
Using Decision Procedures Efficiently for Optimization

Matthew Streeter Stephen F. Smith
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
{matts,sfs}@cs.cmu.edu

Introduction
Optimization problems are often solved by making repeated
calls to a decision procedure that answers questions of the
form “Does there exist a solution with cost at mostk?”. Each
query to the decision procedure can be represented as a pair
〈k, t〉, wheret is a bound on the CPU time the decision pro-
cedure may consume in answering the question. The result
of a query is either a (provably correct) “yes” or “no” answer
or a timeout. Aquery strategyis a rule for determining the
next query〈k, t〉 as a function of the responses to previous
queries.

The performance of a query strategy can be measured in
several ways. Given a fixed query strategy and a fixed mini-
mization problem, letl(T ) denote the lower bound (i.e., one
plus the largestk that elicited a “no” response) obtained by
running the query strategy for a total ofT time units; and
let u(T ) be the corresponding upper bound. A natural goal
is for u(T ) to decrease as quickly as possible. Alternatively
we might want to achieveu(T ) ≤ αl(T ) in the minimum
possible time for some desired approximation ratioα ≥ 1.

In this paper we study the problem of designing query
strategies. Our goal is to devise strategies that do well with
respect to natural performance criteria such as the ones just
described, when applied to decision procedures whose be-
havior (i.e., how the required CPU time varies as a function
of k) is typical of the procedures used in practice.

Motivations
The two winners from the optimal track of last year’s Inter-
national Planning Competition were SatPlan and MaxPlan.
Both planners find a minimum-makespan plan by making a
series of calls to a SAT solver, where each call determines
whether there exists a feasible plan of makespan≤ k (where
the value ofk varies across calls). One of the differences
between the two planners is that SatPlan uses the “ramp-up”
query strategy (in which theith query is〈i,∞〉), whereas
MaxPlan uses the “ramp-down” strategy (in which theith

query is〈U − i,∞〉, whereU is an upper bound obtained
using heuristics).

To appreciate the importance of query strategies, con-
sider Figure 1, which shows the CPU time required by
siege (the SAT solver used by SatPlan) as a function of
the makespan boundk, on a benchmark instance from the
competition. On this instance, the ramp-up query strategy

0

600

1200

1 6 11 16 21 26

Makespan bound (k)

C
P
U

 t
im

e
 (

s
e
c
o
n

d
s
) no

yes

> 100 hours

timeout

Figure 1: CPU time required bysiege as a function ofk
(instancep17 from thepathways domain).

does not find a feasible plan after running for 100 hours,
while the ramp-down strategy returns a feasible plan but
does not yield any non-trivial lower bounds on the optimum
makespan. On the other hand, executing the queries〈18,∞〉
and〈23,∞〉 takes less than two minutes and yields a plan
whose makespan is provably at most23

18+1 ≈ 1.21 times op-
timal. For planning problems where provably optimal plans
are currently out of reach, obtaining provably approximately
optimal plans quickly is a natural goal.

Related work

The ramp-up strategy was used in the original GraphPlan al-
gorithm (Blum & Furst 1997), and is conceptually similar to
iterative deepening (Korf 1985). Alternatives to the ramp-
up strategy were investigated by Rintanen (2004), who pro-
posed two algorithms. Algorithm A runs the decision pro-
cedure on the firstn decision problems in parallel, each at
equal strength, wheren is a parameter. Algorithm B runs
the decision procedure on all decision problems simultane-
ously, with theith problem receiving a fraction of the CPU
time proportional toγi, whereγ ∈ (0, 1) is a parameter.
Rintanen found that Algorithm B could yield dramatic per-
formance improvements relative to the ramp-up strategy.



Preliminaries
Let τ(k) denote the time required by the decision procedure
on inputk. For most decision procedures used in practice,
we expectτ(k) to be an increasing function fork ≤ OPT
and a decreasing function fork ≥ OPT (e.g., see Figure
1), and our query strategy was designed to take advantage
of such behavior. More precisely, our query strategy is de-
signed to work well whenτ is close to itshull.

Definition (hull). Thehull of τ is the function

hullτ (k) = min
{

max
k0≤k

τ(k0), max
k1≥k

τ(k1)
}

.

Figure 2 gives an example of a functionτ (gray bars) and
its hull (dots). The functionsτ andhullτ are identical ifτ is
monotonically increasing (or monotonically decreasing), or
if there exists anx such thatτ is monotonically increasing
for k ≤ x and monotonically decreasing fork > x.

0

2

4

6

8

10

1 2 3 4 5 6 7 8

k

!(
k
)

Figure 2: A functionτ (gray bars) and its hull (dots).

Definition (stretch). Thestretchof τ is the quantity

∆ = max
k

hullτ (k)
τ(k)

.

The functionτ depicted in Figure 2 has a stretch of 2 be-
causeτ(2) = 1 while hullτ (2) = 2.

A New Query Strategy
We now describe a new query strategyS2 designed to work
well when∆ is low. S2 maintains an interval[l, u] that is
guaranteed to containOPT , and maintains a valueT that is
periodically doubled.S2 also maintains a “timeout interval”
[tl, tu] with the property that the queries〈tl, T 〉 and〈tu, T 〉
have both been executed and returned a timeout response.

Each query executed byS2 is of the form〈k, T 〉, where
k ∈ [l, u − 1] but k /∈ [tl, tu]. We say that such ak-value
is eligible. The queries are selected in such a way that the
number of eligiblek-values decreases exponentially. Once
there are no eligiblek values,T is doubled and[tl, tu] is
reset to the empty interval (so eachk ∈ [l, u − 1] becomes
eligible again).

Pseudocode forS2 follows. HereU denotes an initial up-
per bound obtained using heuristics.

Query strategyS2:
1. Initialize T ← 2, l ← 1, u ← U , tl ← ∞, and

tu ← −∞.
2. While l < u:

(a) If [l, u − 1] ⊆ [tl, tu] then setT ← 2T , set
tl ←∞, and settu ← −∞.

(b) Letu′ = u− 1. Define

k =



⌊
l+u′

2

⌋
if [l, u′] and[tl, tu] are

disjoint ortl =∞⌊
l+tl−1

2

⌋
if [l, u′] and[tl, tu] intersect
andtl − l > u′ − tu⌊

tu+1+u′

2

⌋
otherwise.

(c) Execute the query〈k, T 〉. If the result is “yes”
set u ← k; if the result is “no” setl ←
k + 1; and if the result is “timeout” settl ←
min{tl, k} and settu ← max{tu, k}.

We now analyzeS2. Whenevertl 6=∞ andtu 6= −∞, it
holds thatτ(tl) > T andτ(tu) > T . For anyk ∈ [tl, tu],
this implieshullτ (k) > T (by definition of hull) and thus
τ(k) > T

∆ (by definition of stretch). Now consider some
arbitraryk. OnceT ≥ ∆τ(k) it cannot be thatk ∈ [tl, tu],
so we must havek /∈ [l, u − 1] beforeT can be doubled
again. Furthermore, there can be at mostO(log U) queries
in between updates toT (because the number of eligiblek-
values decreases exponentially). It follows that for anyk,
we have to waitO(∆τ(k) · log U) time beforek /∈ [l, u−1].
This implies the following theorem.

Theorem 1. Suppose there exists a query strategy that ob-
tains a lower boundl and upper boundu after running for a
total ofT time steps. Then, after running forT ·O(∆ log U)
time steps,S2 will obtain a lower boundl′ and an upper
boundu′ such thatl′ ≥ l andu′ ≤ u.

In particular, Theorem 1 implies that if some query strat-
egy achievesu ≤ αl in time T (for some desired approxi-
mation ratioα), thenS2 will achieve a ratio as good or better
in timeT ·O(∆ log U). This result is tight in that any query
strategyS′ must run for timeT ·Ω(∆ log U) in order to make
the same guarantee (we omit the proof of this fact).

Experimental Evaluation
In this section we evaluateS2 experimentally by using it
to create modified versions of state-of-the-art solvers in two
domains: job shop scheduling and STRIPS planning.

Job shop scheduling
In this section, we use query strategyS2 to create a modi-
fied version of a branch and bound algorithm for job shop
scheduling. We use the algorithm of Brucker et al. (1994),
henceforth referred to asBrucker .

Given a branch and bound algorithm, one can always cre-
ate a decision procedure that answers the question “Does
there exist a solution with cost at mostk?” as follows: ini-
tialize the global upper bound tok+1, and run the algorithm
until either a solution with cost≤ k is discovered (in which



case the result of the query is “yes”) or the algorithm ter-
minates without finding such a solution (in which case the
result is “no”). A query strategy can be used in conjunction
with this decision procedure to solve the original minimiza-
tion problem.

We evaluate two versions ofBrucker : the original and
a modified version that usesS2. We ran both versions on the
instances in the OR library with a one hour time limit per in-
stance, and recorded the upper and lower bounds obtained.
On 50 of the benchmark instances, both query strategies
found a (provably) optimal solution within the time limit.
Table 1 presents the results for the remaining instances. Bold
numbers indicate an upper or lower bound that was strictly
better than the one obtained by the competing algorithm.
With the exception of just one instance (la25 ), the modi-
fied algorithm using query strategyS2 obtains better lower
bounds than the original branch and bound algorithm. This
is not surprising, because the lower bound obtained by run-
ning the original branch and bound algorithm is simply the
value obtained by solving the relaxed subproblem at the root
node of the search tree, and is not updated as the search pro-
gresses. What is more surprising is that the upper bounds
obtained byS2 are also, in the majority of cases, substan-
tially better than those obtained by the original algorithm.
This indicates that the speculative upper bounds created by
S2’s queries are effective in pruning away irrelevant regions
of the search space and forcing the branch and bound al-
gorithm to find low-cost schedules more quickly. These re-
sults are especially promising given that the technique used
to obtain them is domain-independent and could be applied
to other branch and bound algorithms.

STRIPS Planning
Our STRIPS planning experiments were run on the bench-
marks from the 2006 International Planning Competition. In
what follows we summarize our results for the 30 bench-
mark instances from thepathways domain. More detailed
results can be found in the full version of our paper.

We comparedS2 to the ramp-up query strategy, as used
by SatPlan. On these 30 instances,S2 always obtained up-
per bounds that are as good or better than those obtained
by the ramp-up strategy. The lower bounds obtained byS2

were only slightly worse, differing by at most two parallel
steps from the lower bound obtained by the ramp-up strat-
egy. S2 always found a feasible plan, and for 26 out of the
30 instances, it found a plan whose makespan is (provably)
at most 1.5 times optimal. In contrast, the ramp-up strategy
did not even find a feasible plan for 21 of the 30 instances.

To better understand the performance ofS2, we also com-
pared it to a geometric query strategySg inspired by Algo-
rithm B of Rintanen (2004). This query strategy behaves as
follows. It initializesT to 1. If l andu are the initial lower
and upper bounds, it then executes the queries〈k, Tγk−l〉
for eachk = {l, l + 1, . . . , u − 1}, whereγ ∈ (0, 1) is a
parameter. It then updatesl andu, doublesT , and repeats.
Based on the results of Rintanen (2004) we setγ = 0.8. We
did not compare to Rintanen’s Algorithm B directly because
it requires many runs of the SAT solver to be performed
in parallel, which requires an impractically large amount of

Table 1: Performance of two query strategies on benchmark
instances from the OR library.

Instance Brucker (S2) Brucker (original)
[lower,upper] [lower,upper]

abz7 [650,712] [650,726]
abz8 [622,725] [597,767]
abz9 [644,728] [616,820]
ft20 [1165,1165] [1164,1179]
la21 [1038,1070] [995,1057]
la25 [971,979] [977,977]
la26 [1218,1227] [1218,1218]
la27 [1235,1270] [1235,1270]
la28 [1216,1221] [1216,1273]
la29 [1118,1228] [1114,1202]
la38 [1176,1232] [1077,1228]
la40 [1211,1243] [1170,1226]
swv01 [1391,1531] [1366,1588]
swv02 [1475,1479] [1475,1719]
swv03 [1373,1629] [1328,1617]
swv04 [1410,1632] [1393,1734]
swv05 [1414,1554] [1411,1733]
swv06 [1572,1943] [1513,2043]
swv07 [1432,1877] [1394,1932]
swv08 [1614,2120] [1586,2307]
swv09 [1594,1899] [1594,2013]
swv10 [1603,2096] [1560,2104]
swv11 [2983,3407] [2983,3731]
swv12 [2971,3455] [2955,3565]
swv13 [3104,3503] [3104,3893]
swv14 [2968,3350] [2968,3487]
swv15 [2885,3279] [2885,3583]
yn1 [813,987] [763,992]
yn2 [835,1004] [795,1037]
yn3 [812,982] [793,1013]
yn4 [899,1158] [871,1178]

memory for some benchmark instances. LikeS2, Sg always
obtained upper bounds that are as good or better than those
of the ramp-up strategy. Compared toS2, Sg generally ob-
tains slightly better lower bounds and slightly worse upper
bounds.

References
Blum, A. L., and Furst, M. L. 1997. Fast planning through
planning graph analysis.Artificial Intelligence 90:281–
300.
Brucker, P.; Jurisch, B.; and Sievers, B. 1994. A branch
and bound algorithm for the job-shop scheduling problem.
Discrete Applied Mathematics49(1-3):107–127.
Korf, R. E. 1985. Depth-first iterative deepening: An
optimal admissible tree search.Artificial Intelligence
27(1):97–109.
Rintanen, J. 2004. Evaluation strategies for planning as sat-
isfiability. In Proceedings of the Sixteenth European Con-
ference on Artificial Intelligence (ECAI’2004), 682–687.


