
itSIMPLE2.0: An Integrated Tool for Designing Planning Domains

Tiago S. Vaquero1 and Victor Romero1 and Fernando M. Sette1

Flavio Tonidandel2 and José Reinaldo Silva1

1Escola Politécnica - Universidade de São Paulo
Design Lab, Mechatronic and Mechanical Systems Department - São Paulo, Brazil

2Centro Universitário da FEI
IAAA - Artificial Intelligence Applied in Automation Lab - São Bernardo do Campo, Brazil

{tiago.vaquero, victor.romero, fernando.sette}@poli.usp.br, flaviot@fei.edu.br, reinaldo@usp.br

Abstract

A great effort has been made today in the area of Artifi-
cial Intelligence for defining reliable automated plan-
ning systems that can be applied in real life applica-
tions. That leads to the need of a systematic design pro-
cess, in which the initial phases are not neglected and
where Knowledge and Requirement Engineering tools
have a fundamental role for supporting designers. Fol-
lowing this principle, this paper presents the evolution
of the tool itSIMPLE which implements a KE integrated
environment where designers can perform knowledge
acquisition, domain modeling, domain model analysis,
model testing, maintenance and plan analysis processes
by using different well-known languages such as UML,
Petri Nets, PDDL and XML, each one of them with
its best contribution. The tool supports users in an or-
ganized object-oriented domain design process with a
friendly and easy-to-use interface.

Introduction
The rising demand for reliable planning systems has be-
come a great motivation to apply all developments already
achieved in real life applications. This scenario leads to
the need of a systematic design process, in which the ini-
tial phases are not neglected and where Knowledge and
Requirement Engineering tools and methodologies have a
fundamental role for supporting designers. These concepts
have been addressed in the planning community in several
initiatives, such as the first International Competition on
Knowledge Engineering for Planning and Scheduling - ICK-
EPS 2005. This competition has brought extremely impor-
tant knowledge and design engineering issues and showed
powerful tools, such as itSIMPLE (Vaquero, Tonidandel,
& Silva 2005), ModPlan (Edelkamp & Mehler 2005) and
GIPO (Simpson 2005), all of them assisting designers to bet-
ter understand, specify, visualize, verify and validate their
planning domain models.

The itSIMPLE tool was designed to give support to users
during the construction of a planning domain application
mainly in the initial stages of the design life cycle. These
initial stages encompass processes such as domain specifica-
tion, modeling, analysis, model testing and maintenance, all

Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

of them crucial for the success of the application. The evo-
lution of the itSIMPLE, called itSIMPLE2.0, presents a en-
hanced integrated environment with well-known represen-
tation languages such as UML (OMG 2001), XML (Bray
et al. 2004), Petri Nets (Murata 1989) and PDDL (Fox
& Long 2003), each one of them with its best contribu-
tion to the whole design process, leading designers from
the informality of real world requirements to formal do-
main models. Starting with requirements elicitation, spec-
ification and modeling, itSIMPLE proposes a special use
of UML - Unified Modeling Language - in a planning ap-
proach (named UML.P) which we believe can contribute
to the knowledge acquisition process (from different view-
points) as well as to the domain model visualization and
verification. itSIMPLE2.0 focuses also on the use of Petri
Nets for dynamic domain analysis since it is a formalism
with great potential for model checking and simulation.

itSIMPLE2.0 is an open source project implemented in
Java that provides a user-friendly GUI to model and analyze
many planning domains at the same time. This fact usually
contributes to domain model reusability and maintenance.

This paper is organized as follows: First, we describe the
itSIMPLE2.0 Environment and then we give a brief expla-
nation about the integrated languages available. Next, we
present each design process stage encompassed by the new
itSIMPLE2.0 environment such as requirements, modeling,
model analysis, model testing and plan analysis. The paper
ends with a conclusions for this work.

The itSIMPLE2.0 Environment
The itSIMPLE2.0 environment aims to help designers
to overcome the problems encountered during life cycle
of planning application projects, mainly at the require-
ments specification, modeling and analysis phases. The
itSIMPLE2.0 is designed to permit users to have a disci-
plined design process to create knowledge intensive mod-
els for several planning domains. The suggested process
for designing planning domains follows a cyclic sequence
of phases inherited from Software Engineering applications
combined with modeling experiences acquired in the design
of planning domain. Such process is shown in Figure 1.

The environment was designed to incorporate a toolset
(representation languages and theories) capable of dealing
with requirements and knowledge engineering as shown in



Figure 1: Planning domain design processes in itSIMPLE2.0

Figure 1. Among many available specification languages,
itSIMPLE2.0 started by using the semi-formal language
UML (which is a well-known diagrammatic language com-
monly used in the Requirement Engineering) for the require-
ment process and modeling. It is one of the most used lan-
guage that models a great variety of applications and we be-
lieve that most engineers, working in several application ar-
eas, are somehow familiar with this representation. The en-
vironment also provides the use of Petri Nets (Murata 1989),
a formal representation that can help designers to perform
dynamic domain validations deploying visual and animated
information to the entire dynamic system. Also, since the AI
Planning community has accepted the PDDL as the standard
specification language for planner inputs, itSIMPLE inte-
grates the capabilities of dealing with such language mainly
in the model testing stage.

In order to hold all information available in several rep-
resentation languages (UML, Petri Nets and PDDL) itSIM-
PLE uses the well-known language XML (Bray et al. 2004)
which is commonly used in data transactions systems, web
applications and data sharing systems. The important point
on using XML is that some proposed integrated languages
have direct representation in XML such as PNML - which
stands for Petri Nets Markup Language (Billington et al.
2003) - for Petri Net representation and XPDDL - eXten-
sible Planning Domain Definition language (Gough 2002) -
for PDDL. In fact, we believe XML can really help design-
ers to share and maintain their domains models and knowl-
edge. Considering all these issues, the integrated framework
architecture of itSIMPLE2.0 is shown in Figure 2.

Figure 2: The architecture of the integrated languages

By using itSIMPLE2.0 translators, designers are able to
change from one language to another at any time they want.
Users can also deal with many projects and domains at the
same time, which allows the reusability of models. In the
following sections we present each main phase of the do-
main design process illustrated in Figure 1 using the inte-
grated environment provided by itSIMPLE2.0.

Domain Modeling with UML.P
As highlighted before, in the itSIMPLE2.0 environment, de-
signers model their planning domains by using UML di-
agrams. The UML was first defined by OMG Unified
Modeling Language Specification between 1996 and 1997
(D’Souza & Wills 1999), and nowadays is one of the most
used languages to model a great variety of applications. Be-
sides, UML has flexibility to attend many kinds of models in
an object-oriented fashion since it is widely accepted as the
standard for object-oriented analysis and design. This semi-
formal modeling language is largely used for the modeling
and visualization of system models. itSIMPLE2.0 allows de-
signers to use, in the planning domain context, all the col-
lection of best engineering practices that are embedded in
UML (OMG 2001).

Since UML is a general purpose modeling language it
turns to be necessary to propose an extended representation
that could deal with specification features that are intrinsi-
cally related to planning domains. It was called UML.P
(UML in a Planning Approach) and was firstly introduced
in (Vaquero, Tonidandel, & Silva 2005). For instance, some
of the UML diagrams can be directly applied for planning
domains such as use case diagram, class diagram, state chart
diagram (also known as state machine diagram) and object
diagram. In itSIMPLE2.0 the designer can model a plan-
ning domain by using gradually these diagrams in order to
model both domain and problem features as we depict in the
following sections. Figure 3 shows an example of the use
case diagram for the classical planning domain Logistic and
Figure 4 shows a screenshot of itSIMPLE2.0 of the class di-
agram from the same domain.

Figure 3: Use case driven approach for domain specification

A problem statement in a planning domain is usually char-
acterized by a situation where only two states are known:
the initial and goal state. The diagram used to describe these
states is the object diagram or Snapshots. A good definition



Figure 4: itSIMPLE2.0 interface for modeling with UML.P

of Snapshot is given as a depiction of a set of objects and the
values of some or all of their attributes at a particular point
of time (D’Souza & Wills 1999). The itSIMPLE2.0 tool as-
sists designer to specify consistent snapshots by promoting
automatic verification on all the constraints and features de-
fined in the class diagram. Figure 5 shows a screenshot with
an example of an initial snapshot of a Logistic problem.

Figure 5: The initial state of a Logistic problem

Another important feature available in itSIMPLE2.0 is the
definition of intermediate states (snapshots) in a problem.
These intermediate states can represent situations that must
be avoided or some kind of state trajectory constraints dur-
ing the planning process. This capability follows the con-
cepts introduced in the definition of PDDL3 (Gerevini &
Long 2006). Thus, the use of itSIMPLE2.0 make it possible
to model situations that must happen always, sometimes, at-
most-once or never during the evaluation of a planning prob-
lem. This particular tool capability can be a powerful mod-
eling characteristic for many real planning problems. All
these constrained situations are considered snapshots in the

tool environment.

Domain Model Analysis with Petri Nets
Domain analysis process is becoming one of the main
studied topic in the KE for AI Planning, and, indeed, this
process has a great impact on the quality of the domain
model being built. As mentioned before, itSIMPLE2.0 also
provides mechanisms for helping designers to analyze and
verify their model focusing on dynamic aspects. It is done
by representing state chart diagrams into Petri Nets. As
highlighted in this paper and in (Vaquero et al. 2006), each
state chart diagram shows the dynamic characteristics of
objects (of a specific class) being affected by actions that
can appear in many state chart diagrams. Therefore, there
are usually many state chart diagrams in a single domain
model. Figure 6 shows a screenshot with the state chart
diagram representing the dynamic features of the class
package from the Logistic domain.

Figure 6: Interface for dealing with state chart diagrams

In this framework, each state chart diagram can be viewed
as a module of the entire domain. Considering this modu-
larity introduced by the state chart diagrams in UML, it is
possible to represent these modules through the concept of
modular PNML (Kindler & Weber 2001). This concept is
used by itSIMPLE2.0 to represent Petri Nets. It is important
to highlight that OCL expressions are not considered in the
PNML representation in itSIMPLE2.0.

The dynamic domain analysis process using the state
charts and Petri Nets is divided in two main analyses: Mod-
ular Analysis and Interface Analysis. The Modular Analy-
sis tries to verify each module one-by-one, taking into ac-
count the dependencies with others modules (represented by
what we call Gates). The modular analysis through Petri
Nets allows the designer to detect features like parallelism,
concurrencies and undesirable deadlocks throughout simu-
lation processes.The Interface Analysis, on the other hand,
has the purpose of investigating dynamic interactions among
modules. During this analysis, designers can verify not just



one module but many of them, all together, visualizing the
dependencies among classes during actions domain execu-
tions. itSIMPLE2.0’s interface for dealing with dynamic do-
main analysis with Petri Nets is shown in Figure 7.

Figure 7: The dynamic analysis with Petri Nets interface

Model Testing and Plan Analysis
In order to perform model testing for verification and vali-
dation of the planning domain model, itSIMPLE2.0 enables
the user to represent UML models (holded in XML) in a
PDDL format. As highlighted before, the tool transforms the
model into a XPDDL representation and then into a PDDL.
itSIMPLE2.0 allows designers to deal with features from
PDDL2.1 and PDDL3 (Gerevini & Long 2006) such as gen-
eral constraints and state trajectory constraints. However,
itSIMPLE2.0 do not deal with time constraints. itSIMPLE2.0

builds the domain and the problem specification in PDDL
separately. In order to build the PDDL specification to the
domain, the tool extract types, predicates (attributes and as-
sociations) and functions (attributes) from the class diagram
and the actions, as well as pre and postconditions from the
OCL expression available at all state chart diagrams (some
domain constraints are extract from associations rules). To
build a problem specification in PDDL, itSIMPLE2.0 ex-
tracts objects and the instantiated situation from the snap-
shots, including the state trajectory constraints. It also pro-
vides a PDDL editor for additional modeling features that
the designer wants to include. itSIMPLE2.0’s interface for
dealing with PDDL is shown in Figure 8.

One important phase in the design process that can be
performed once the PDDL representation is available is the
Plan Analysis. Designer’s mistakes are common during the
domain modeling, especially when modeling real systems.
Besides, sometimes the final model doesn’t truly represent
what the designer intended to, or, it does not fit what is de-
fined in the requirements. Thus, not always the generated
plan will achieve the solution expected by the designer.

The tool provides two ways of performing plan analysis.
The first one is made through the use of XY and Gantt charts

Figure 8: Interface for dealing with PDDL representation

in what we call the Analysis and Tracking of Variables. The
second one is made by observing screenshots in the same
way as seeing a movie which starts from the problem initial
states and goes to the goal state, shot by shot. We call this
second process Movie Maker. itSIMPLE2.0’s interface for
dealing with Plan Analysis is shown in Figure 9.

Figure 9: itSIMPLE’s Plan Analysis interface

The user can also define its own plan for Plan Analysis by
giving it to itSIMPLE2.0, action by action. Some works also
addressed the relevance of this flexibility (Simpson 2005).
In fact, the designers usually refine the model while per-
forming such analysis by including additional constraints
into the model for avoiding, for example, undesirable states.
In the Movie Maker analysis the user observe the screen-
shots as UML snapshot diagram going forward or backward
when necessary.



Conclusion
The idea of a Knowledge Engineering environment for de-
signing of real world planning problem is promising and
appropriated to the current scenario, where new domain-
independent planners are evolving and being tested to
encompass situations more and more complex. The
itSIMPLE2.0 considers a design life cycle for real plan-
ning problems based on the use of well-known languages
and tools utilized in real domain specification in an object-
oriented approach. All remaining features could be com-
posed and unified, once they could be expressed in a lan-
guage that is compatible with XML.

Such flexibility of itSIMPLE2.0 makes it an interesting
environment for gathering requirements, domain modeling,
model analysis, model testing and also as a testbed for new
formal representations for planning.

itSIMPLE2.0 is in constant improvement seeking for re-
quirements and knowledge engineering aspects for bridging
the gap between real planning problems and available plan-
ning techniques where it is not possible to neglect the initial
phase of the design process. The presented environment still
aims to fulfill as much as possible the knowledge engineer-
ing requirements in order to send valuable information ex-
tracted from the domain experts, planning experts and from
the model itself and pass it to the planning systems.

The itSIMPLE tool is available in the projects link on the
DesignLab web page http://designlab.grupoe.com.br.

References
Billington, J.; Christensen, S.; van Hee, K.; Kindler, E.;
Kummer, O.; Petrucci, L.; Post, R.; Stehno, C.; and We-
ber, M. 2003. The petri net markup language: con-
cepts, technology, and tools. In Proceedings of the 24th
Int Conf on Application and Theory of Petri Nets, LNCS
2679, Springer, 483–505.
Bray, T.; Paoli, J.; Sperberg-McQueen, C. M.; Maler, E.;
and Yergeau, F. 2004. Extensible Markup Language
(XML) 1.0 (Third Edition). Technical report.
D’Souza, D. F., and Wills, A. C. 1999. Objects, compo-
nents, and frameworks with UML: the catalysis approach.
Boston, MA, USA: Addison-Wesley Longman Publishing
Co., Inc.
Edelkamp, S., and Mehler, T. 2005. Knowledge acqui-
sition and knowledge engineering in the modplan work-
bench. In Proceedings of the First International Competi-
tion on Knowledge Engineering for AI Planning, Monterey,
Califormia, USA.
Fox, M., and Long, D. 2003. Pddl2.1: An extension of
pddl for expressing temporal planning domains. Journal of
Artificial Intelligence Research (JAIR) 20:61–124.
Gerevini, A., and Long, D. 2006. Preferences and soft
constraints in pddl3. In Gerevini, A., and Long, D., eds.,
Proceedings of ICAPS workshop on Planning with Prefer-
ences and Soft Constraints, 46–53.
Gough, J. 2002. Xpddl 0.1b: A xml version of pddl.
Kindler, E., and Weber, M. 2001. A universal module

concept for petri nets. In Proceedings of the 8th Workshops
Algorithmen und Werkzeuge fr Petrinetze, 7–12.
Murata, T. 1989. Petri nets: Properties, analysis and appli-
cations. In Proceedings of the IEEE, volume 77, 541–580.
OMG. 2001. OMG Unified Modeling Language Specifica-
tion, m Version 1.4.
Simpson, R. M. 2005. Gipo graphical interface for plan-
ning with objects. In Proceedings of the First International
Competition on Knowledge Engineering for AI Planning,
Monterey, Califormia, USA.
Vaquero, T. S.; Tonidandel, F.; Barros, L. N.; and Silva,
J. R. 2006. On the use of uml.p for modeling a real ap-
plication as a planning problem. In Proceedings of the
16th International Conference on Automated Planning and
Scheduling (ICAPS), 434–437.
Vaquero, T. S.; Tonidandel, F.; and Silva, J. R. 2005. The
itsimple tool for modelling planning domains. In Proceed-
ings of the First International Competition on Knowledge
Engineering for AI Planning, Monterey, Califormia, USA.


