
Knowledge Engineering through Simulation

Stefan Edelkamp
Computer Science Department

University of Dortmund

Jeremy Frank
Planning and Scheduling Group
NASA Ames Research Center

Mark Kellershoff
Computer Science Department

University of Dortmund

Abstract

The objectives of the International Knowledge Engineering
Competition for Planning and Scheduling are to judge tools
for knowledge acquisition and domain modeling, to accel-
erate knowledge engineering research in AI, and to encour-
age the development of software platforms that promise more
rapid, accessible, and effective ways to construct reliable and
efficient systems.
The 2nd edition for the competition aimed at quantitative in-
stead of only qualitative results. The evaluation infrastructure
accomplishes this in three ways: 1) standardizing the appli-
cation domains on which competitors used their KE tools, 2)
representing those domains using simulations and documen-
tation describing the domains, and 3) logging records of tool
interactions. Client-server communication for the exchange
of simulator states and computed plans was realized via a tex-
tual protocol.
In this document, we give an overview on general concepts
of the competition its impact as long-term challenge for the
community, and a description of the client-server infrastruc-
ture that we have installed.

Introduction
Knowledge Engineering (KE) for AI Planning and Schedul-
ing has been defined as the process that deals with the ac-
quisition, validation and maintenance of planning domain
models, and the selection and optimization of appropri-
ate planning machinery to work on them (Bartak & Mc-
Cluskey 2006). Hence, knowledge engineering processes
support the planning process: they comprise all of the off-
line, knowledge-based aspects of planning that are to do
with the application being built, and any on-line processes
that cause changes in the planner’s domain model.

The 2nd edition of the International Competition on
Knowledge Engineering for Planning and Scheduling,
ICKEPS-2 for short, hosted at the International Confer-
ence on Automated Planning and Scheduling, was intended
to provide a continuation of knowledge-based and domain
modeling as a bi-annual event, in synergy to the bi-annual
International Planning Competition IPC (McDermott 2000;
Bacchus 2001; Long & Fox 2003; Hoffmann & Edelkamp
2005) The objectives of the competition were to accelerate

Copyright c© 2007, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

knowledge engineering research in AI, and to encourage the
development of software platforms that promise more rapid,
accessible, and effective ways to construct reliable and effi-
cient systems.

The major weakness of ICKEPS-1 (Bartak & McCluskey
2006) was that the competition outcome was both subjective
and qualitative, for a variety of reasons. The previous com-
petition featured tools with different strengths, which were
demonstrated on different planning domains, and for which
the final rankings were based solely on the authors’ demon-
stration of the tools to the committee. While the tools were
by and large publicly available, there was no quantitative
assessment of the tools, and thus no record or metrics by
which tool performance could be measured or displayed, in
contrast to the International Planning Competitions or other
computational challenges.

As a consequence, in ICKEPS-2 we extended and revised
the event in one important aspect: the quantitative evaluation
of systems in a client-server simulation environment. On
the one hand, we installed medium and high fidelity plan-
ning domain simulators that were provided by research or
industrial entities. These simulators were adapted to com-
municate via files in order to provide simulator states, exe-
cute (partial) plans and feedback simulation results. On the
other hand, for the competitors we provided simulator spec-
ification and some planning task descriptions in the form of
natural language documents. The challenge was to come up
with a planning model in an integrated tool environment that
could operate the simulator by providing plans to achieve
the desired outcome described in the documentation. The
choice of planning infrastructure and design tools, including
the plan domain description language, was up to the com-
petitors. The only requirement was to satisfy the textual in-
terface description.

In this document we describe the conceptional and infras-
tructural basics that were chosen for running the competi-
tion. The text is structured as follows. First, we introduce
the knowledge engineering scenario that we imposed. Next
we give a motivating example of a possible simulator do-
main together with a matching domain model as a solution.
The consequences on the client-server software infrastruc-
ture that had to be provided for running the competition are
explained next. We describe the functionality of the ICK-
EPS Simulation Server in detail. Finally, we draw conclu-

sions and discuss the challenges that we have imposed with
the knowledge engineering competition scenario, and future
avenues for the continuation of the event.

Scenario
The knowledge engineering scenario that we have imposed
is that of applying planning technology in a real-world ap-
plication (see Figure 1). We assume a ”client” has a system
they would like controlled with a planning and scheduling
application. In such circumstances, it is natural that there
is a simulation of the environment that can execute a given
plan for the system that is posed in some formal specification
language. For the sake of simplicity, we assume full observ-
ability, i.e. all relevant state information in the simulator
is accessible and can be communicated to the application.
System control can be posed as a ”classical” or ”off-line”
planning problem consisting of an initial state and desirable
goal; the application must then generate a single plan for
execution. However, system control can also be posed as
a ”dynamic” or ”on-line” planning problem, where the ap-
plication may be periodically required to revise an existing
plan in the face of new information.

The competitors are given a detailed description of the
simulator domain and a natural language description of the
types of planning problem instances to be solved. In the
usual case this text description will contain part of all of a
domain ontology (e.g. a type hierarchy), the full set of state
variables, and accepted actions declaration that can appear
in a possible plan and that can drive the simulation.

Models early in the application development process are
likely to be rather coarse abstractions of the system. Gen-
erated plans may fail based on two reasons. One is that
the model of the simulated process is inaccurate such that
the simulator runs into a state where the operators that are
scheduled next can no longer be executed. For this case sim-
ulator returns simply returns false. Otherwise it returns with
true and the current system state. The other source of failure
are environmental changes to the model, that make some op-
erator applications impossible. Such changes would require
the planner to re-plan. As such changes make the learning
task rather impossible, such changes are made public to the
knowledge engineering unit to re-initialize its model.

Competitor Tasks
Each domain was given to the competitors during the com-
petition in form of a natural language document. The com-
petitors had to create an automated planning system by read-
ing the documentation describing the simulator API, de-
scriptions of the planning tasks, and objectives. The com-
petitors interacted with the simulators by requesting plan-
ning problem instances, using their automated planners to
solve the problem, and sending the solution plan to the sim-
ulator. The simulators then simulate the plan and generate a
report, indicating success or failure and plan quality.

As we mentioned, the domain descriptions already con-
tain some detailed engineering knowledge of the domain.
We see that the process of forming state variables in form of
predicates and functions and a type hierarchy is already in-

Environment

Tool
Design

SimulatorGUI

Domain Model

Description +
− Predicates/Fluents

− Type Hierarchy
− Action Headers

NL Problem

Wrapper

Designer/
Competitor

Client/
Organizers

Unit Planner
Converter

Current Problem
Instance

Lerning

Plan Success

Figure 1: Knowledge Engineering Scenario.

formation gathering, performed without KE-tools. Nonethe-
less, we view this concept formation task separated from
operator induction, which requires to determine correct and
useful action pre- and postcondition. Further refinement of a
preliminary ontology can and may also be an important task.
Continuing with the natural language description of the con-
straints for operator applicability the competitors should be
able to generate a model of the domain in their their knowl-
edge engineering environments.

We have not assume all interfaces provided in PDDL no-
tation (Hoffmann & Edelkamp 2005) but in the interface lan-
guage that specifies the in- and output the simulator accepts.
But in the case the simulator model accepts PDDL, we run
a simulator like VAL (Howey & Long 2003) as a substitute
for the simulator. It checks whether the generated model
does indeed produce a valid plan. It also returns the system
state that is generated after applying a partial plan for some
certain amount of time.

Example
In the following, we exemplify the knowledge engineering
setting for the case of a Petri-Net domain.

Petri nets were invented by Petri (1962) as a means of
describing concurrency and synchronization in distributed
systems. In this paper we consider ordinary place transition
nets, formalized as follows. A place-transition net is a 4-
tuple (P, T, I−, I+), where P = {p1, . . . , pn} is the set of
places, P = {t1, . . . , tm} is the set of transitions with 1 ≤
n, m < ∞ and P ∩ T = ∅. The backward and forward
incidence mappings I− and I+, respectively, map elements
of P × T to the set of natural numbers and fix the Petri net
link structure and the transition labels. A simple example is
a deadlock solution to the well-known Dining Philosopher’s
problem (Dijkstra 1971) shown in Figure 2.

A marking in a place-transition net map elements of P to
a natural number, where M(p) denotes the number of tokens
in p. It is natural to assume that M is provided in vector rep-
resentation. Markings correspond to states in a state space.

©

��

��
11

11
11

11
11

11
11

11
11

©

��

��
11

11
11

11
11

11
11

11
11

©

��

��
11

11
11

11
11

11
11

11
11

©

��

xxrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

2

��

2

��

2

��

2

��

©·

��

©·

��

©·

��

©·

��
2

��

2

��

2

��

2

��

©

��

©

��

©

��

©

��
2

II ??���������������������������������������
2

IITT*****************************
2

IITT*****************************
2

UUTT*****************************

Figure 2: Place-transition Petri net for four dining philoso-
phers.

Petri nets are often supplied with an initial marking M0, the
initial state. A transition t is enabled, if all its input places
contain at least one token, i.e., M(p) ≥ I−(p, t) for all p ∈
P . If a transition is fired, it deletes one token on each of its
input places and generates one on each of its outputs places.
A transition t enabled at marking m may fire and generate a
new marking M ′(p) = M(p) − I−(p, t) + I+(p, t) for all
p ∈ P , written as M → M ′. A marking M ′ is reachable
from M , if M

∗→ M ′, where ∗→ is the reflexive and tran-
sitive closure of →. The reachability set R(N) of a place
transition net N is the set of all marking M reachable from
M0. A place-transition net N is bounded if for all places
p there exists a natural number k, such that for all M in
R(N) we have M(p) ≤ k. A transition t is live, if for all
M in R(N) there is a M ′ in R(N) with M

∗→ M ′ and t is
enabled in M ′. A place-transition net N is live, if all transi-
tions t are live. A firing sequence σ = t1, . . . , tn starting at
M0 is a finite sequence of transitions such that ti is enabled
in Mi−1 and Mi is the result of firing Ti in Mi−1.

Task
1. Generate/learn a model for Petri Nets in your system.

2. Run your system together with a Petri Net simulator as
indicated in Figure 1. The simulator will provided by the
organizers.

Solution
Suppose a hypothetical competitor chose to create a PDDL
model for a planner. The resulting model might look like
this:

(:types transition place - object)
(:predicates (incoming ?p - place ?t - trans)

(outgoing ?t - trans ?p - place))
(:functions (ntokens ?p - place))
(:action fire-transition
:parameters (?t - trans)
:precondition
(forall (?p - place)

(or (not (incoming ?p ?t))
(>= (ntokens ?p) (incoming ?t ?p))))

:effect
(and
(forall (?p - place)
(when (incoming ?p ?t)
(decrease (ntokens ?p) (incoming ?t ?p))))

(forall (?p - place)
(when (outgoing ?p ?t)
(increase (ntokens ?p) (outgoing ?t ?p)))))

)

For the four philosophers, a possible initialization would
be

(:objects
p11 ... p34 - place t11 ... t34 - trans)

(:init
(incoming p11 t11) (incoming p12 t12)
(incoming p13 t13) (incoming p14 t14)
...
(outgoing t31 p12) (outgoing t32 p13)
(outgoing t33 p14) (outgoing t34 p11)
(= (ntokens p11) 1) (= (ntokens p12) 1)
...
(= (ntokens p33) 0) (= (ntokens p34) 0))

During the simulation the initial state will be substituted
by the current state. A goal requirement could be

1. to generate a specialized marking for the Petri Net

2. to detect a deadlock in the system where a deadlock is an
additional predicate that has still to be derived

The ICKEPS Simulation Server
In this section we describe the server interface for the com-
petitors in the second International Competition on Knowl-
edge Engineering for Planning & Scheduling.

The application server scenario includes three parties.
First the client, which hosts the competitor’s planning envi-
ronment. Second, the simulator, which runs on server side.
Third the server application software, i.e. the interface that
connects client requests to simulators. (In one of the follow-
ing sections, this will be explained more precisely.) Sim-
ulators are running on 1 Linux PC to provide continuous
access to all domains for all competitors. Exchange format
for plans and simulator states: ASCII (e.g. PDDL, GXL
or XML) The ICKEPS Simulator Server is a program using
sockets via TCP/IP. We extended an existing server to run
simple file-input-based Linux/Unix applications. Therefore,
the simulation-server follows a specific protocol to handle
files through TCP. Because of having an interface that is as
simple as possible files will be accepted as text input with a
specific format1.

Commands
The ICKEPS Simulation Server has some very simple com-
mands. A sequence of commands and inputs produces the

1Throughout the entire document 〈 and 〉 just represent variable
content! These symbols are only used for readability and are not
syntactical features.

desired output. To demonstrate the usage of this interface,
there are different options. Since everyone can create his
own way of opening a socket and communicating with the
server, telnet will be the simplest way to show the server’s
functionality. The ICKEPS Simulation Server accepts the
following commands:

Shortcut command Description
id identify print server identification
l list list all available simulators
s select select a simulator

info get infos about the selected
simulator

i input upload input to the server
r run run a Simulation (provide

necessary input beforehand)
h help overview of commands
q quit quit the connection

The ICKEPS Simulation Server calls the selected simu-
lator executable. It first redirects the necessary input to it,
and then redirects its output to the client, who has called it.
To send input to the server it has to be sent as text with a
special formatting. The filename itself is not needed. Ev-
ery simulation run needs the necessary input to be uploaded
beforehand.

The input-mode is always a sequence like:

• start input-mode with i

• upload parameter (i.e., plan=’<content>’)

• upload further parameters (i.e., options=
’<experiment name>’)

• . . .

• end the input mode with EOT

The server is only capable of recognizing input in the man-
ner specified. The formating is very simple and always like:
<parametername>=’<parameter content>’.

The parameter names possible are listed below, with a pre-
view of the simulators that employ them.

parameter name generic desription
plan A plan or schedule.
problem A problem. (Validator, CyberSecurity,

Manufacturing, PowerSupply)
domain A domain model. (Validator)
goals A file with goals. (Manufacturing)
options The name of an experiment.

(GraphTransition, Telescope)

Each simulator expects a specific subset of these parame-
ters. Refer to the later sections which parameters are needed
for a specific simulator. Parameters which were uploaded,
but not needed, are simply ignored.

Interacting with the Simulator
We now provide two different examples of competitors in-
teracting with different simulators. These examples will il-
lustrate the different interaction modes.

For the CyberSecurity simulator, competitors will need to
upload two files to the simulator: the problem file, which
contains a problem instance to solve; and a plan file contain-
ing a solution to the problem. The input to the server will,
therefore, look like the following code fragment:

1. Open a connection to the server
2. send: s CyberSecurity - the response should be OK
3. send: i - the response should be OK
4. send: problem=’<content of problem file>’

5. send: plan=’<content of plan file>’

After uploading everything we quit the input-mode with
6. EOT.

We are now ready to start a CyberSecurity-run with
7. r.

(We have to use high quotes (’) to mark the beginning
and the end of a parameter, but we can use high quotes else-
where)

On the server side the three parameters, respective their
content, are written to files. The paths to the files are used
for the call to the executable. For CyberSecurity this will
result in executing:
java -jar bams-sim.jar

domainfile problemfile planfile resultfile

Everything printed out while a simulator is running will
be forwarded to the client. In case a simulator produces a file
with output, this file is opened and sent back to the client.

The format for created output files when sending back is:
FILE <name>:
<filecontent line1>
<filecontent line2>
< >
<filecontent lastline>
ENDFILE

CyberSecurity for example always produces one file con-
taining the outcome of the experiment.
FILE cyberout:
Success!
ENDFILE

Next, we present an example of a competitor interacting
with the Graph Transition Domain simulator. Let’s pretend
we want to send a plan we have generated for the graph
transformation experiment append. Due to the structure
of the simulator, competitors do not in this case receive a
file containing a planning problem instance, but instead se-
lect one of a set of experiments. Competitors have to do the
following:

1. Open a connection to the server
2. send: s GraphTransformation - the response

should be OK
3. send: i - the response should be OK
4. send: plan=’<content of the plan-file>’

5. send: options=’append’ - The ’append’ experiment
6. send: EOT - End of Transaction
7. send: r - Start a run

The server starts redirecting the simulators output to the
client. When the executable is finished the connection is
terminated.

The Different Simulators
There are five different high-fidelity simulator executables
available. In addition, the VAL application is available to
validate plans against a PDDL domain description. The
server maps names to simulators like the following table:

〈Name used by the server〉 〈Related program〉
GraphTransformation Groove

Telescope Spike
CyberSecurity Bams
Manufacturing Manufacturing
PowerSupply PSR

Validator Validate

Each of them is selectable through either
select <name> or s <name>.

The rest of this section will explain which parameter is
used for which file content regarding a specific simulator2

Graph Transformation with Groove
Groove is a tool to explore a graph entirely by applying all
possible sequences of rules starting from one initial graph.
For example, we take the list append problem (Rensink
2004) with the three rules, next, append and return.
The example shows many features typical for the dynam-
ics of object-oriented programs. Methods are modeled by
nodes, with local variables as outgoing edges, including
a this-labeled edge pointing to the object executing the
method. Each method invocation results in a fresh node,
with a caller edge to the invoking method. Upon return, the
method node is deleted, while creating a return edge from
its caller to a return value. It follows that the execution stack
is represented by a chain of method nodes. We expect the
planner to tell us whether these invocations may interfere.
Due to the ensuing race condition, the system can have more
than one legal outcome. For such non-deterministic execu-
tion of a plan, all possible valid outcomes are reported from
the server to the client.

This simulator accepts the plan parameter and the
options parameter. The plan parameter contains a se-
quence of rules and the options parameter contains the name
of the experiment. Example:
options=’append’
plan=’next
next
next
append
return’

Groove generates all possible ending states as GXL-files.
These files are sent separately to the client. Each of them
begins with FILE GROOVE s8:, where s8 is the corre-
sponding state number generated by Groove, and end with
ENDFILE.

2The server never changes anything to input stream.

CyberSecurity with Bams
The CyberSecurity simulator (Boddy et al. 2005) validates
if a system can be compromised or is safe. System models
can be quite complex, consisting of physical office layouts,
logical network structures, user account and access control
lists, software installed or installable on different machines
and its capabilities. The simulator takes a problem file and
a plan as its input and outputs either Success! or a list of
the goals that failed.

Scheduling with Spike
The Telescope simulator represents a ground-based tele-
scope used for viewing astronomical observations. Every
observation is viewable only through a specific period of
time, based on its position in the sky and the position of
the telescope on the Earth. Preferences are also expressed
over the best time to view specific objects. Finally, there
may also be relative temporal constraints on pairs of obser-
vations. Since there are many observations for one night, the
task is to find the best schedule for viewing the most impor-
tant observations. The Spike simulator (Sasaki et al. 1996)
takes a schedule as input via the plan parameter and an
experiments’ name through the options parameter. The
output of Spike are two files. One file that shows the report
on the schedule and the other one showing the unscheduled
time (gaps) between observations generated while running
the schedule.

Power Supply Restoration
The Power Supply Restoration Simulator (Bertoli et al.
2002) checks if a plan for restoring a faulty power line is
valid. This domain uses extra constraints for applying a plan.
It takes a network (which includes a set of faulty switches)
and a plan to restore power lines as inputs. This simulator
produces a plan as formatted output, where the last step con-
tains the plan validity.

Manufacturing
The manufacturing simulator (Ruml, Do, & Fromherz 2005)
is used to simulate an on-line manufacturing processes. The
manufacturing-simulator is an online simulator. This indi-
cates that new goals may arrive while a plan is being exe-
cuted, and one can guide the simulation while it is running.
This has to be done via a ’special’ way, since once a simula-
tion is started there is no way of adding new input. Because
of this behavior, this simulator uses two ports! The direct
input port will be the normal port increased by 5. The direct-
input-port is opened after a ’run’ is started. The easiest way
of sending input is a telnet-client.

Example:

> telnet ausonia.cs.uni-dortmund.de 11008
<the telnet console appears>

> 40.740000: (transport mat0 node5 node4)

The connection will be terminated by the server after the
simulation ended. The input for this simulator is a manufac-
turing domain, a problem and a set of goals to be reached.

The direct input contains new goal messages for the simula-
tor. The output consists of the plan evaluation and informa-
tion on the goals missed or reached.

Validator
The validator (Howey & Long 2003) is very similar to
the CyberSecurity simulator. The CyberSecurity simulator
checks a plan for a problem in the specific CyberSecurity
domain while the validator checks a plan in any given do-
main. Therefore the specific test-domain must also be up-
loaded. The output of validate is the outcome of applying
the given plan to the given problem.

The ICKEPS Server Architecture

Telnet JavaClient Other

ICKEPS-Server

TCP/IP

Simulator Simulator Simulator

Software

STDIO

Figure 3: Architectural overview.

The architecture of the server can be regarded as an appli-
cation server or web service provider. The services it pro-
vides are simple Linux executables which work on text files
and produce either standard output or a result file. (This will
be explained more precisely in one of the upcoming sec-
tions.) This specialization has two major advantages:

• A high degree of security. All inputs have to go through
the server which runs in a user space installation. Because
of its few commands, hacking it is almost3 impossible.

• No user has to know anything about executing a specific
program. Consider a java program for example where
users have to give libraries as starting option, instead of
typing in long start commands a user simply uploads the
input and tells the server with a simple command (i.e.
,,run”) to start the program.

An overview of the server architecture is provided in Fig-
ure 3. It has been built on top of the existing server compo-
nent of the VEGA tool (Hipke & Schuierer 1999).

The server software consists of three components (besides
helping components like configuration management): The
,,real” server, which manages incoming connections, the
dispatcher, which handles client commands and inputs, and
the runner, which manages the execution of a program.

3Currently it is not known if a buffer overflow attack will ever
succeed.

The Server
The first component is the server component. It opens a
socket and listens for incoming connections. If a connec-
tion is being established by a client, the server starts a dis-
patcher and hands over the connection. This technique has
the advantage that one port could possibly used by differ-
ent clients. The dispatcher creates its own process in the
operating system using the fork() operation. From that
point on the client has its own server process and therefore a
,,hanging” client connection will not disturb any other con-
nection (Bröker 1999).

The Dispatcher
The second component of the ICKEPS server is the dis-
patcher. It maintains the connection that it got from the
server component. The dispatcher is the controlling com-
ponent for the whole execution (or simulation). It can be
within three states (see Figure 4):

• Waiting (communicating)

• Input

• Running

waitinginput running

EOT

i
r

Figure 4: State machine of the Dispatcher.

In the waiting state the Dispatcher just waits for a com-
mand to process. Besides some informational commands
there are two steering commands: input and run. The input
command will switch the dispatcher to input mode. While
in input mode the dispatcher will take anything it gets as an
input to the program (or simulator) until a line with the ,,end
of transaction command” (,,EOT”) arrives. After this com-
mand the dispatcher switches back to normal mode awaiting
the ,,run command”. When the client enters the run com-
mand, the dispatcher will create an execution unit (the Run-
ner) with the uploaded information and switch to the running
state, which it will not leave until it its deletion.

The Runner
The last component, the runner, is the most specialized part.
It knows which services it can provide and how these have
to be executed.

To have more programs (or simulators) to offer, one has
to reprogram this component. (At present we think about
making this configuration automatically through a special
configuration file.)

A program available to the server has to provide a starting
script that the server can execute. This has the effect that
a program will have a complete environment available with
all environment variables, since an execution of a script by a
c++-program via execute() will invoke a whole system
shell to come up with all available environment variables.

This is especially kind if you think of a program using other
locally installed programs.

The runner does also have a user directory setting where
most of the uploaded information will be saved. It will set
unique filenames for all uploads, such that no problems with
duplicate filenames will occur.

The Clients
There are more ways to access the server. One way as ex-
plained is telnet and another one is using some kind of auto-
mated client. The source (and the created binary with a start
script) is available on the Internet page of ICKEPS.

Connection Data
Server: ausonia.cs.uni-dortmund.de
Ports: 11001 - 11005

A client receives the simulator list from the server. If a
connection is established, available simulators can be listed
by sending a list. For the ease of adapting a tool to the
server, we offered a Java client as a support for the com-
petitors to perform the connection to the server and to do
the communication. The client called VegaSimtester is
written in Java and provided in source code. The client
• selects the simulator (shortcut: first letter in Manufactor-

ing, PowerSupply, CyberSecurity, Validator, Telescope,
GraphTransformation)

• opens a port for TCP/IP listening
• can be started from the command line (Executable, e.g.
./start simtester P filename host port
for PSR, filename refers to the tagged client’s text file con-
taining all input information needed to feed the simulator,
host and port are made available to the competitors)

• can be integrated in-line in a Java program (adapt Source)
It was up to the competitors to use the provided client or

not, so that they can participate without using it. The only
thing they have to do is to open a port to connect to the server
and exchange text/file data. We designed a simple text-based
protocol to send data and commands through the net in order
to call a simulator and receive its output.

A Java-Client
The Java-Client for accessing the ICKEPS Simulation
Server has a simple syntax. It consists of one class named
VegaSimTester. It can be started with the following com-
mand.
VegaSimTester <SimulatorShortcut>

<path-to-file-containing-all-inputs>
<URL> <port>

For example:
VegaSimTester G /path/to/inputfile

ausonia.cs.uni-dortmund.de
11003

The Java-Client will select Graph Transformation and up-
load everything contained in input file to our server and start
a run. Everything the server displays will be displayed in the
console.

Some methods in this class are rather unimportant for
communicating with the server like a readFile()method
or a Constructor. These methods should explain themselves.

There are two methods interesting for communication
with the server.

The first one is createSocket()which opens a socket
to communicate with the server. This method simply creates
a socket and binds the streams.
public void createSocket() throws IOException{

mySocket = new Socket(hostName, port);
bin = new BufferedReader(

new InputStreamReader(
mySocket.getInputStream()));

bout = new BufferedWriter(
new OutputStreamWriter(
mySocket.getOutputStream()));

}

The other method is communicate() which manages
everything necessary to use the server. It looks a bit
like the communication via telnet does, but in an auto-
mated way. The methods send(String), receive()
and waitForResponse() really do what they look
like. The send() method just sends a string to the server,
receive() just receives a response from the server and
waitForResponse() just waits for any input to be avail-
able.

The communicate() method simply selects an algo-
rithm via the s command, switches the server to input-mode
via the i command and uploads a file line-by-line. The
upload-file content should be formatted like the input with
telnet. For example:
plan=’<original file content>’
options=’<experiment-name>’

It ends input-mode via EOT and starts the run via the r
command. This procedure is the same for all different sim-
ulators.

Conclusion
The document illustrates the design and implementation of
an application server architecture to measure the appropri-
ateness of knowledge engineering tools to model real-world
domains. The models together with an integrated planner
then steer the simulators via an agreed textual interface.

Unfortunately, only a very few number of competitors
registered for participating the competition, so that we de-
cided to make the competition a showcase and keep the sim-
ulator environments as a long-term challenge for the plan-
ning community.

As the architecture is erected on VEGA (Hipke &
Schuierer 1999) it can support interactive simulation in an
existing visualization front-end. The only additional re-
quirements is that the simulators send visualization com-
ments together with the simulator state to the client. Geo-
metric data and user-adjustable view attributes are handled
in a hierarchical naming scheme for geometric objects. Geo-
metric objects are organized in groups, and these groups can
be combined further still, such that a scene of geometric ob-
jects resembles a tree where inner nodes are groups and leafs

public void communicate() throws IOException{
String answer="";

//select
send("s "+algoName+"\n");
waitForResponse();
answer=receive();
if (!answer.equals("OK"))return;

//input
send ("i\n");
waitForResponse();
answer=receive();
if (!answer.equals("OK"))return;

//sendInput
String[] toSend=input.split("\n");
for (String r:toSend)
send(r+"\n");

send("EOT\n");
waitForResponse();
answer=receive();
if (!answer.equals("OK"))return;

//run
send("r\n");
boolean running=true;
long time=System.currentTimeMillis();
long timeout=time+offset;
while(running){
time=System.currentTimeMillis();
if(bin.ready()){
answer=receive();
timeout=time+offset; }

if (time>=timeout)
running=false; }}

Figure 5: The communicate method.

are geometric objects. The algorithm model of VEGA en-
ables the visualizer to pass strong algorithm execution con-
trol to the user. To begin with, single step and continuous
execution mode are supported. At any time the algorithm
may be stopped, keeping all current objects in the scene for
further use. Secondly, since each scene corresponding to a
step of the algorithm is saved by the visualizer, the algorithm
can be rewound or executed backwards.

Acknowledgments
We are very grateful to the simulator providers, namely Ad-
ventium Labs, Arizona State University, Palo Alto Research
Center, National ICT Australia, University of Twente, and
Space Telescope Science Institute. We also thank the Na-
tional Aeronautics and Space Administration, which spon-
sored the event in form of hardware support via the ICAPS
conference, and the University of Dortmund for installing
the server. We thank the ICKEPS committee consisting of
Wheeler Ruml (Palo Alto Research Center), Hector Geffner
(Departamento de Tecnologia UPF), Robert Hawkins (Space
Telescope Science Institute), Roman Bartak (Charles Uni-
versity), Lee McCluskey (University of Huddersfield), and

Robert P. Goldman (SIFT) for fruitful comments and wise
decision support. We are also indepted to the ICAPS chairs
Mark Boddy, Sylvie Thiebaux and Maria Fox for their help
in organizing the event.

References
Bacchus, F. 2001. The AIPS’00 planning competition. AI
Magazine 22(3):47–56.
Bartak, R., and McCluskey, L. 2006. The first competition
on knowledge engineering for planning and scheduling. AI
Magazine 27(1):97–98.
Bertoli, P.; Cimatti, A.; Slaney, J. K.; and Thiébaux, S.
2002. Solving power supply restoration problems with
planning via symbolic model checking. In ECAI, 576–580.
Boddy, M. S.; Gohde, J.; Haigh, T.; and Harp, S. A. 2005.
Course of action generation for cyber security using classi-
cal planning. In ICAPS, 12–21.
Bröker, C. A. 1999. Verteilte Visualisierung geometrischer
Algorithmen und Anwendungen auf Navigationsverfahren
in unbekannter Umgebung. Ph.D. Dissertation, Albert-
Ludwigs-Universität Freiburg.
Dijkstra, E. W. 1971. Hierarchical ordering of sequential
processes. Acta Informatica 1(2):115–138.
Hipke, C. A., and Schuierer, S. 1999. Vega - a user-
centered approach to the distributed visualization of geo-
metric algorithms. In Skala, V., ed., Visualization and In-
teractive Digital Media, volume 62, 110–117. Proc. 7th
Conf. in Central Europe on Computer Graphics.
Hoffmann, J., and Edelkamp, S. 2005. The deterministic
part of IPC-4: An overview. Journal of Artificial Intelli-
gence Research 24:519–579.
Howey, R., and Long, D. 2003. Val’s progress: The auto-
matic validation tool for pddl2.1 used in the international
planning competition. In ICAPS-Workshop on the Compe-
tition.
Long, D., and Fox, M. 2003. The 3rd international plan-
ning competition: Overview and results. Journal of Arti-
ficial Intelligence Research 20. Special issue on the 3rd
International Planning Competition.
McDermott, D. 2000. The 1998 ai planning competition.
AI Magazine 21(2).
Petri, C. A. 1962. Kommunikation mit Automaten. Ph.D.
Dissertation, Universität Bonn.
Rensink, A. 2004. The groove simulator: A tool for state
space generation. In Applications of Graph Transforma-
tions with Industrial Relevance (AGTIVE), 479–485.
Ruml, W.; Do, M. B.; and Fromherz, M. P. J. 2005. On-line
planning and scheduling for high-speed manufacturing. In
ICAPS, 30–39.
Sasaki, T.; Kosugi, G.; Takada, T.; and Kawai, J. 1996.
Observation scheduling scheme of the subaru telescope.

