
IXTET: a Temporal Planner and a Temporal Plan Executive∗

Matthieu Gallien, Benjamin Lussier and Félix Ingrand
LAAS/CNRS, University of Toulouse, France

Abstract

Planning for real world applications, with explicit temporal
representation and a robust execution, is a very challenging
problem. IXTET has been initially developed for robotic appli-
cations, but has also been used to plan scientific operations.
The key point of this demonstration is the ability to interleave
planning and execution onboard an autonomous rover. The
IXTET planning system can represent quantitative time with
uncertainties. It has durative goals and is able to represent
future known events like day/night periods or visibility for
communications.
IXTET has been developed for more than ten years and has
been applied to situation recognition, temporal planning, inte-
grated planning and scheduling and temporal plan execution.
This demonstration will show how IXTET controls an au-
tonomous rover (here using a very accurate simulator). We
will show the current version of IXTET and a fault tolerant ver-
sion developed to increase the reliability of the planner by
using diversified planning models (Lussier et al. 2007). All
the demonstrated softwares run onboard a real rover, Dala (an
iRobot ATRV), both indoor and outdoor.

Introduction
IXTET is a planning and execution component originally de-
signed for robotics systems. IXTET has been applied to task
planning, multi robot planning, situation recognition and
plan execution. It has handled numerous real cases, such as
scheduling the integration of the instrument unit of Ariane
under a contract from Matra Marconi Space, and planning
scientific experiences for the ISS scientific space module
COLOMBUS. It has also been applied to multi-robot plan-
ning in the scope of the MARTHA project. Nowadays, it is
primarily used in the LAAS software architecture (Alami et
al. 1998) to control an autonomous rover called Dala (see
Figure 1).

This demonstration shows the capacity of IXTET to produce
robust temporal plans for Dala. For the purpose of repeated
experiments, a physical simulation framework (Joyeux et al.
2005) is used instead of the robot hardware. The simula-
tor interacts with the same software components as the real
robot.

∗Parts of this work has been funded under a grant from the ESF
(European Social Fund).
Copyright c© 2007, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Execution controller (R2C)

Pos 
Y

Module 
X Functional Module Poster

Procedural 
executive

(open-PRS)

Planner and 
temporal executive

(IxTeT)

Execution control level

OR

Fonctionnal level

Decisionnal level

Antenna
PosPOM

PosVME

Science

Aspect Obs

Laser 
RF ScanCamera Im.

NDD Speed

PosRFLEX

Platine

Simulator
GAZEBO

Figure 1: LAAS architecture controling the Dala robot.



We now discuss the main features: temporal planning, in-
tegrated planning and scheduling, and temporal plan execu-
tion.
Temporal planning: IXTET is a plan space temporal planner.

It features a constraint based approach using STNUs (Vi-
dal & Fargier 1999; Morris 2006) (Simple Temporal Net-
work with Uncertainties) and general CSPs (Constraint
Satisfaction Problem). Indeed, the use of STNUs instead
of the more classical STNs (Gallien & Ingrand 2006) al-
lows the planner to produce plans that will not fail at ex-
ecution as long as the environment acts consistently with
the model.
The plans (see Figure 2) are partially instantiated and
partially ordered. The executive is thus able to cope
with some unexpected events during execution without
the need for plan repair or, even worse, replanning from
scratch.

Integrated planning and scheduling: IXTET is able to han-
dle consumable, producible and sharable resources (La-
borie & Ghallab 1995). The resource usage can be rep-
resented by a constant, a function of time (e.g. the dura-
tion of a data upload is linked to the quantity of resource
freed) or any other relation that can be modeled by CSP
constraints.
For example, Figure 3 presents a task used to acquire sci-

entific pictures that has an uncontrollable duration and con-
sumes resource.

task TAKE_PICTURE(?obj, ?x, ?y)(t_start, t_end) {

?obj in OBJECTS;

hold(AT_ROBOT() : {{?x, ?y}}, (t_start, t_end));

hold(PAN_TILT_UNIT_POSITION() : {{AT_MY_FEET}},

(t_start, t_end));

event(PICTURE(?obj, ?x, ?y) :

({{NONE}}, {{PICTURE_IDLE}}), t_start);

hold(PICTURE(?obj, ?x, ?y) : {{PICTURE_IDLE}},

(t_start, t_end));

event(PICTURE(?obj, ?x, ?y) :

({{PICTURE_IDLE}}, {{DONE}}), t_end);

variable ?picture_size;

?picture_size in [8000, 10500];

consume(MEMORY() : ?picture_size, t_end);

uncontrollable (t_end - t_start) in [2, 4];

}

Figure 3: IXTET specification of a task with uncontrollable
duration and resource consumption.

Temporal plan execution: The IXTET planner has been ex-
tended for dynamic planning and execution (Lemai & In-
grand 2004; Lemai 2004). It now features: plan execu-
tion, plan repair, interleaved planning and execution, and
replanning from scratch.
It can successfully execute a mission even when some
tasks fail, when new goals are added or when the avail-
able capacity of resources changes.

This approach is very similar to those of Europa (Frank &
Jónsson 2003).

The Demonstration
The demonstration is twofold: first we will present the tem-
poral planner and executive with temporal uncertainties and
plan repair, second we will focus on an extension of IXTET
tolerant to faults in planning model, using diversified mod-
els and multiple instance of the planner engine.

IXTET: Planning and Execution
The goal of the demonstration is to show the capabilities of
IXTET on an example: the control of an autonomous rover.
The rover hardware will be simulated using the physical
simulator Gazebo1. The demonstration will use all the soft-
wares implemented on the real robot, including low level
functional modules that control effectors and sensors (see
Figure 4).

The software control architecture is a classical three layer
architecture: a functional layer, an execution control layer
and a decisional layer. The functional layer is composed of
several functional modules generated with the GenoM tool.
Each of these modules is a piece of software that performs
a basic functionality of the robot like motion control, ob-
stacle avoidance or position estimation. The R2C (Py &
Ingrand 2004) component is at the interface between these
basic modules and the procedural executive OpenPRS (In-
grand et al. 1996): it checks that the functional layer always
remains in an acceptable state. The procedural executive
is responsible of the translation of high level tasks, such as
the move task GoTo(0.1, 0.2, 4.6, 5.9), into low level com-
mands sent to functional modules. It also performs some
state estimation and error recovery.

The IXTET component computes the initial plan and exe-
cutes it until the mission is successful. The executive con-
trols the temporal execution of the plan, and sends com-
mands to start or stop tasks. These commands are trans-
mitted to the procedural executive, which sends back task
execution reports upon task completion.

During execution, tasks may fail. The IXTET executive will
then invalidate some parts of the plan according to the cur-
rent state, and possibly continue execution of still valid parts
of the plan. When some parts of the plan are still executable,
the executive tries to repair the plan by exploiting possible
temporal flexibilities. This plan repair is then interleaved
with the execution. For example, if a move of the robot
fails, the tasks depending on the success of the move (e.g.
TAKE_PICTURE) cannot be executed, but the robot can still
communicate (in our model, the robot just has to stay still
during a visibility window in order to communicate). While
the robot is communicating, the planner will repair the plan:
it uses the same algorithm as initial planning or replanning
from scratch but starting with the partially executed plan,
which requires some relaxation in the plan to to find a so-
lution. At the end of the communication, it hopefully has
found a new plan and can continue to execute the mission
without delay. The classical alternative is replanning from

1http://playerstage.sourceforge.net/



UP_PAN_TILT_UNIT()

COMMUNICATE(W2)COMMUNICATE(W1)

DOWN_PAN_TILT_UNIT() DOWN_PAN_TILT_UNIT()DOWN_PAN_TILT_UNIT()

MOVE(4,0,0,-3) MOVE(0,-3,0,0)MOVE(0,0,4,0)

TAKE_PICTURE(OBJ3,0,-3)TAKE_PICTURE(OBJ2,4,0) TAKE_PICTURE(OBJ1,0,0)

UP_PAN_TILT_UNIT()

Figure 2: Example of a plan produced by IXTET for an autonomous rover.

scratch, which needs to stop all running tasks before plan-
ning, and thus take generally more time. However, it is still
needed when plan repair is impossible.

IXTET and FTplan: Fault Tolerance in Planning
Model
Some recent work with IXTET (Lussier et al. 2007) focuses
on increasing the reliability of automated planning systems.
This work is done under the assumption that domain mod-
els are made by humans and generally have both design and
programming faults. These unknown remaining faults may
diminish the capacity of the autonomous system to accom-
plish its mission. The combined use of diversified planning
models is proposed to tolerate faults in each model, thus
achieving more goals and missions. A fault tolerant com-
ponent named FTplan is used to control and coordinate the
different IXTETs (see Figure 5).

Figure 5: Fault tolerant planner

Conclusion
The IXTET system plans and executes missions for an au-
tonomous rover in an unknown environment, and allows to
achieve feasible goals despite uncertainties. It can deal with
task failures, unachievable goals, temporal uncertainties, op-
portunistic goals and residual development errors in plan-
ning models.

IXTET runs both onboard the Dala rover, and on a physical
simulator of environment and hardware components. The

whole system has been demonstrated both in outdoor and
indoor environments. The demonstration will use the sim-
ulated environment and hardware, and the complete LAAS
software architecture.

References
Alami, R.; Chatila, R.; Fleury, S.; Ghallab, M.; and Ingrand, F.
1998. An architecture for autonomy. International Journal of
Robotics Research, Special Issue on Integrated Architectures for
Robot Control and Programming 17(4):315–337.
Frank, J., and Jónsson, A. 2003. Constraint-based attribute and
interval planning. Constraints 8(4).
Gallien, M., and Ingrand, F. 2006. Controlability and makespan
issues with robot action planning and execution. In ICAPS work-
shop on Planning under Uncertainty and Execution Control for
Autonomous Systems.
Ingrand, F.; Chatila, R.; Alami, R.; and Robert, F. 1996. PRS: A
High Level Supervision and Control Language for Autonomous
Mobile Robots. In IEEE International Conference on Robotics
and Automation.
Joyeux, S.; Lampe, A.; Alami, R.; and Lacroix, S. 2005. Simula-
tion in the LAAS Architecture. In ICRA Workshop on Interoper-
able and Reusable Systems in Robotics.
Laborie, P., and Ghallab, M. 1995. Planning with sharable re-
source constraints. In IJCAI.
Lemai, S., and Ingrand, F. 2004. Interleaving temporal planning
and execution in robotics domains. In AAAI.
Lemai, S. 2004. IxTeT-eXeC : planning, plan repair and execution
control with time and resource management. Ph.D. Dissertation,
LAAS-CNRS and Institut National Polytechnique de Toulouse,
France.
Lussier, B.; Gallien, M.; Guiochet, J.; Ingrand, F.; Killijian, M.-
O.; and Powell, D. 2007. Planning with Diversified Models for
Fault-Tolerant Robots. In ICAPS.
Morris, P. 2006. A structural characterization of temporal dy-
namic controllability. In CP.
Py, F., and Ingrand, F. 2004. Dependable execution control for
autonomous robots. In International Conference on Intelligent
Robots and Systems.
Vidal, T., and Fargier, H. 1999. Handling contingency in temporal
constraint networks: from consistency to controllabilities. JETAI
11(1).



Figure 4: Screen dump of the simulated environment and IXTET and OpenPRS interfaces.


