
The Manufacturing Plant Domain

J. Benton * and Minh B. Do † and Wheeler Ruml †
* CSE Department Arizona State Univ. Tempe, AZ 85287, USA, j.benton@asu.edu

† Embedded Reasoning Area, Palo Alto Research Center, Palo Alto, CA 94304, USA, {minhdo,ruml}@parc.com

The manufacturing plant domain consists of a set of ma-
chines linked together in a directed planar graph G. Addi-
tionally, the domain includes a set of input and output de-
vices. Input devices must have only out-links and output
devices must have only in-links. Input and output devices
must only link to machines on the convex hull of G. Prod-
uct is passed from input devices to output devices, both of
which have infinite capacity. When product exists inside of a
machine, that machine may give some attribute to the prod-
uct. Only one product may exist at a given time in most
machines (with the only exception being that more than one
may exist in input and output devices). Goals consist of (1)
the initial location of the product (an input device) (2) the fi-
nal destination of the product (an output device) and (3) the
set of attributes which the product must possess. A version
of this domain was originally introduced in (Ruml, Do, &
Fromherz 2005).

The domain is written in the standard STRIPS-like PDDL
2.1 format. It uses simple durative actions (i.e., action tem-
plate definitions with constant duration) and contains no nu-
meric functions.

Objects
Three object types exist in the domain. They include:

• machine - Machines transport product and give attributes
to it.

• product - Objects of this type can be transported through
the machine. Product is delivered from an input node to
an output node.

• attribute - An attribute α can be applied to product by
machines that give α.

Actions
The domain consists of three actions which are listed in
Figure 1. The action transport moves product through the
manufacturing plant between machines. A similar action,
transport-out, moves product from a machine to an attached
output device. The final action, add-attribute, gives at-
tributes to product at a given machine.

Figures 2, 3 and 4 list the parameters for each of the ac-
tions. Both the transport and transport-out actions move
product, taking parameters that indicate the product to
be transported, the originating machine and the destina-
tion machine. These machines must be linked to one an-

other. A machine is known to be linked given a pred-
icate (connected ?mach1 ?mach2) where mach1
and mach2 can be any two machines. Transport to a ma-
chine is contingent upon whether the machine already con-
tains some product. The exception to this rule is output de-
vices. The transport-out action is a special action that
transports to these nodes, which are specified with the pred-
icate (is-output ?mach).

The action add-attribute gives an attribute to product at
a given machine. Each machine has a specified set of at-
tributes that it may give. The transport and transport-out
actions have a duration of 10 units of time and the add-
attribute action has a duration of 2 units of time.

Action Description
transport Transport product between two ma-

chines.
transport-out Transport product to an output node.
add-attribute Add an attribute to the product.

Figure 1: Actions in the manufacturing plant domain.

Parameter Type Description
product Product that is being transported.
machine The machine from which we are trans-

porting the product.
machine The specified machine that we are mov-

ing the product to. This cannot be an
output device.

Figure 2: The parameters of the transport action.

Parameter Type Description
product Product that is being transported.
machine The machine from which we are trans-

porting the product.
machine The specified output device that we are

moving the product to.

Figure 3: The parameters of the transport-out action.



Parameter Type Description
product Material gaining the attribute.
machine The machine giving the attribute.
attribute The attribute that is being given to the

product.

Figure 4: The parameters of the add-attribute action.

Goals
In this domain goals arrive on-line asynchronously and are
not known by a planner a priori. Instead, the planner must
handle these goals while keeping aware of resources that
may be in use and unavailable from previously scheduled
operations. The objective is to minimize the amount of time
taken to achieve all of the on-line goals, which are defined as
a conjunctive set that must become true at some future time.
Since goals are not known by planners up-front, they must
be sent at a time specified to the simulator (but not known
to competitors). A particular set of goals will appear only
once.

The goals consist of product with specified attributes ar-
riving at an output device. They also include the initial lo-
cation of the product involved. The predicates involved in
goal achievement, at and has-attribute take the pa-
rameters given in Figures 5 and 6.

Parameter Description
product A specific product.
machine The location of the product.

Figure 5: The parameters of the at predicate.

Parameter Description
product Product with the given attribute.
attribute An attribute given by a machine.

Figure 6: The parameters of the has-attribute predicate.

Plan Format
The simulator accepts plans in a format similar to that used
in the International Planning Competitions. That is:

<start-time>: <action>

Note that unlike the planning competition format, action
durations need not be given. A plan in our domain might
look like:

0.0: (transport product1 input1 machine1)

10.01: (add-attribute product1 machine1 attribute1)

12.02: (transport-out product1 machine1 output1)

Goal Arrival and Action Incompatibility
The simulation architecture for this domain is unique in that
new goals continually arrive. As such, the tools developed to
interact with this domain must be ready to receive new goals
and send solutions to satisfy them. The simulator accepts
actions (i.e., plans) at any time until all goals have been sent

and satisfied. Also, because the simulation continues after
new goals are sent, solutions entered into the simulator must
not interfere with solutions already executing.1

Two actions interfere (i.e., are incompatible) with one an-
other under the following conditions:

• A delete effect of a starting action is the same as a pre-
condition of an executing action.

• A precondition of an starting action is the same as the
delete effect of an executing action.

• A delete effect of a starting action is the same as an add
effect of an executing action.

• An add effect of a starting action is the same as the delete
effect of an executing action.

Additionally, for an action to execute, all of its precon-
ditions must be satisfied. Both action incompatibility and
unsatisfied preconditions cause the simulator to halt and a
message to be logged indicating the reason of the halting
condition.

Log
The objective of the simulation is to minimize goal achieve-
ment time and so the log consists of a list of goals together
with the time points at which they are achieved.

Its format is as follows:

<goal>:<goal-achievement-time>

Goals are displayed in standard PDDL2.1 format as in:

(at product1 machine1): 2.3

Action interference is also logged. That is,
the simulator will log when an action is sent
that cannot execute due to constraints caused
by another action. For instance, if an action
(transport product1 machine2 machine3)
is executing between time 1 and 11 and the action
(transport product2 machine1 machine2) is
to begin executing at time 3, the simulator will halt and an
entry in the log will read2:
Action (transport product2 machine1 machine2) at 3.0

interferes with action

(transport product1 machine2 machine3) at 1.0

Additionally, the simulator logs when an action’s precon-
ditions fail to be met at its specified execution time as fol-
lows:
Action (transport product2 machine1 machine2)

preconditions not met at 2.0

References
Ruml, W.; Do, M. B.; and Fromherz, M. P. J. 2005. On-line
planning and scheduling for high-speed manufacturing. In
ICAPS, 30–39.

1This simulator behavior may change slightly.
2The actual log will display all entries on a single line.


