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Abstract

In this paper, we describe a domain-independent,
general purpose knowledge engineering and planning
framework that supports the construction of planning
domains and problems based on OWL ontologies, and
the integration of the planning process with description
logic (DL) reasoning. The use of OWL ontologies as
a basis for modeling domains allows the reuse of exist-
ing knowledge in the Semantic Web. In this model, the
state of the world is represented as a set of OWL facts,
represented as an RDF graph. Actions are described
as RDF graph transformations. Planning goals are de-
scribed as RDF graph patterns. Our framework allows
a number of developers to create and extend the OWL
ontologies and the planning domain in a collaborative
manner. We have used our framework for automatically
constructing workflows for deployment in stream pro-
cessing systems.

Introduction

The Semantic Web envisions a world where loosely cou-
pled, independently evolving ontologies provide a common
understanding of terms between heterogeneous agents, sys-
tems, and organizations. In the past few years, different
ontologies have been developed in various domains to cap-
ture relevant knowledge, e.g. the GALEN medical ontol-
ogy (Rector & Horrocks 1997), the NCI cancer ontology(nci
), etc. Increasingly, OWL (McGuinness & van Harmelen
2004) has become one of the most popular languages for
representing ontologies in the Semantic Web. In this paper,
we describe a planning and knowledge engineering frame-
work that supports the construction of planning domains and
problems based on OWL ontologies, and the integration of
the planning process with description logic (DL) reasoning.
The use of OWL ontologies as a basis for modeling domains
allows the reuse of existing knowledge in the Semantic Web,
while the use of DL reasoning increases the expressiveness
of the domain specification. Besides, it allows the use of
various tools for editing and validating OWL ontologies.

In our planning model, the state of the world is described
by a set of OWL facts (i.e. assertions on OWL individu-
als). These OWL facts are represented as an RDF graph
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(Beckett 2004). Actions are described as RDF graph trans-
formations. The precondition of an action is specified as an
RDF graph pattern, which can be regarded as a conjunctive
query in description logics. The effect of an action is also
specified by an RDF graph pattern. Description Logic (DL)
reasoning is used to determine if an action can be applied
to a given state. An action is viewed as a graph transforma-
tion (Baresi & Heckel 2002), that describes how the action
transforms the initial state to the final state. Planning goals
are also specified as RDF graph patterns. A goal is said to
be achieved if the state satisfies the goal. One application of
this model described in the paper is for planning in stream
processing systems.

We have developed a planner that can construct plans
based on domains expressed in OWL, given a goal descrip-
tion. The planner is based on the SPPL model proposed
in (Riabov & Liu 2006). The SPPL (Stream Processing
Planning Language) model, derived from PDDL, has been
shown to exhibit significant improvements in planner scala-
bility for workflow composition in stream processing plan-
ning domains. However, it is also capable of planning in
STRIPS domains. In addition, it can generate optimal plans
according to an additive quality metric, where each action is
associated with a quality vector and a cost of execution.

Our planner integrates DL reasoning with planning by us-
ing a two-phase planning approach where it performs DL
reasoning in an offline manner, and builds plans online,
without doing any reasoning. Specifically, the planner uses
a subset of DL called DLP (Description Logic Programs
(Grosof et al. 2003)), which has polynomial time complex-
ity and can be evaluated using a set of logic rules.

Our framework provides a number of mechanisms to en-
able people of different roles, including domain experts and
action specifiers, to create and extend the OWL ontologies
and the planning domain in a collaborative manner. It pro-
vides mechanisms to validate the domain, and check the
composability of different actions (i.e. check if two actions
can be executed in a sequence in a plan). End-users can also
describe planning goals with the help of terms defined in the
ontologies. The use of OWL allows representing the domain
in a modular and reusable manner, which allows different
people to author different parts of the domain.

In the rest of the paper, we describe our planning and
knowledge engineering framework. We introduce the OWL-



based planning model and also describe how we model
domains for stream processing planning tasks. Then, we
briefly describe the planner and the domain construction
framework. Finally, we end the paper with some thoughts
on the scope of the framework.

Planning Model

A key advantage of our framework is the ability to reuse
the knowledge captured in different OWL ontologies in
the Semantic Web when describing planning domains and
problems. In this section, we formally describe how the
state, planning actions and goals can be represented using
OWL/RDF.

Preliminary definitions from RDF and OWL.

Ontologies provide a formal description of different terms
and how they are related. OWL ontologies describe concepts
(or classes), properties and individuals (or instances). OWL
is based on description logics. Description Logic (DL) is
typically used to represent and reason about the terminolog-
ical knowledge of an application domain. In DLs, there are
two kinds of facts: “TBox” (terminological) and “ABox”
(assertional). In general, the TBox contains sentences de-
scribing concepts and properties. For instance, it describes
concept hierarchies and the domains and ranges of proper-
ties. ABox axioms describe “ground” sentences about in-
dividuals (or instances). The ABox describes the concepts
to which an individual belongs and its relationship to other
individuals.

The set of RDF Terms (represented as RD Fr) includes
the set of URIs (U) and RDF literals (RDF). An RDF
Triple is a member of the set RDFr x U x RDFr. An RDF
graph is a set of RDF triples. The nodes in the graph are
subjects and objects, and the edges are labeled by properties.
We don’t include blank nodes in this work.

Our system currently supports a tractable subset of OWL
DL called Description Logic Programs (DLP)(Grosof et al.
2003). DLP lies in the intersection of Description Logics
and Horn Logic Programs. In particular, it allows reasoning
on the ABox to be done using a set of logic rules.

Representing the state of the world

In our model, the state of the world is described using an
RDF graph containing triples that represent OWL ABox as-
sertions. These facts are defined according to a TBox de-
fined in one or more ontologies. Different ontologies can
be reused to provide descriptions of classes, properties and
individuals in the area of interest.

Model of an action

An action can cause the state of the world to change. The
preconditions and effects are modeled as RDF graph pat-
terns. An action is viewed as performing an RDF graph
transformation.

For example, consider the drive action in Figure 1, which
is the action of driving a truck between two locations in the
same city. The PDDL description of the action is shown
below:

(:action drive
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Figure 1: Description of drive action from STRIPS Logistics
domain. L and R describe the precondition and effect of the
action. X and Y show the state of the world before and
after applying the action. Ovals represent OWL classes and
rectangles are OWL individuals.

:parameters (?t 2?11 212 7?c)
:precondition (and (truck ?t) (location ?11)
(location ?12) (city ?c)
(at 2?2t ?11) (loc 2?11 2c) (loc 212 2c))
ceffect (and (at ?t 212) (not (at 2t 211))))

The graph pattern L in Figure 1 describes the precon-
dition of the action and R describes the effect. Note that
unary predicates in the above STRIPS representation are
modeled as OWL classes, which are connected to variables
through the type property (short for the rdf : type prop-
erty in OWL), and binary predicates are represented as OWL
properties. n-ary predicates can similarly be converted into
RDF by using various strategies such as those described in
(Noy & Rector 2004). The RDF graphs X and Y describe
possible states of the world before and after applying the ac-
tion.

We now describe the action model formally. A variable is
a member of the set V" where V is infinite and disjoint from
RDFr. A variable is represented with a preceding “?” .

A triple pattern is a member of the set (RDFr U V) x
U x (RDFpUV). A graph pattern is a set of triple patterns.

An action is of the form A(P, E, C, Q) where

e P is an RDF graph pattern describing the precondition of
the action

e F is an RDF graph pattern describing the effect of the
action

e The set of variables in P is a subset of the set of variables
in E. This ensures that no free variables exist in the output
description.

e (' is a cost vector for the action.

e () is a quality vector for the action.

Conditions for applying an action

An action may be applied if the preconditions are satisfied
by the current state. Consider an action A(P, E, C, Q). Let



the current state be G. We define that P can be applied to G,
based on an ontology, O, if and only if there exists a variable
substitution function, (6 : V' — RDUFry), defined on all the
variables in P, such that:
GUO E(P)

where 0(P) is the graph obtained by substituting variables
in P based on 6, and = is an entailment relation defined be-
tween RDF graphs, based on description logics. In essence,
the graph pattern P is viewed as a conjunctive DL query on
the current state of the world.

Effects of applying an action

An action is described as a graph transformation operation.
Graph transformations have been used in software engineer-
ing to describe the behavior of components in terms of trans-
formations of graphs like UML object diagrams (Baresi &
Heckel 2002). We adapt these ideas to describe the behav-
ior of components based on transformation of RDF graph
patterns.

Let L and R be the action precondition and effect. Now
assume that in a plan, L is satisfied by the current state, de-
scribed by the RDF graph, X. Let 6 be the variable sub-
stitution function for the variables in L. Let the next state
after applying the action be described by the RDF graph, Y.
We determine each Y using a graph homomorphism, f, de-
scribed as:
f:0(L)UO(R) — XUY

f satisfies the following properties:

1. f(6(L)) € X. This follows from the entailment relation
between the precondition graph pattern and the state.

2. f(O(R) C Y. This means that the next state is a super-
graph of the effect graph pattern.

3. J(O(L)\O(R)) = X\Y and f(B(R\O(L)) = Y\X
where \ represents the graph difference operation. This
means that exactly that part of X is deleted which is
matched by elements of (L) not in #(R) , and exactly
that part of Y is created that is matched by elements new

inf(R) .

Using properties 2 and 3, it is possible to determine the
next state, Y, as a result of applying the action to X.
This operation is performed in two main steps. In the
first step, we remove all the edges and vertices from X
that are matched by 6(L)\0(R) to get a graph D, where
D = X\(6(L)\O(R)). We make sure that D is a legal
graph, i.e. no edges are left dangling because of the dele-
tion of source or target vertices. In the second step, we glue
D with R\L to get Y. This specific mechanism is often re-
ferred to as a single pushout graph transformation. Further
details about graph transformations can be found in (Rozen-
berg 1997).

Describing a planning problem

A planning goal is described as an RDF graph pattern. The
goal is satisfied by a plan which causes a final state that sat-
isfies the goal RDF graph pattern.
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Figure 2: Example Workflow to get real-time traffic conges-
tion levels at an intersection

Component Model for Workflow Composition

The graph transformation model of actions is quite general
and can be applied to different kinds of domains. One do-
main of particular interest to us is automatic construction of
workflows from reusable, modular components. The domain
we shall describe in this paper is based on stream processing.

Stream processing workflows consist of data sources that
produce raw data and processing elements (PEs) that per-
form operations on the data to produce useful results. The
data may be structured, semistructured or unstructured, and
may be encoded in different formats. The PEs can per-
form various kinds of operations like filtering, transforma-
tion, classification and correlation of input streams. In our
target runtime system, the Stream Processing Core (SPC)
(Jain et al 2006), a workflow is represented as a DAG, where
vertices represent data sources and PEs, and edges represent
data streams. Each PE exposes a number of input and output
ports, where it can receive input streams and produce output
streams. Each data stream arriving from an external source
or produced by an output port of a PE, can be connected to
one of the input ports of another PE, stored, or sent directly
to the end users console. An example of a workflow is shown
in Figure 2). This workflow is constructed in response to a
user query for traffic congestion levels for a particular road-
way intersection, e.g. Broadway and 42nd in New York City.
A workflow constructed for such a query may use raw data
from different sources. It may use video from a camera at the
intersection, extracting images from the video stream and
examining them for alignment to visual patterns of conges-
tion at an intersection. In order to improve accuracy, it may
also draw audio data from a sound sensor at the intersection
and compare it with known congestion audio patterns. The
end result is achieved by combining feeds from the two an-
alytic chains. The figure also shows the format of the data
packets exchanged between different components.

In our planning model, the state of the world consists of a
set of streams. The initial state consists of streams produced
by external sources. During planning, the state also includes
new streams produced by PEs included in the workflow.

Each stream is described in terms of a typical packet it
carries. The description of the packet is in terms of a set of
OWL ABox assertions, represented as an RDF graph. For
example, consider the stream produced by the video cam-
era source in Figure 3. Every packet on this stream has
two data elements: a video segment and a time interval, de-
scribed as the exemplar individuals, __VideoSegment_1 and
__Timelnterval_1. The constraints obeyed by these data ele-
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Figure 3: Description of a Video Camera Data Source.
Ovals represent OWL classes, rectangles are OWL individ-
uals, and dashed rectangles are literals

ments are described using an RDF graph. A specific packet
on this stream would contain a specific video segment and
a specific time interval, that obey these constraints. Note
that this description uses classes, properties and individuals
defined in one or more domain OWL ontologies.

Each action (PE) can have multiple input and multiple
output ports. An action can be applied only in the state
where for each input port there is an existing stream that
matches the precondition specified on the port. Once an
action is applied, it performs a state transition by creating
new streams. Our model provides a blackbox description of
the PE; it only describes the inputs and outputs, and doesn’t
model the internal state of the PE. The action is specified as
a graph transformation operation, where the PE transforms
an RDF graph pattern describing the input requirements to
an RDF graph pattern describing the output stream.

For example, consider the VideolmageSampler in Figure
4, which has one input and one output. Any input stream
connected to this PE must carry packets that contain two
data elements: a video segment (?VideoSegment_1) and a
time interval (?Timelnterval_1). The PE analyzes this input
packet and produces as output an packet containing two new
objects: an image (__Image_1) that it extracts from the video
segment, and a time (__Time_1) for the image, which lies
within the input time interval. There are other constraints
associated with these data elements in the input and output
packet, such as (?VideoSegment_1 takenAt ?Timelnterval_1),
and (?VideoSegment_1 hasSegmentWidth 0.5sec).

A more detailed description of the model of streams and
stream processing components can be found in (Liu, Ran-
ganathan, & Riabov 2007b).

Planner

As described earlier, our planning model is based on SPPL,
and can hence employ many of the planning techniques de-
veloped for SPPL (Riabov & Liu 2006). However, the use
of DLP reasoning to check action applicability requires the
use of new techniques. Traditional approaches to combin-
ing reasoning with planning relied on the invocation of a

produces
| | Image Output Stream Pattern

requires Video
Video Input Stream Pattern Image
Sampler

image >  Time
=" Sl

rdftyue‘.“'

rdftype

takenAtTime

Video
Segment

Interval
LY - ;
\rdftype fdfttype  J-

1 hosee FQ . rdftype s

?Timelnterval_1(

Figure 4: Description of VideolmageSampler PE

DL reasoner to evaluate preconditions (e.g. (Sirin & Par-
sia 2004)). Combining DL reasoning with planning presents
significant performance challenges, since the planning pro-
cess may result in a large number of invocations to a DL
reasoner, which can be expensive. Besides, using a reasoner
during planning makes it difficult to reuse many of the opti-
mizations that have been proposed for SPPL planning.

As aresult of these challenges, we have developed a plan-
ner that avoids calling a DL reasoner during planning by us-
ing a two-phase planning approach. In the first phase, which
occurs offline, the planner translates descriptions of actions
into SPPL. During the translation phase, the generator also
does DLP-reasoning on the effect descriptions to generate
additional inferred facts about the effects. It uses the Min-
erva DLP reasoner (Zhou et al ) for this purpose. The SPPL
descriptions of different actions are persisted and re-used for
multiple goals. The second phase is triggered whenever a
composition is required. In this phase, the planner performs
reasoning on the initial state to determine additional inferred
facts about the initial state. It then generates a plan using an
SPPL planner (Riabov & Liu 2006). No DL reasoner is in-
voked during this plan generation. Further details about the
two-phase approach to planning can be found in (Liu, Ran-
ganathan, & Riabov 2007a).

Domain and Problem Construction

One of the challenges facing Al planning is in promoting ef-
fective sharing and reuse of domain knowledge across differ-
ent systems and applications. Domains represented in lan-
guages like PDDL are often constructed for a specific ap-
plication and can be difficult to reuse. In this section, we
describe some of the methodologies used in our system to
facilitate the development and reuse of domains represented
in OWL.

There are a number of advantages in using OWL as a ba-
sis for representing domains. Various tools are available for
editing and validating OWL ontologies. OWL is represented
using RDF, which uses URIs to identify resources and hence
provides a standard, global naming mechanism for different
terms. RDF is also inherently graph-based, which allows the
use of graphical editing tools for authoring and visualizing
RDF graphs. Finally, the import mechanism in OWL on-



tologies allows developing modular portions of the ontology
that can be reused in different applications.

In order to represent action descriptions, we have de-
veloped a language called SGCDL (Semantic Graph based
Component Description Language). The language describes
the precondition and effect of actions using triples repre-
sented in an N3 format (Berners-Lee 1998). The language
allows importing OWL ontologies and using terms defined
in these ontologies for describing actions. We have devel-
oped a parser for this language that validates both the DL
consistency and the planning requirements. The DL valida-
tion is done by using a DL reasoner (in our case, the Min-
erva DLP reasoner (Zhou et al )) and it ensures that the pre-
condition and effect description is consistent with respect
to the imported ontologies. The planning requirements are
checked through a set of rules which ensure that the descrip-
tions are valid for planning. An example of a rule is that no
free variables appear in the effect descriptions.

We have developed a collaborative domain construction
framework, where people of different roles can contribute to
the domain (Figure 5). Domain experts develop or reuse
OWL ontologies relevant for any domain. The descrip-
tions of PEs are provided by “action specifiers”, who en-
code descriptions of actions. In the workflow composition
use-cases, these action specifiers are developers of process-
ing components can also create semantic descriptions of the
components in SGCDL.

The different ontologies are described in a modular fash-
ion to enable high reuse. High-level ontologies (describ-
ing generic concepts like location and time) are used by
different domains. There are also a number of domain-
specific ontologies. Descriptions of actions can import any
of the ontologies. We use a source control system (Rational
ClearCase), that supports versioning and branching, to allow
users to create and edit OWL and SGCDL files. Users can
check out and use tools like Protégé for editing the ontolo-
gies. The source control is at file-level. We are investigat-
ing other source control systems that allow control at a finer
granularity such as graph-level or triple-level.

In order to aid specification of the domain, our framework
provides diagnostic tools that allow developers to check if
their action specifications are compatible with existing ac-
tion specifications. For example, the tools help determine if
two actions can be placed in a sequence in a plan under dif-
ferent conditions. These features are particularly useful for
debugging the descriptions of actions.

Conclusion

In this paper, we have presented a planning and knowledge
engineering framework based on OWL ontologies that facil-
itates the development of domains and the use of description
logic reasoning while planning. While the framework has
been applied towards composing workflows in stream pro-
cessing systems, it is quite general and can be applied in
other domains.
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