upper bounds created by swv07 [14321877 [1394,1937]
S,'s queries are effective in pruning away irrelevant regions swv08 [16142120 [1586,2307]
of the search space and forcing the branch and bound al- swv09 (15941899 [1594,2013]
gorithm to find low-cost schedules more quickly. These re- swv10 16032099 [1560,2104]
sults are especially promising given that the technique used swvll ~ [29833407 [2983,3731]
to obtain them is domain-independent and could be applied swvl2z ~ [29713453 [2955,3565]
to other branch and bound algorithms. swvl3 [31043503 [3104,3893]
swvl4 [2968335([2968,3487]
STRIPS Planning swv15 [28853279 [2885,3583]
Our STRIPS planning experiments were run on the bench- yg; {gég?g&l ggg?gg]?]
marks from the 2006 International Planning Competition. In §n3 [812987 [793’1013]
what follows we summarize our results for the 30 bench- yna [8991159 [871.1178]

mark instances from theathways domain. More detailed
results can be found in the full version of our paper.

We compareds; to the ramp-up query strategy, as used
by SatPlan. On these 30 instanc8g,always obtained up-
per bounds that are as good or better than those obtained
by the ramp-up strategy. The lower bounds obtainedby
were only slightly worse, differing by at most two parallel

memory for some benchmark instances. Like S, always
obtained upper bounds that are as good or better than those
of the ramp-up strategy. Compareddg, S, generally ob-
tains slightly better lower bounds and slightly worse upper
bounds.

steps from the lower bound obtained by the ramp-up strat-
egy. S, always found a feasible plan, and for 26 out of the
30 instances, it found a plan whose makespan is (provably)
at most 1.5 times optimal. In contrast, the ramp-up strategy
did not even find a feasible plan for 21 of the 30 instances.
To better understand the performance&efwe also com-
pared it to a geometric query strate§y inspired by Algo-
rithm B of Rintanen (2004). This query strategy behaves as
follows. It initializesT to 1. If [andw are the initial lower
and upper bounds, it then executes the quefiedy*~!)
for eachk = {l,i+1,...,u — 1}, wherey € (0,1) is a
parameter. It then updatésndu, doublesT’, and repeats.
Based on the results of Rintanen (2004) weyset 0.8. We
did not compare to Rintanen’s Algorithm B directly because
it requires many runs of the SAT solver to be performed
in parallel, which requires an impractically large amount of

References

Blum, A. L., and Furst, M. L. 1997. Fast planning through
planning graph analysis.Artificial Intelligence 90:281—
300.

Brucker, P.; Jurisch, B.; and Sievers, B. 1994. A branch
and bound algorithm for the job-shop scheduling problem.
Discrete Applied Mathematiet9(1-3):107-127.

Korf, R. E. 1985. Depth-first iterative deepening: An
optimal admissible tree search.Artificial Intelligence
27(1):97-109.

Rintanen, J. 2004. Evaluation strategies for planning as sat-
isfiability. In Proceedings of the Sixteenth European Con-
ference on Artificial Intelligence (ECAI'’200482—687.

