
Structural Domain Definition using GIPO IV

R. M. Simpson
School of Computing and Engineering

The University of Huddersfield, Huddersfield HD1 3DH, UK
r.m.simpson@hud.ac.uk

Abstract

GIPO IV is an experimental environment for planning do-
main knowledge engineering. The purpose of the tool is to
demonstrate the range and scope of tools required to support
the knowledge engineering aspects of planning systems cre-
ation. In particular GIPO provides support for the encoding
and validation of planning domain knowledge, for both clas-
sical pre-condition planning and hierarchical planning do-
mains. GIPO IV is a significant improvement on previous
versions in that it (a) extends the expressivity of domains de-
scribable within the classical tools of GIPO (b) extends the
acquisition facilities with the introduction of a more struc-
tured and scaleable approach to knowledge capture.

Introduction

GIPO provides a rich environment for the creation of plan-
ning domain models it provides an interface that abstracts
away much of the syntactic details of encoding domains,
and embodies validation checks to help the user remove er-
rors early in domain development. Central to understand-
ing and using the GIPO tool-set is a grasp of the underly-
ing metaphor that plan execution involves manipulation of
and changing the state of objects within the scope of the
problem domain. Consequently the abstract definition of do-
main models can be done by defining the possible changes
to instances of the types of objects that populate the domain
problem space. The intention is that the domain designer
work at a higher level of abstraction than that required by
literal-based planning domain definition languages. The cur-
rent version of GIPO, GIPO IV, inherits much of the func-
tionality of GIPO III but can represent more expressive do-
mains: the internal representation allows the capture of do-
mains of the complexity of those describable in PDDL Ver-
sion 2.2. To support domain definition the tool set contains
graphical editors to assist in the creation of the domains,
built in planners to solve developed problems and animators
to graphically inspect the plans produced. Manual steppers,
are provided by GIPO to assist in dynamically validating
domain specifications. The steppers allow the user to cre-
ate plans for well understood example problems and inspect
points of failure if the expected plans prove invalid when
abstractly executed.

The Architecture of the GIPO Environment
Our intention in creating the GIPO IV Environment is to
construct a tool suitable for use with a range of target plan-
ning languages. We believe that the conceptualisation of do-
main description within GIPO is at a more general level than
that presupposed by planning languages such as PDDL or
NDDL and that enables the possibility to translate the graph-
ical domain descriptions to such target planning languages.
The user can select the target language to be used by asso-
ciated planners, currently either PDDL or OCL (though we
plan to extend this to NASA’s NDDL).

The overall architecture of the environment is shown in
Figure 1. At the heart of GIPO is the object centred inter-
nal representation of domains which is manipulated by all
major tool elements. These elements are the set of editors

Figure 1: Gipo Archicture

to create the domain specification and the associated static
checking routines to inform the process. Once a model ap-
pears to be acceptable the plan stepper and plan animator,
with the associated internal planners, can be used to further
dynamically check the model. We provide an API to en-
able external planning systems to interface to the tools to
provide scope for testing and fielding alternative planning
algorithms to those internal to GIPO. Currently the inter-
face allows planners which can input OCL version 2.1 (Liu
& McCluskey 2000) or typed/conditional PDDL. As an ex-
ample, we have integrated FF version 2.3 (Hoffmann 2000)
with GIPO using our open interface without the requirement
to amend any of the FF code. The link to external planners
is very flexible and can be used with any planner which can
be run from the command line and takes as inputs PDDL do-
main and task files. Python scripts are used to provide any



necessary parameters and call the planner. Similarly python
scripts post process the output of the planner to remove any
extraneous text and leave only the output plan in a standard
form. The pre and post processing Python scripts need to be
written specifically for each planner but typically are small
and easy to write.

Domain Definition Within GIPO IV
GIPO provides an editor to create “Concept Diagrams” in
the style of UML class diagrams to define the kinds of ob-
jects involved in the domain to be defined. Relationships
of inheritance and aggregation can be specified between the
concept types. The diagrams also provide opportunity to de-
fine “properties” that are common to all object instances of
the various concepts defined.

Figure 2: Concept Diagram

Object Life Histories in GIPO
The Life History editor of GIPO allows the user to draw state
machines that describe the dynamics of the objects of a cho-
sen object class. A “Life History” diagram is used to name
the states that object instances from the object class can oc-
cupy and to show the possible transitions between states. An
object making a transition may be changing state, and may
change values of some of its properties. Within the Life His-
tory editor in addition to naming the possible states of an
object, states can be further annotated to show properties of
object classes that hold only when an instance of the object
is in the specified state. In the “translog” domain apack-
agemay have a propertyvehicleid which is only applicable
when the package is in aloadedstate. In cases like this the
property is being used to record an association with a pack-
age and the truck or train it is loaded into. That association
only exists while the package is loaded inside a carrier. In
this way we differentiate between properties that apply to
every possible state of objects of a class, these are defined in
the concept diagram, and those that only have limited scope
to some of the states of an object. These are defined in the
life history diagram. An example of a life history diagram
for aeroplanes in the “Airport” domain is given in Figure 3.
In the example diagram the round node attached to thepush-
ing state indicates that this is the only legal possible states

for an aeroplane to start at in any problem instance. The
circular nodes attached to theairborneandparkednodes in-
dicates that these are possible final states of aeroplanes in
problem instances. In the diagram the start circular nodes
are differentiated from the stop nodes by colour. The use
of start and stop nodes is optional as in many domains there
is no clear distinction to be made between initial and final
states outside the context of specific problem instances.

Figure 3: Airplane Life History

Life history diagrams must be created for each concept
type where instances of that concept type change their states
or attributes as a result of planning. In the Airport domain
aeroplanesand runway segmentsmay be regarded as dy-
namic whiledirectionsandairplane typesmay be regarded
as static. Choosing which concepts types should be dynamic
and which static is a design decision which may both reflect
the physics of the domain and the ease of capturing the dy-
namics of the domain.

Coordination Diagrams
Coordination diagrams are used to show how objects of two
or more concept types coordinate their dynamic movements.
At least one of the concept types shown in a coordination
diagram must be dynamic and have a corresponding life his-
tory diagram. Coordination diagrams allow transitions and
states to be linked. There are two types of links that may
hold between dynamic objects. The first showing that tran-
sition must, or may conditionally, happen at the same time.
The second between a transition and a state indicates that
an object must occupy the designated state before an ob-
ject of the other concept type can make the indicated transi-
tion. Links between dynamic concept types and static types
have no temporal meaning and are only used to show that
a transition of the dynamic type depends on the availabil-
ity of instances of the static concept type with appropriate
properties. In the diagram 4 there are multiple transitions
between theblockedand free states of runway segments.
This is required because the various numbered transitions
are linked to transitions of aeroplanes that occur at different
times. Linking a single transition betweenblockedandfree
with same timelinks to both thepushingself loop transi-
tion and themovingself loop transition would imply that in
order for an instance of a runway segment to change from
theblockedstate to thefreestate there must simultaneously
be an aeroplane that is making thepushingtransition and



one that is making themoving transition. What we want to
depict in this domain is that there are multiple ways that a
runway segment may becomefree.

Figure 4: Coordination Diagram Airport Domain

Specifying Non-Graphical Constraints
Many domain constraints are captured graphically, and are
automatically translated into symbolic representations.To
fully capture constraints, however, the design engineer must
provide information about how properties and non state at-
tributes change as object transitions are made. Some con-
straints can be specified in terms of relationships between
the properties that can be captured in simple relational predi-
cates. One example is the assertion that the properties of two
objects must have equal values. In many classical domains
such simple constraints are all that are required to complete
the domain specification. More complex constraints require
compound predicate calculus expressions to capture the con-
straint or are constraints that refer to dynamic relations that
cannot be captured in terms of constraining the functional
values of object properties. Constraints of both sort can be
specified using right click dialog boxes linked to specific
transitions on either life history diagrams or coordination di-
agrams.

Coordinating Properties
The basic assumption made about properties is that their val-
ues persist when objects change state unless otherwise speci-
fied. Accordingly in life history diagrams where the diagram
relates to changes of state of objects of a single concept type
the primary constraints that need to be shown are those in-
dicating how a property changes when a transition is made.
A secondary type of constraint is that different propertiesof
an object have a defined relationship to one another before a
transition can be made.

A typical example of a property constraint might be when
a Mobile moves from location to location along a defined
route. To define the route the domain designer may want a
static predicate(next location location)to define their route.

Figure 5: Defining Static relations

The predicate can be defined in the “Data Structures” editor
as shown in figure 5. The data structure editor can be used to
define predicate prototypes for either static or dynamic rela-
tions. Note that the designer does not directly define state
predicates nor property predicates, they are derived from the
state and property names provided in the various diagrams.
When a property constraint is defined the dialog box shown

Figure 6: Constraining Property Values

in figure 6 presents the user with all defined relations that
refer to one or more of the types of properties relevant to the
transition. They then select the appropriate qualified proper-
ties to fill in the argument places to the constraint predicate.
Only arguments of the correct type will be accepted by the
dialog box.

Complex Constraints and Updates

Complex constraints may be required in a domain, either
where “fluents” are involved or where there is a requirement
to quantify over property values or relations. One such com-
plex constraint is required in the “Airport” domain where a
plane may only move to a new segment of runway if a plane
of that type and facing in the direction of the plane will not
block any other plane currently occupying other segments of
the runway. To allow such complex constraints to be defined
we have developed a semantically and syntactically aware
dialog. This enables an algebraic expression to be built up
incrementally, such that at any point in the process the de-
signer can only add appropriate elements. In figure 7 we
see that the designer has already chosen “not exists” to cap-
ture the notion of none and the highlighted argument posi-
tion is over the quantifier brackets. In the drop down box
of possible elements to add to the expression at this point,
the designer is only presented with possibilities represent-
ing objects. The appropriate choice of range of possibilities
presented to the designer at any one point is made possible
because the dialog box is generated after the user selects a



transition in the constraint editor. That transition must re-
fer to an object of the specific type and its relation to ob-
jects of other types as shown graphically by the temporal
connections drawn between transitions and states in the co-
ordination diagrams. In this way the system is aware of the
possible objects and their properties that may be involved in
a constraint on a transition.

Figure 7: Defining Complex Constraints

Defining Domain Problems
To produce a testable domain all the user need do in addi-
tion to the process described above is add the information
to create problem instances. GIPO also provides support for
this in the “Task Editor”. The user is presented with lists of
predicates defining the possible states of each object class
and allows the user to select possible values to instantiate
both initial and goal states for tasks. This process is shown
in diagram 8.

Figure 8: The GIPO Task Editor

The Representation of Time
The representation of time in Life History diagrams is deter-
mined by the designer’s choice of target language. In ”clas-
sical” mode time is not represented explicitly. Actions are
instantanous and plans are simply ordered, or partially or-
dered sequences of actions. In ”durative action” mode ac-
tions/transitions take time and effects may be specified to
take place at the start or at the end of such transitions. In
this mode the constraints dialog allows the option of defin-
ing when a predicate changes value. Finally in ”continuous
process” mode transitions are instantanous but states persist

over time. In this mode duration dependant update functions
can be defined and associated with specific states.

Scaling to Large Domains
Using the graphical interface, designing a large domain
specification at the level of charting every object transition
and all connections between them is still a complex task.
We do believe, however, that the conceptualisation and the
visualisations provided by GIPO greatly expedite the task of
domain definition. To assist with the visualisation we have
split the task into three main types of diagram as described
above. This is one of the main innovations distinguishing
GIPO IV from GIPO III. The objective of this was to limit
the amount of information being carried in any one diagram.
By their nature ”Concept diagrams” which only have one
node per object class are unlikely to be very large. Individ-
ual life history diagrams with the domains we have been ex-
perimenting with drawn from the planning competition are
typically fairly small. By contrast ”Coordination Diagrams”
can potentially grow to be quite large but we allow the coor-
dination between different object classes to be split between
different coordination diagrams. For example a domain with
three object classes, A,B and C could have the links between
them shown on three coordination diagrams. Class A with
B, class A with C, class B with C. In practice if Bs are never
linked with Cs except when both are linked to As the third
diagram would be unnecessary or if the three life histories
are small one coordination diagram may be the clearest way
of showing the information. In this way GIPO provides flex-
ibility to the design developer to decide the best way of pre-
senting the domain details.

Domain Validation
The validation of a domain (as with software in general) can-
not be done fully automatically, but assistance in this task
can be provided. Within classical domains the automatic
checks that GIPO can carry out tend to be at a syntactic
level but absence of such problems can still save the domain
developer many hours of dynamic testing. The type check-
ing inherent in the various constraint dialogs also ensures
that predicates are only supplied with arguments of an ap-
propriate type. GIPO also provides assistance with dynamic
testing. The most powerful facility that GIPO supports is
the manual steppers. The steppers work as forward plan-
ners where the user selects the actions to solve the problem.
As the application of each operator is checked the user can
isolate the point where a domain definition fails to allow an
action to be performed in a context where the user thinks the
action should be allowed. The stepper greatly helps uncover
modelling problems within a domain definition. In diagram
9 a domain to test a model of multiple trains moving on a
single line track is being stepped.

Related Work
The most closely related work to our own with a similar level
of ambition isitSimple(Vaquero, Tonidandel, & Silva 2005),
which was also exhibited at the first ICKEPS competition.
Superficially our work has gravitated closer to theirs by our



Figure 9: The GIPO Classic Domain Stepper

adopting OO class diagrams to present an overview of the
intended systems. UnlikeitSimplewe have not followed the
conventions ofUML for our diagrams, prefering instead to
design our own to better capture the semantics inherent in
planning applications. Systems such asSipe(Wilkins 2000)
andO-Plan (Tateet al. 2005) differ from our own in many
ways but from our perspective primarily in their being de-
signed around specific planning engines. GIPO maintains
an open API for planning engines and tries to roughly track
developments in the capabilities of planning engines as in-
dicated in the evolving standard of PDDL. Other work in
the knowledge engineering field of planning tend to focus
on different points in the engineering life cycle. For ex-
ampleModPlan (Edelkamp & Mehler 2005) focuses pri-
marily in the area of improving and transforming domain
representations to allow successful planning, rather thanas-
sistance in the development of initial models.ARMS(Wu,
Yang, & Jiang 2005) by contrast tries to induce planning
models from large numbers of plan instances, although this
approach seems limited by the very need to have large num-
ber of valid plan examples. In KBS, systems such as those
based on EXPECT (Blytheet al. 2001) or PROTEGE (Gen-
nari et al. 2003) are much more general purpose and do not
aim at providing support to the very specific task of acquir-
ing domain knowledge with a view to producing a formal
specification as an output to be used with planning engines.

In the area of engineering there are a number of graphical
modelling tools some of which overlap in purpose with our
own. In particular the systemPtolemy II(Lee 2003) among
its many capabilites allows the user to model hybrid sys-
tems which are very closely related to the semantic model
of PDDL level 5. Potentially the types of tool presented
in systems such asPtolemycould be used to animate plans
controlling complex dynamic processes.

Future Work
GIPO IV is still under development. The graphical edi-
tors are at abeta level of release. We are still experiment-
ing with the nature of the visualisations and with the edit-

ing mechanisms to allow complex constraints to be easily
expressed. The Life History editor of GIPO III has been
thoroughly tested by students studying AI at the Univer-
sity of Huddersfield, where they were tasked with choos-
ing potential planning applications and designing and test-
ing their domain definitions within GIPO III. The domains
produced by the students can be seen on the GIPO web-
site, referenced below. GIPO IV is to be further devel-
oped in conjunction with a project to model planning prob-
lems with ”flood disaster management systems”. While this
work is ongoing the interface and modelling capabilities
of GIPO itself will remain fluid. GIPO is available from
http://scom.hud.ac.uk/planform/gipo.

References
Blythe, J.; Kim, J.; Ramachandran, S.; and Gil, Y. 2001.
An Integrated Environment for Knowledge Acquisition. In
Proceedings of the Interenational Conference on User In-
terfaces.
Edelkamp, S., and Mehler, T. 2005. Knowledge acquisition
and knowledge engineering in the ModPlan workbench .
http://icaps05.uni-ulm.de/.
Gennari, J. H.; Musen, M. A.; Fergerson, R. W.; Grosso,
W. E.; Crubezy, M.; Eriksson, H.; Noy, N. F.; and Tu,
S. W. 2003. The evolution of Protege: an environment
for knowledge-based systems development.Int. J. Hum.-
Comput. Stud.58.
Hoffmann, J. 2000. A Heuristic for Domain Independent
Planning and its Use in an Enforced Hill-climbing Algo-
rithm. In Proceedings of the 14th Workshop on Planning
and Configuration - New Results in Planning, Scheduling
and Design.
Lee, E. A. 2003. Overview of the Ptolemy Project.
http://ptolemy.eecs.berkeley.edu/.
Liu, D., and McCluskey, T. L. 2000. The OCL Lan-
guage Manual, Version 1.2. Technical report, Department
of Computing and Mathematical Sciences, University of
Huddersfield .
Tate, A.; Dalton, J.; Levine, J.; Polyak, S.; and Wick-
ler, G. 2005. O-Plan - Open Planning Architecture.
http://www.aiai.ed.ac.uk/oplan.
Vaquero, T. S.; Tonidandel, F.; and Silva, J. R. 2005.
The itSIMPLE tool for modeling planning domains.
http://icaps05.uni-ulm.de/.
Wilkins, D. 2000. SIPE-2: System for Interactive Planning
and Execution. http://www.ai.sri.com/ sipe.
Wu, K.; Yang, Q.; and Jiang, Y. 2005. ARMS:
Action-relation modelling system for learning action mod-
els. http://icaps05.uni-ulm.de/.


