
Approximation Based Reasoning and
Conformant/Conditional Planning — Bridging

Reasoning About Actions & Changes and
Planning

Tran Cao Son

Department of Computer Science
New Mexico State University
Las Cruces, NM 88011, USA

ICAPS 2007

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 1 / 105

Reasoning about actions and changes (RAC)

Goal
How to represent actions and their effects? Reason about actions and
their effects: what will be true/false after the execution of an action (an
action sequence) in a given state? Illustration

Activities
1 Development of languages for representing of dynamic domains

(or actions and their effects)
2 Development of basic algorithms for computing successor states.
3 Considering of real-world domains (e.g. actions might have

durations, non-deterministic, concurrent, etc.)

Important Notions
1 State
2 Algorithms for computing of successor states

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 2 / 105

Reasoning about actions and changes (RAC)

Goal
How to represent actions and their effects? Reason about actions and
their effects: what will be true/false after the execution of an action (an
action sequence) in a given state? Illustration

Activities
1 Development of languages for representing of dynamic domains

(or actions and their effects)
2 Development of basic algorithms for computing successor states.
3 Considering of real-world domains (e.g. actions might have

durations, non-deterministic, concurrent, etc.)

Important Notions
1 State
2 Algorithms for computing of successor states

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 2 / 105

Reasoning about actions and changes (RAC)

Goal
How to represent actions and their effects? Reason about actions and
their effects: what will be true/false after the execution of an action (an
action sequence) in a given state? Illustration

Activities
1 Development of languages for representing of dynamic domains

(or actions and their effects)
2 Development of basic algorithms for computing successor states.
3 Considering of real-world domains (e.g. actions might have

durations, non-deterministic, concurrent, etc.)

Important Notions
1 State
2 Algorithms for computing of successor states

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 2 / 105

Planning

Goal
Development of domain-independent planner(s) for real-world
applications: computing a plan to achieve a predefined goal

Activities
1 Development of several domain-independent planners (the

algorithms for computing next state of the world (RAC) ensures
correctness)

2 Development of techniques to improve the efficiency and
scalability of planners.

Important Considerations
1 Efficiency
2 Scalability

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 3 / 105

Planning

Goal
Development of domain-independent planner(s) for real-world
applications: computing a plan to achieve a predefined goal

Activities
1 Development of several domain-independent planners (the

algorithms for computing next state of the world (RAC) ensures
correctness)

2 Development of techniques to improve the efficiency and
scalability of planners.

Important Considerations
1 Efficiency
2 Scalability

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 3 / 105

Planning

Goal
Development of domain-independent planner(s) for real-world
applications: computing a plan to achieve a predefined goal

Activities
1 Development of several domain-independent planners (the

algorithms for computing next state of the world (RAC) ensures
correctness)

2 Development of techniques to improve the efficiency and
scalability of planners.

Important Considerations
1 Efficiency
2 Scalability

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 3 / 105

Planning

Realistic planning systems must be able to cope with

incomplete information
nondeterministic actions
actions with durations
actions that consume and produce resources
deadlines of goals
user preferences
inconsistency of goals
...

Consequence
Each requirement represents a change in the “problem statement” for
reasoning about actions and changes and/or planning.

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 4 / 105

RAC and Planning

Changes in problem statement (e.g. complete vs. incomplete initial
state) lead to changes in

1 the notion of state (what is a state?) and/or
2 the basic algorithm (how to compute the successor state?)

in RAC and planning.

Hypothesis
New algorithms for computing the next state will be needed in planning
with complex domains (e.g. actions with durations, resources, etc.).

Study in RAC will play important role in the new frontier of planning.

This tutorial: RAC in domains with static causal laws (state constraints)
and planning with incomplete information and sensing actions.

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 5 / 105

RAC and Planning

Changes in problem statement (e.g. complete vs. incomplete initial
state) lead to changes in

1 the notion of state (what is a state?) and/or
2 the basic algorithm (how to compute the successor state?)

in RAC and planning.

Hypothesis
New algorithms for computing the next state will be needed in planning
with complex domains (e.g. actions with durations, resources, etc.).

Study in RAC will play important role in the new frontier of planning.

This tutorial: RAC in domains with static causal laws (state constraints)
and planning with incomplete information and sensing actions.

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 5 / 105

RAC and Planning

Changes in problem statement (e.g. complete vs. incomplete initial
state) lead to changes in

1 the notion of state (what is a state?) and/or
2 the basic algorithm (how to compute the successor state?)

in RAC and planning.

Hypothesis
New algorithms for computing the next state will be needed in planning
with complex domains (e.g. actions with durations, resources, etc.).

Study in RAC will play important role in the new frontier of planning.

This tutorial: RAC in domains with static causal laws (state constraints)
and planning with incomplete information and sensing actions.

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 5 / 105

RAC and Planning

Changes in problem statement (e.g. complete vs. incomplete initial
state) lead to changes in

1 the notion of state (what is a state?) and/or
2 the basic algorithm (how to compute the successor state?)

in RAC and planning.

Hypothesis
New algorithms for computing the next state will be needed in planning
with complex domains (e.g. actions with durations, resources, etc.).

Study in RAC will play important role in the new frontier of planning.

This tutorial: RAC in domains with static causal laws (state constraints)
and planning with incomplete information and sensing actions.

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 5 / 105

Outline

1 Reasoning About Actions and Changes (RAC) and Planning

2 Incompleteness and Conformant Planning

3 Approximation Based Reasoning

4 Completeness Condition for Approximation Based Reasoning

5 Disjunctive Information

6 Incorporating Sensing Actions

7 Conclusions

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 6 / 105

Reasoning About Actions and Changes (RAC) and Planning Reasoning About Actions and Changes

Example [MCCARTHY, 1959]

Problem: John is at home and his car is at home also. He wants to
go to the airport (going to Providence to attend ICAPS 2007).

Question: What should John do?
Solution: Drive to the airport.

Current Situation
This example can be encoded using any representation language
developed for RAC and/or planning such as:

situation calculus [MCCARTHY & HAYES, 1969]
event calculus [KOWALSKI & SERGOT, 1986]
action languages [GELFOND & LIFSCHITZ, 1993]
fluent calculus [THIELSCHER, 2000]
STRIPS [FIKES & NILSON, 1971]
PDDL [GHALLAB et al., 1998]

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 7 / 105

Reasoning About Actions and Changes (RAC) and Planning Reasoning About Actions and Changes

Example [MCCARTHY, 1959]

Problem: John is at home and his car is at home also. He wants to
go to the airport (going to Providence to attend ICAPS 2007).
Question: What should John do?

Solution: Drive to the airport.

Current Situation
This example can be encoded using any representation language
developed for RAC and/or planning such as:

situation calculus [MCCARTHY & HAYES, 1969]
event calculus [KOWALSKI & SERGOT, 1986]
action languages [GELFOND & LIFSCHITZ, 1993]
fluent calculus [THIELSCHER, 2000]
STRIPS [FIKES & NILSON, 1971]
PDDL [GHALLAB et al., 1998]

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 7 / 105

Reasoning About Actions and Changes (RAC) and Planning Reasoning About Actions and Changes

Example [MCCARTHY, 1959]

Problem: John is at home and his car is at home also. He wants to
go to the airport (going to Providence to attend ICAPS 2007).
Question: What should John do?
Solution: Drive to the airport.

Current Situation
This example can be encoded using any representation language
developed for RAC and/or planning such as:

situation calculus [MCCARTHY & HAYES, 1969]
event calculus [KOWALSKI & SERGOT, 1986]
action languages [GELFOND & LIFSCHITZ, 1993]
fluent calculus [THIELSCHER, 2000]
STRIPS [FIKES & NILSON, 1971]
PDDL [GHALLAB et al., 1998]

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 7 / 105

Reasoning About Actions and Changes (RAC) and Planning Reasoning About Actions and Changes

Example [MCCARTHY, 1959]

Problem: John is at home and his car is at home also. He wants to
go to the airport (going to Providence to attend ICAPS 2007).
Question: What should John do?
Solution: Drive to the airport.

Current Situation
This example can be encoded using any representation language
developed for RAC and/or planning such as:

situation calculus [MCCARTHY & HAYES, 1969]
event calculus [KOWALSKI & SERGOT, 1986]
action languages [GELFOND & LIFSCHITZ, 1993]
fluent calculus [THIELSCHER, 2000]
STRIPS [FIKES & NILSON, 1971]
PDDL [GHALLAB et al., 1998]

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 7 / 105

Reasoning About Actions and Changes (RAC) and Planning Reasoning About Actions and Changes

Basic Ontologies (Situation Calculus, [MCCARTHY & HAYES, 1969])

Situation: a complete state of the universe in an instance of time,
often given by a set of facts

The fact “John is at home” is represented by the atom
at(john,home).
“His car is at home also” is another fact, that can be represented by
the atom at(car ,home).

Fluent: a function whose domain is the space of situations
E.g. at(john,home) is a Boolean function whose domain is the set
of situations, at(john,home)(s) is true says that “John is at home
in situation s.”
Action: causes for changes from situations to situations
E.g. drive(home,airport) is an action that changes the situation in
which John is at home to the situation in which John is at the
airport.

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 8 / 105

Reasoning About Actions and Changes (RAC) and Planning Reasoning About Actions and Changes

Basic Ontologies (Situation Calculus, [REITER, 2001])

Situation: a possible history of the world

s0 – initial situation.
do(drive(home,airport), s0) – situation after the execution of
drive(home,airport) in s0.

Fluent: a relation (a property of the world) whose (truth) value
changes over time due to the execution of actions

at(john,home) is a relation whose truth value changes – a Boolean
fluent.
number_paper(john) is a relation whose value changes – a
functional fluent.

Action: causes for all changes in the world
E.g. drive(home,airport) is the only action that can change the
world in our example.

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 9 / 105

Reasoning About Actions and Changes (RAC) and Planning Reasoning About Actions and Changes

Basic Ontologies (Action Languages,
[GELFOND & LIFSCHITZ, 1993])

Actions and fluents – same as in situation calculus in
[REITER, 2001]
Fluent literal – a fluent or its negation (a fluent preceeding by ¬)
E.g. at(john,home), ¬at(john,home)

State: two commonly used definitions

a set of fluents or
a complete and consistent set of fluent literals, i.e., s is a state if for
every fluent f

either f or ¬f belongs to s; and
{f ,¬f} 6⊆ s.

We will use the ontologies of action languages in this tutorial.

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 10 / 105

Reasoning About Actions and Changes (RAC) and Planning Reasoning About Actions and Changes

Action Language AL — Syntax

Fluents: propositional symbols (e.g. at(john,home),
at(john,airport), at(car ,home), and at(car ,airport))
Actions: propositional symbols (e.g. drive(home,airport) and
drive(airport ,home)) disjoint from fluents
Laws:

Dynamic law: describes effects of actions

drive(home,airport) causes at(john,airport),at(car ,airport)

Static causal law: represents the relationship between fluents

¬at(john,home) if at(john,airport)

Executability law: encodes the conditions under which an action
can be executed

drive(home,airport) executable at(john,home),at(car ,home)

Initial state: a set of fluent literals

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 11 / 105

Reasoning About Actions and Changes (RAC) and Planning Reasoning About Actions and Changes

Action Theory — Syntax

Definition
An action theory is a pair (D, δ) where

D, called an action domain, is a set of dynamic, static causal, and
executability laws.
δ, called the initial state, is a set of fluent literals.

(Da, δa)—“Going to the Airport” Action Theory

Da =

8>>>>>>>>>><
>>>>>>>>>>:

drive(home, airport) executable at(john, home), at(car , john)
drive(home, airport) causes at(john, airport), at(car , airport)
drive(airport , home) executable at(john, airport), at(car , airport)
drive(airport , home) causes at(john, home), at(car , home)
¬at(john, airport) if at(john, home)
¬at(car , airport) if at(car , home)
¬at(john, home) if at(john, airport)
¬at(car , home) if at(car , airport)

δa = {at(john, home), at(car , home),¬at(john, airport),¬at(car , airport)}

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 12 / 105

Reasoning About Actions and Changes (RAC) and Planning Reasoning About Actions and Changes

AL vs. PDDL (mostly a 1-1 correspondence, difference in static
causal laws)

Domain: Da in PDDL representation
(define (domain airport)

(:predicates (at ?x ?y)
(location ?x) (person ?p) (car ?c))

(:action drive
:parameters (?x ?y)
:precondition (and (location ?x) (location ?y)

(person ?p) (at ?p ?x)
(car ?c) (at ?c ?x))

:effect (and (at ?c ?y) (at ?p ?y)
(not (at ?c ?x)) (not (at ?p ?x)))))

Problem: δa and Goal in PDDL representation
(define (problem airport-1-1) (:domain airport)
(:objects john car home airport)
(:init person(john) car(car) location(home) location(airport)

at(john,home) at (car,home))
(:goal at(john,airport)))

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 13 / 105

Reasoning About Actions and Changes (RAC) and Planning Reasoning About Actions and Changes

AL vs PDDL

AL PDDL
Action

√

Fluent Predicate
Effect

√

Executability condition Precondition
Static causal law (allow cyclic) Defined fluent or axiom

(no cyclic)
Ground Instantiations Typed Variables
(Variables: shorthand)

Notes
1 Dealing directly with static causal laws is advantageous

[THIEBAUX et al., 2003].
2 Not many planners deal with static causal laws directly.

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 14 / 105

Reasoning About Actions and Changes (RAC) and Planning Reasoning About Actions and Changes

AL vs PDDL

AL PDDL
Action

√

Fluent Predicate
Effect

√

Executability condition Precondition
Static causal law (allow cyclic) Defined fluent or axiom

(no cyclic)
Ground Instantiations Typed Variables
(Variables: shorthand)

Notes
1 Dealing directly with static causal laws is advantageous

[THIEBAUX et al., 2003].
2 Not many planners deal with static causal laws directly.

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 14 / 105

Reasoning About Actions and Changes (RAC) and Planning Reasoning About Actions and Changes

Fundamental Problems in RAC

The frame problem: succinct representation of what does not
change due to the execution of an action.
E.g. John’s home does not change its location after John’s drove
his car to the airport.

The qualification problem: encoding the conditions under which
an action can be executed.
E.g. Normally, John can drive his car if he is at the same place as
his car (Taken for granted: he has the key, his car will start, his car
has enough gasoline, etc.)
The ramification problem: accounting for indirect effects of
actions.
E.g. If John’s luggages are in his car then his luggages are at the
airport after he executed the action of driving to the airport.

Current Situation
Adequate solutions for the above problems have been proposed in
different formalisms for various settings.

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 15 / 105

Reasoning About Actions and Changes (RAC) and Planning Reasoning About Actions and Changes

Fundamental Problems in RAC

The frame problem: succinct representation of what does not
change due to the execution of an action.
E.g. John’s home does not change its location after John’s drove
his car to the airport.
The qualification problem: encoding the conditions under which
an action can be executed.
E.g. Normally, John can drive his car if he is at the same place as
his car (Taken for granted: he has the key, his car will start, his car
has enough gasoline, etc.)

The ramification problem: accounting for indirect effects of
actions.
E.g. If John’s luggages are in his car then his luggages are at the
airport after he executed the action of driving to the airport.

Current Situation
Adequate solutions for the above problems have been proposed in
different formalisms for various settings.

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 15 / 105

Reasoning About Actions and Changes (RAC) and Planning Reasoning About Actions and Changes

Fundamental Problems in RAC

The frame problem: succinct representation of what does not
change due to the execution of an action.
E.g. John’s home does not change its location after John’s drove
his car to the airport.
The qualification problem: encoding the conditions under which
an action can be executed.
E.g. Normally, John can drive his car if he is at the same place as
his car (Taken for granted: he has the key, his car will start, his car
has enough gasoline, etc.)
The ramification problem: accounting for indirect effects of
actions.
E.g. If John’s luggages are in his car then his luggages are at the
airport after he executed the action of driving to the airport.

Current Situation
Adequate solutions for the above problems have been proposed in
different formalisms for various settings.

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 15 / 105

Reasoning About Actions and Changes (RAC) and Planning Reasoning About Actions and Changes

Fundamental Problems in RAC

The frame problem: succinct representation of what does not
change due to the execution of an action.
E.g. John’s home does not change its location after John’s drove
his car to the airport.
The qualification problem: encoding the conditions under which
an action can be executed.
E.g. Normally, John can drive his car if he is at the same place as
his car (Taken for granted: he has the key, his car will start, his car
has enough gasoline, etc.)
The ramification problem: accounting for indirect effects of
actions.
E.g. If John’s luggages are in his car then his luggages are at the
airport after he executed the action of driving to the airport.

Current Situation
Adequate solutions for the above problems have been proposed in
different formalisms for various settings.

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 15 / 105

Reasoning About Actions and Changes (RAC) and Planning Reasoning About Actions and Changes

Key Ideas in Solving the Fundamental Problems in RAC

The frame problem: the law of inertial “normally, a fluent’s value
does not change” (successor state axioms — one per fluent (e.g.
[REITER, 2001])).
The qualification problem: encodes only the minimal
requirement for the action to be executed.
The ramification problem: causal law “things do not change by
themselves; there must be a reason for a fluent literal to change
its value.”

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 16 / 105

Reasoning About Actions and Changes (RAC) and Planning Reasoning About Actions and Changes

Action language AL (Semantics) — Intuition

Given an action theory (D, δ), the action domain D encodes a
transition system consisting of elements of the form 〈s1,a, s2〉 where s1
and s2 are states of the theory and a is an action that, when executed
in s1, changes the state of the world from s1 into s2. For example, in
(Da, δa)

Da =

8>>>>>>>>>><
>>>>>>>>>>:

drive(home, airport) executable at(john, home), at(car , john)
drive(home, airport) causes at(john, airport), at(car , airport)
drive(airport , home) executable at(john, airport), at(car , airport)
drive(airport , home) causes at(john, home), at(car , home)
¬at(john, airport) if at(john, home)
¬at(car , airport) if at(car , home)
¬at(john, home) if at(john, airport)
¬at(car , home) if at(car , airport)

a transition is

〈{at(john, home), at(car , home),¬at(john, airport),¬at(car , airport)},
drive(home, airport),

{¬at(john, home),¬at(car , home), at(john, airport), at(car , airport)}〉

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 17 / 105

Reasoning About Actions and Changes (RAC) and Planning Reasoning About Actions and Changes

Example of States and Transitions

Going to the Airport

Adding the action walk(X ,Y)

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 18 / 105

Reasoning About Actions and Changes (RAC) and Planning Reasoning About Actions and Changes

Example of States and Transitions

Going to the Airport Adding the action walk(X ,Y)

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 18 / 105

Reasoning About Actions and Changes (RAC) and Planning Reasoning About Actions and Changes

Action language AL (Semantics) I

States in AL theories
Let σ be a set of fluent literals.
σ satisfies a fluent literal l iff l ∈ σ (denoted by σ |= l).
σ satisfies a set of fluent literals ψ iff ψ ⊆ σ (denoted by σ |= ψ).
σ satisfies a static causal law ϕ if ψ if σ |= ψ implies that σ |= ϕ.
CnD(σ), called the closure of σ, is the smallest set of literals that
contains σ and satisfies all static causal laws in D.
Note: CnD(σ) might be inconsistent.

Definition
A state of an action domain D is a complete and consistent set of
fluent literals which satisfies all static causal laws in D (i.e., s = CnD(s)
and s is consistent and complete).

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 19 / 105

Reasoning About Actions and Changes (RAC) and Planning Reasoning About Actions and Changes

Action language AL (Semantics) II

Successor State
Given an action domain D, a state s, and an action a.

de(a, s) = {l | D contains a causes l if ϕ and s |= ϕ} is called the
direct effects of a in s.
s′ is a possible successor state of s after the execution of a in s if

s′ = CnD(de(a, s) ∪ (s ∩ s′))

Intuition
s ∩ s′ – inertial part
de(a, s) – direct effects of a
s′ \ (de(a, s) ∪ (s ∩ s′)) – indirect effects of a

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 20 / 105

Reasoning About Actions and Changes (RAC) and Planning Reasoning About Actions and Changes

Action language AL (Semantics) III

Example
For
s1={at(john,home),at(car ,home),¬at(john,airport),¬at(car ,airport)},
s2={¬at(john,home),¬at(car ,home),at(john,airport),at(car ,airport)}
s2 is a possible successor state of s1 after the execution of
drive(home,airport) in s1 because

de(drive(home,airport), s1) = {at(john,airport),at(car ,airport)}

s1 ∩ s2 = ∅

and
CnDa(de(drive(home,airport), s1) ∪ (s1 ∩ s2)) = s2

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 21 / 105

Reasoning About Actions and Changes (RAC) and Planning Reasoning About Actions and Changes

Action language AL (Semantics) IV

Transition Function — Φ

Φ : Actions × States → States

Φ(a, s) =


{s′ | s′ = CnD(de(a, s) ∪ (s ∩ s′))}
if D contains an execubtability

law a executable ϕ and s |= ϕ

Φ(a, s) = ∅ otherwise

Definition
a is executable in s if Φ(a, s) 6= ∅. (The transition 〈s,a, s′〉 denotes that
s′ ∈ Φ(a, s).)

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 22 / 105

Reasoning About Actions and Changes (RAC) and Planning Reasoning About Actions and Changes

Action language AL (Semantics) V

Definition
For an action sequence α = a1, . . . ,an and a state s, the extended
transition function Φ̂ is defined by

Φ̂(α, s) =

{
{s} n = 0⋃

s′∈Φ̂(αn−1,s) Φ(an, s′) if a is executable in Φ̂(αn−1, s)

α is executable in s if Φ̂(α, s) 6= ∅.

Definition
(D, δ) entails the query ϕ after α, denoted by (D, δ) |= ϕ after α, if ϕ
is true in every state belonging to Φ̂(α, δ).

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 23 / 105

Reasoning About Actions and Changes (RAC) and Planning Reasoning About Actions and Changes

Bomb-In-The-Toilet Example

There may be a bomb in a package. Dunking the package into a toilet
disarms the bomb. This action can be executed only if the toilet is not
clogged. Flushing the toilet makes it unclogged.

Fluents: armed , clogged
Actions: dunk , flush
Action domain:

Db =


dunk causes ¬armed if armed
flush causes ¬clogged
dunk executable ¬clogged
flush executable true∗


(∗ — present unless otherwise stated)

Entailments

(Db, {armed , clogged}) |= ¬armed after 〈flush,dunk〉
Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 24 / 105

Reasoning About Actions and Changes (RAC) and Planning Reasoning About Actions and Changes

Dominoes Example

n dominoes 1,2, . . . ,n line up on the table such that if domino i falls
down then i + 1 also falls down.

Dd =

{
down(n + 1) if down(n)
touch(i) causes down(i)

It can be shown that

(Dd , δd) |= down(n) after touch(i)

for every δd and i .

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 25 / 105

Reasoning About Actions and Changes (RAC) and Planning Reasoning About Actions and Changes

Gas Pipe

n + 1 sections of pipe (pressured/unpressured) connected through n valves
(opened/closed) connects a gas tank to burner. A valve can be opened only if the
valve on its right is closed. Closing a valve causes the pipe section on its right side to
be unpressured. The burner will start a flame if the pipe section connecting to it is
pressured. The gas tank is always pressured.

Fluents: flame, opened(V),
pressured(P), 0 ≤ V ≤ n,
0 ≤ P ≤ n + 1,

Actions: open(V), close(V)

Action domain:

Dg =

8>>>>>><
>>>>>>:

open(I) executable ¬opened(I + 1)
open(I) causes opened(I)
close(I) causes ¬opened(I)
pressured(I + 1) if opened(I), pressured(I)
pressured(0) if true
flame if pressured(n + 1)

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 26 / 105

Reasoning About Actions and Changes (RAC) and Planning Reasoning About Actions and Changes

Non-Deterministic AL Theories

Action theories in AL can be non-deterministic.

Dn =


a causes f if ¬h,¬g
h if f ,¬g
g if f ,¬h

Two successor states of s0 = {¬f ,¬g,¬h} after executing a:
s1 = {f ,¬g,h} and s2 = {f ,g,¬h}

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 27 / 105

Reasoning About Actions and Changes (RAC) and Planning Planning

Planning and Complexity (Complete Information)

Definition (Planning Problem)
Given: an AL-action theory (D, δ), where δ is a state of D, and a
set of fluent literals G.
Determine: a sequence of actions α such that (D, δ) |= G after α

From [LIBERATORE, 1997, TURNER, 2002]:

Theorem (Complexity)
(D, δ) is deterministic: NP-hard even for plans of length 1,
NP-complete for polynomial-bounded length plans (Classical
Planning).
(D, δ) is non-deterministic: Σ2

P-hard even for plans of length 1,
Σ2

P-complete for polynomial-bounded length plans (Conformant
Planning in non-deterministic theories).

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 28 / 105

Reasoning About Actions and Changes (RAC) and Planning Planning

Planning Algorithms (Complete Information)

(1) Heuristic search based approaches
State space: the search space is the set of possible states
Plan space (partial order planning): the search space is the set of
possible plans

(2) Translation based approaches (SAT-, model checking-, or answer
set solvers).

SAT: translation into a SAT instance
Model checking: translation into a model checking problem
Answer set programming: translation into a logic program

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 29 / 105

Reasoning About Actions and Changes (RAC) and Planning Planning

Search Based Approaches

In search based planners, performance depends on how fast the
search can be done ⇒ accuracy of heuristic is the key.

Heuristic Search Based Planners

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 30 / 105

Reasoning About Actions and Changes (RAC) and Planning Planning

Translation Based Approaches

In planners utilizing general theorem prover, performance depends on
the performance of the general theorem prover.

Planning as Satisfiability

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 31 / 105

Reasoning About Actions and Changes (RAC) and Planning Planning

Pros and cons ((1) vs (2))

(1) “independent” from the development in other communities, lots
of good heuristics, easy to try out new heuristics
(2) “dependent” from the development in other communities,
heuristics are difficult to exploit in a systematic way
(2) easier to deal with arbitrary domains than (1) (e.g. cyclic static
causal laws)
(2) easier to add “declarative domain knowledge”
(2) easier to deal with “concurrent” actions than (1)

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 32 / 105

Incompleteness and Conformant Planning

1 Reasoning About Actions and Changes (RAC) and Planning

2 Incompleteness and Conformant Planning

3 Approximation Based Reasoning

4 Completeness Condition for Approximation Based Reasoning

5 Disjunctive Information

6 Incorporating Sensing Actions

7 Conclusions

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 33 / 105

Incompleteness and Conformant Planning

Approaches to Reasoning with Incomplete Information

Incomplete Information: initial state is not fully specified (e.g. δ in
(D, δ) might not be a state)

Possible world approach (PSW): Extension of the transition
function to a transition function over belief states.
Approximation: Modifying the transition function to a transition
function over approximation states.

Notation

Belief states (S and Σ) Approximation states (δ and ∆)
S a set of states a set of fluent literals δ
Σ a set of belief states a set of approximation states ∆

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 34 / 105

Incompleteness and Conformant Planning

Example (Bomb-In-The-Toilet Revisited)

There may be a bomb in a package. Dunking the package into a toilet
disarms the bomb. . . .

Fluents: armed , clogged
Actions: dunk , flush
Action domain:

Db =


dunk causes ¬armed if armed
flush causes ¬clogged
dunk executable ¬clogged

Initially, we know nothing about the value of armed and clogged .
PWS: the initial belief state S0 = {0,1,2,3}.
Approximation: the initial approximation state δ0 = ∅.

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 35 / 105

Incompleteness and Conformant Planning

Definitions

Approximation state/Partial state: a set of fluent literals which is a part
of some state.
Belief state: a set of states
For an action theory (D, δ0):

Initial approximation state: δ0 — a partial state
Initial belief state:

S0 = bef (δ0)

where
bef (δ) = {s | δ ⊆ s, s is a state}

A fluent formula ϕ true (false) in a belief state S if it true (false) in
every state s ∈ S; it is unknown if it is neither true nor false in S.
A fluent literal l is true (false) in an approximation state δ if l ∈ δ
(¬l ∈ δ); unknown, otherwise. The truth value of a fluent formula ϕ
is defined in the usual way.

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 36 / 105

Incompleteness and Conformant Planning Possible World Approach

Possible World Approach

S0 = bef (δ0)

Φc(a,S) =

{
∅ if a is not executable in some s ∈ S⋃

s∈S Φ(a, s) otherwise

Φc extended to Φ̂c in the usual way
(D, δ0) |=P ϕ after α if ϕ is true in the final belief state
Size of search space: n fluents → 22n

belief states

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 37 / 105

Incompleteness and Conformant Planning Conformant Planning

Conformant Planning and Complexity

Definition (Conformant Planning Problem)
Given: an AL-action theory (D, δ), where δ is a partial state, and a
set of fluent literals G.
Determine: a sequence of actions α such that (D, δ) |= G after α

From [BARAL et al., 2000, LIBERATORE, 1997, TURNER, 2002]:

Theorem (Complexity)

Conformant Planning: (D, δ) is deterministic: Σ2
P-hard even for

plans of length 1, Σ2
P-complete for polynomial-bounded length

plans.
Conformant Planning: (D, δ) is non-deterministic: Σ3

P-hard even
for plans of length 1, Σ3

P-complete for polynomial-bounded length
plans.

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 38 / 105

Incompleteness and Conformant Planning Conformant Planning

Planning Systems for Incomplete Domains

DLVK MBP CMBP SGP POND CFF KACMBP
Language K AR AR PDDL PDDL PDDL SMV
Sequential yes yes yes no yes yes yes
Concurrent yes no no yes no no no
Conformant yes yes yes yes yes yes yes

Table: Features of Planning Systems

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 39 / 105

Incompleteness and Conformant Planning Conformant Planning

Planning Systems for Incomplete Domains

Heuristic search based planners (search in the space of belief
states)

CFF: A belief state S is represented by the initial belief state (a
CNF formula) and the action sequence leading to S. To check
whether a fluent literal l is true is S, a call to a SAT-solver is made.
(subset of) PDDL as input.
POND: Graph plan based conformant planner. (subset of) PDDL as
input.

Translation into model checking: KACMBP (CMBP) – Input is a
finite state automaton. Employing BDD (Binary Decision Diagram)
techniques to represent and search the automaton. Consider
nondeterministic domains with uncertainty in both the initial state
and action effects.
Translation into logic programming: DLVK is a declarative,
logic-based planning system built on top of the DLV system (an
answer set solver).

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 40 / 105

Approximation Based Reasoning

1 Reasoning About Actions and Changes (RAC) and Planning

2 Incompleteness and Conformant Planning

3 Approximation Based Reasoning

4 Completeness Condition for Approximation Based Reasoning

5 Disjunctive Information

6 Incorporating Sensing Actions

7 Conclusions

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 41 / 105

Approximation Based Reasoning

General Considerations and Properties

Address the complexity problem of the possible world approach:
give up completeness for efficiency in reasoning/planning
Sound with respect to possible world semantics (formal proof is
provided in some work)
Representation languages and approaches are different

Situation calculus: [ETZIONI et al., 1996,
GOLDMAN & BODDY, 1994, PETRICK & BACCHUS, 2004]
Action languages:
[SON & BARAL, 2001, SON & TU, 2006, SON et al., 2005b]
Logic programming: [SON et al., 2005a]

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 42 / 105

Approximation Based Reasoning Theories without Static Causal Laws

0-Approximation Approach [SON & BARAL, 2001]

Initial partial state: δ0

Transition function is defined as

Φ0(a, δ) = (δ ∪ de(a, δ)) \ ¬pe(a, δ)

where
de(a, δ) is the set of “direct effects” of a in δ
pe(a, δ) is the set of “possible effects” of a in δ

(D, δ0) |=0 ϕ after α if ϕ is true in the final partial state
n fluents → 3n partial states
Incomplete
No static causal laws

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 43 / 105

Approximation Based Reasoning Theories without Static Causal Laws

0-Approximation Approach – Example

Db =


dunk causes ¬armed if armed
flush causes ¬clogged
dunk executable ¬clogged

δ0 = ∅
dunk is not executable in δ0
flush is executable in δ0, de(flush, δ0) = pe(flush, δ0) = {¬clogged}
Φ0(flush, δ0) = {¬clogged}

δ1 = {¬clogged}
dunk , flush are executable in δ1
de(dunk , δ1) = ∅ and pe(dunk , δ1) = {¬armed}
Φ0(dunk , δ1) = {clogged}

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 44 / 105

Approximation Based Reasoning Theories with Static Causal Laws

Dealing with Static Causal Laws

How will the 0-approximation fare in the dominoes example?

(Predictably: not so good!)

Dd =

{
down(n + 1) if down(n)
touch(i) causes down(i)

δ0 = ∅
touch(i) is executable for every i
de(touch(i), δ0) = {down(i)} and pe(touch(i), δi) = {down(i)}
Φ0(touch(i), δ0) = {down(i)}

Intuitive result

{down(j) | i ≤ j ≤ n} ⊆ Φ0(touch(i), δ0)

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 45 / 105

Approximation Based Reasoning Theories with Static Causal Laws

Dealing with Static Causal Laws

How will the 0-approximation fare in the dominoes example?
(Predictably: not so good!)

Dd =

{
down(n + 1) if down(n)
touch(i) causes down(i)

δ0 = ∅
touch(i) is executable for every i
de(touch(i), δ0) = {down(i)} and pe(touch(i), δi) = {down(i)}
Φ0(touch(i), δ0) = {down(i)}

Intuitive result

{down(j) | i ≤ j ≤ n} ⊆ Φ0(touch(i), δ0)

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 45 / 105

Approximation Based Reasoning Theories with Static Causal Laws

Dealing with Static Causal Laws

How will the 0-approximation fare in the dominoes example?
(Predictably: not so good!)

Dd =

{
down(n + 1) if down(n)
touch(i) causes down(i)

δ0 = ∅
touch(i) is executable for every i
de(touch(i), δ0) = {down(i)} and pe(touch(i), δi) = {down(i)}
Φ0(touch(i), δ0) = {down(i)}

Intuitive result

{down(j) | i ≤ j ≤ n} ⊆ Φ0(touch(i), δ0)

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 45 / 105

Approximation Based Reasoning Theories with Static Causal Laws

Dealing with Static Causal Laws

δ′ = CnD(de(a, δ) ∪ (δ ∩ δ′))

The next state has three parts: (i) the direct effect de(a, δ); (ii) the
inertial; (iii) the indirect effects (the closure of CnD).

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 46 / 105

Approximation Based Reasoning Theories with Static Causal Laws

Dealing with Static Causal Laws

Question
What will be the inertial part?

Ideas
A literal does not change its value if it belongs to δ and

either its negation cannot possibly hold in δ′;
⇒ possible holds approximation
or it cannot possibly change in δ′

⇒ possible change approximation

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 47 / 105

Approximation Based Reasoning Theories with Static Causal Laws

Φph Approximation – Idea

A literal l possibly holds in the next state if

it possibly holds in the current state (i.e., l 6∈ ¬δ)
it does not belong to the negation of the direct effect of the action
(i.e., l 6∈ ¬ClD(de(a, δ))
there is some static causal law whose body possibly holds (i.e.,
there exists some static causal law l if ϕ such that ϕ possibly
holds)

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 48 / 105

Approximation Based Reasoning Theories with Static Causal Laws

Φph Approximation – Definition

E(a, δ) = ClD(e(a, δ)) [always belongs to δ′]

ph(a, δ) =
∞⋃

i=0

phi(a, δ) [possiblly holds in δ′]

ph0(a, δ) = (pe(a, δ) ∪ {l | ¬l 6∈ δ}) \ ¬E(a, δ)

OBS: if l if ϕ in D and ϕ possibly holds then l possibly holds.

phi+1(a, δ) = phi(a, δ) ∪
{

l
∣∣∣∣ ∃[l if ψ] in D s.t. l 6∈ ¬E(a, δ),
ψ ⊆ phi(a, δ),¬ψ ∩ E(a, δ) = ∅

}
Definition

if a is not executable in δ then
Φph(a, δ) = ∅

otherwise,
Φph(a, δ) = ClD({l | l 6∈ ¬ph(a, δ)})

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 49 / 105

Approximation Based Reasoning Theories with Static Causal Laws

Φph Approximation – Example

Dd =

{
down(i + 1) if down(i)
touch(i) causes down(i)

Computation for δ0 = ∅
de(touch(i), δ0) = {down(i)} and pe(touch(i), δ0) = {down(i)}
E(touch(i), δ0) = {down(j) | i ≤ j ≤ n}
ph0(touch(i), δ0) = {down(j) | 1 ≤ j ≤ n} ∪ {¬down(j) | 1 ≤ j < i}
phk (touch(i), δ0) = {down(j) | 1 ≤ j ≤ n} ∪ {¬down(j) | 1 ≤ j < i}
Φph(touch(i), δ0) = {down(j) | i ≤ j ≤ n}

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 50 / 105

Approximation Based Reasoning Theories with Static Causal Laws

Φpc Approximation – Idea

A literal l possibly changes if

it is not in δ
it is a possible effect a (i.e., there exists a dynamic law
a causes l if ϕ and ϕ is not false in δ)
it is a possibly indirect effect of a (i.e., there exists a static causal
law l if ϕ and ϕ possibly changes)

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 51 / 105

Approximation Based Reasoning Theories with Static Causal Laws

Φpc Approximation

pc(a, δ) =
∞⋃

i=0

pc i(a, δ)

pc0(a, δ) = pe(a, δ) \ δ

pc i+1(a, δ) = pc i(a, δ) ∪
{

l
∣∣∣∣ ∃[l if ψ] ∈ D s.t. , l 6∈ δ
ψ ∩ pc i(a, δ) 6= ∅, and ¬ψ ∩ E(a, δ) = ∅

}

Definition
if a is not executable in δ then

Φpc(a, δ) = ∅
otherwise,

Φpc(a, δ) = ClD(E(a, δ) ∪ (δ \ ¬pc(a, δ)))

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 52 / 105

Approximation Based Reasoning Theories with Static Causal Laws

Φpc Approximation – Example

Dd =

{
down(i + 1) if down(i)
touch(i) causes down(i)

Computation for δ0 = ∅
de(touch(i), δ0) = {down(i)} and pe(touch(i), δ0) = {down(i)}
E(touch(i), δ0) = {down(j) | i ≤ j ≤ n}
pc0(touch(i), δ0) = {down(i)}
pc1(touch(i), δ0) = {down(i),down(i + 1)}
pc(touch(i), δ0) = {down(j) | i ≤ j ≤ n}
Φpc(touch(i), δ0) = {down(j) | i ≤ j ≤ n}

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 53 / 105

Approximation Based Reasoning Theories with Static Causal Laws

Properties of Φph and Φpc Approximations

Behave exactly as 0-approximation in action theories without
static causal laws
Sound but incomplete (proofs in [TU, 2007])
Support parallel execution of actions (formal proofs available)
Incompatibility between Φph and Φpc ⇒ could union the two to
create a better approximation
Deterministic: ΦA(a, δ) can be computed in polynomial-time
Polynomial-length planning problem w.r.t ΦA is NP-complete
Could improve the approximations

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 54 / 105

Approximation Based Reasoning Theories with Static Causal Laws

Computing the Φph Approximation

RESPH(D,a,δ)
INPUT: A domain description D, an action a, and a partial state δ
OUTPUT: Φph(a, δ)
1. BEGIN
2. de = ∅ pe = ∅ lit = F ∪ ¬F
4. for each dynamic causal law [a causes l if ψ] in D do
5. if ψ possibly holds in δ then
6. pe = pe ∪ {l}
7. if ψ holds in δ then
8. de = de ∪ {l}
9. E = CLOSURE(D,de)
10. ph = (pe ∪ (lit \ ¬δ)) \ ¬E
11. repeat
12. stop = true
13. for each static causal law [l if ψ] in D do
14. if l 6∈ ¬E , ψ ⊆ ph, ¬ψ ∩ E = ∅, and l 6∈ ph then
15. ph = ph ∪ {l} stop = false
16. until stop
17. return CLOSURE(D, lit \ ¬ph)
18. END

Figure: An algorithm for computing Φph

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 55 / 105

Approximation Based Reasoning Theories with Static Causal Laws

Computing the Φpc Approximation

RESPC(D,a,δ)
INPUT: A domain description D, an action a, and a partial state δ
OUTPUT: Φpc(a, δ)
1. BEGIN
2. de = ∅ pc = ∅
3. for each dynamic causal law [a causes l if ψ] in D do
4. if ψ possibly holds in δ then
5. if l 6∈ δ then
6. pc = pc ∪ {l}
7. if ψ holds in δ then
8. de = de ∪ {l}
9. E = CLOSURE(D,de)
10. repeat
11. stop = true
12. for each static causal law [l if ψ] in D do
13. if ¬ψ ∩ E = ∅ and ψ ∩ pc 6= ∅ and l 6∈ δ then
14. pc = pc ∪ {l} stop = false
15. until stop
16. return CLOSURE(D,E ∪ (δ \ ¬pc))
17. END

Figure: An algorithm for computing Φpc(a, δ)

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 56 / 105

Approximation Based Reasoning Theories with Static Causal Laws

What is good about the approximation?

Theorem (Complexity)
Conformant Planning: (D, δ) is deterministic: NP-complete for
polynomial-bounded length plans.

Consequence
If (D, δ) is complete, planners can use the 0-approximation (lower
complexity) instead of the possible world semantics. In fact, classical
planners can be used to solve conformant planning (change in the
computation of the next state.)

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 57 / 105

Approximation Based Reasoning Approximation Based Conformant Planning

Approximation Based Conformant Planners

Earlier systems [ETZIONI et al., 1996, GOLDMAN & BODDY, 1994]:
approximation is used in dealing with sensing actions
(context-dependent actions and non-deterministic outcomes)
PKS [PETRICK & BACCHUS, 2004] is very efficient (plus: use of
domain knowledge in finding plans)
CpA and CPASP [SON et al., 2005b, SON et al., 2005a] are
competitive with others such as CFF, POND, and KACMBP in
several benchmarks
Incompleteness

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 58 / 105

Approximation Based Reasoning Approximation Based Conformant Planning

Application in Conformant Planning

CPASP:
Logic programming based
Uses Φph approximation
Can generate both concurrent plans and sequential plans
Can handle disjunctive information about the initial state
Competitive with concurrent conformant planners and with others in
problems with short solutions

CPA:
Forward, best-first search with simple heuristic function (number of
fulfilled subgoals)
Provides users with an option to select the approximation
Generates sequential plans only
Can handle disjunctive information about the initial state
Competitive with other state-of-the-art conformant planners

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 59 / 105

Approximation Based Reasoning Approximation Based Conformant Planning

Experiments — Planning with concurrent actions I

Gas Pipe

Problem C-PLAN DLVK CPASP

Gaspipep(3) - 0.08 0.40
Gaspipep(5) - 0.17 0.75
Gaspipep(7) - 0.44 1.22
Gaspipep(9) - 17.44 3.17
Gaspipep(11) - - 8.83

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 60 / 105

Approximation Based Reasoning Approximation Based Conformant Planning

Experiments — Planning with concurrent actions II

Cleaner
Problem C-PLAN DLVK CPASP

Cleanerp(2,2) 0.05 0.07 0.26
Cleanerp(2,5) 0.12 0.06 0.30
Cleanerp(2,10) 0.06 0.07 0.30
Cleanerp(4,2) 0.06 0.19 0.77
Cleanerp(4,5) 0.09 0.80 0.93
Cleanerp(4,10) 0.13 237.63 1.16
Cleanerp(6,2) 0.11 4.47 1.98
Cleanerp(6,5) 0.19 986.73 2.94
Cleanerp(6,10) 0.35 - 3.73

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 61 / 105

Approximation Based Reasoning Approximation Based Conformant Planning

Experiments — Planning with concurrent actions III

Bomb In The Toilet

Problem C-PLAN DLVK CPASP

BTp(2,2) 0.07 0.07 0.11
BTp(4,2) 0.05 0.09 0.26
BTp(6,2) 1.81 3.06 0.34
BTp(8,4) 4.32 10.52 0.24
BTp(10,4) - - 1.91
BTCp(2,2) 0.05 0.05 0.13
BTCp(4,2) 0.07 0.90 0.30
BTCp(6,2) 7.51 333.27 0.67
BTCp(8,4) - - 0.50
BTCp(10,4) - - 1192.45

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 62 / 105

Approximation Based Reasoning Approximation Based Conformant Planning

Experiments — Sequential Planning I

Cleaner

Problem KACMBP POND CFF CPAph CPApc

Cleaner(2,5) 0.01 0.17 0.03 0.01 0.00
Cleaner(2,10) 0.08 0.85 0.07 0.03 0.02
Cleaner(2,20) 0.62 15.87 0.15 0.19 0.07
Cleaner(2,50) 13.55 - 0.80 2.76 0.92
Cleaner(2,100) 185.39 - 5.72 22.71 7.51
Cleaner(5,5) 0.01 1.46 0.11 0.07 0.04
Cleaner(5,10) 0.09 12.86 0.24 0.26 0.16
Cleaner(5,20) 7.82 214.83 0.85 1.78 0.88
Cleaner(5,50) 227.82 - 14.36 26.66 11.66
Cleaner(5,100) - - - 214.27 92.81

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 63 / 105

Approximation Based Reasoning Approximation Based Conformant Planning

Experiments — Sequential Planning II

Logistics

Problem KACMBP POND CFF CPAph CPApc

Log(2,2,2) 0.19 1.11 0.03 0.15 0.16
Log(2,3,3) 355.96 11.89 0.06 8.95 9.543
Log(3,2,2) 2.10 4.02 0.06 11.87 4.54
Log(3,3,3) 29.8 24.66 0.12 409.68 435.55
Log(4,3,3) - 40.12 0.14 - -

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 64 / 105

Approximation Based Reasoning Approximation Based Conformant Planning

Experiments — Sequential Planning III

Ring

Problem KACMBP POND CFF CPAph CPApc

Ring(2) 0.00 0.15 0.06 0.00 0.00
Ring(3) 0.00 0.08 0.23 0.01 0.01
Ring(4) 0.00 0.25 3.86 0.02 0.02
Ring(5) 0.00 0.96 63.67 0.03 0.04
Ring(10) 0.02 - - 1.01 1.05
Ring(15) 0.04 - - 6.76 6.10
Ring(20) 0.15 - - 27.44 22.68
Ring(25) 0.32 - - 79.58 64.60

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 65 / 105

Approximation Based Reasoning Approximation Based Conformant Planning

Experiments — Sequential Planning IV

Bomb In The Toilet with Uncertainty

Problem KACMBP POND CFF CPAph CPApc

BTUC(10,1) 0.01 0.07 0.05 0.01 0.01
BTUC(20,1) 0.05 0.57 0.17 0.07 0.03
BTUC(50,1) 0.51 28.69 5.33 0.82 0.33
BTUC(100,1) 3.89 682.33 121.8 6.24 2.36
BTUC(10,5) 0.09 0.65 0.07 0.04 0.02
BTUC(20,5) 0.30 7.28 0.16 0.18 0.09
BTUC(50,5) 1.66 348.28 4.70 1.90 0.83
BTUC(100,5) 6.92 - 113.95 12.13 5.266
BTUC(10,10) 0.30 2.50 0.05 0.07 0.04
BTUC(20,10) 0.97 27.69 0.13 0.40 0.19
BTUC(50,10) 5.39 960.00 4.04 3.74 1.63
BTUC(100,10) 35.83 - 102.56 20.94 9.80

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 66 / 105

Approximation Based Reasoning Approximation Based Conformant Planning

Experiments — Sequential Planning V

Domino
Problem KACMBP POND CFF CPAph CPApc

Domino(10) 0.01 1.72 0.05 0.00 0.00
Domino(50) 0.27 - 4.44 0.00 0.00
Domino(100) 2.56 - - 0.01 0.01
Domino(200) 29.10 - - 0.02 0.02
Domino(500) - - - 0.06 0.06
Domino(1000) - - - 0.20 0.20
Domino(2000) - - - 0.63 0.65
Domino(5000) - - - 3.81 4.01

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 67 / 105

Approximation Based Reasoning Approximation Based Conformant Planning

AL vs. PDDL — Revisited

1 PDDL domains can be translated into AL domains — 1-to-1
2 AL domains can be translated into PDDL — might need to

introduce additional actions (only polynomial number of actions)

Consequence
Planners using PDDL as their representation language can make use
of the approximations.

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 68 / 105

Completeness Condition for Approximation Based Reasoning

1 Reasoning About Actions and Changes (RAC) and Planning

2 Incompleteness and Conformant Planning

3 Approximation Based Reasoning

4 Completeness Condition for Approximation Based Reasoning

5 Disjunctive Information

6 Incorporating Sensing Actions

7 Conclusions

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 69 / 105

Completeness Condition for Approximation Based Reasoning

Motivation Example

Action domain:

Db =

 dunk causes ¬armed if armed
flush causes ¬clogged
dunk executable ¬clogged


Initial State: δ0 = ∅

If δ0 is splitted into ∆1 = {{armed}, {¬armed}} then

(Db,∆1) |=0 ¬armed after 〈flush,dunk〉

See why?

Splitting δ0 into ∆2 = {{clogged}, {¬clogged}} does not help:

(Db,∆2}) 6|=0 ¬armed after 〈flush,dunk〉

See why?

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 70 / 105

Completeness Condition for Approximation Based Reasoning

Questions

Given an action theory (D, δ0) and a fluent formula ϕ,
When |=0 is complete?, i.e., when

(D, δ0) |=P ϕ after α⇔ (D, δ0) |=0 ϕ after α

for every sequence of actions α?
How to make it complete? what fluents whose values need to be
considered in the beginning in order for 0-approximation to be
complete?

Why important?
If |=0 is complete then the 0-approximation can be used instead of
the possible world approach (reasoning process does not need to
examine all possible initial states of the domain.)
If |=0 is incomplete then (D, δ0) can be transformed into a
complete one.

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 71 / 105

Completeness Condition for Approximation Based Reasoning Condition

When is |=0 complete?

(D, δ0) |= ϕ after α?

Possible World Approach: Our knowledge is a belief state (set of
possible states) bel(δ0)

0-approximation: Our knowledge is a partial state δ

Basic Idea
Characterize when reasoning with bel(δ0) is the same as reasoning
with δ (w.r.t. ϕ) — δ provides enough knowledge for reasoning about ϕ.

Illustration

Approach
Dependency / between literals: l / g implies that to reason about
l , may need to know g
Reducibility: S �ϕ δ if there exists a state s ∈ S such that ϕ does
not depend on s \ δ

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 72 / 105

Completeness Condition for Approximation Based Reasoning Condition

When is |=0 complete?

(D, δ0) |= ϕ after α?

Possible World Approach: Our knowledge is a belief state (set of
possible states) bel(δ0)

0-approximation: Our knowledge is a partial state δ

Basic Idea
Characterize when reasoning with bel(δ0) is the same as reasoning
with δ (w.r.t. ϕ) — δ provides enough knowledge for reasoning about ϕ.

Illustration

Approach
Dependency / between literals: l / g implies that to reason about
l , may need to know g
Reducibility: S �ϕ δ if there exists a state s ∈ S such that ϕ does
not depend on s \ δ

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 72 / 105

Completeness Condition for Approximation Based Reasoning Condition

When is |=0 complete?

(D, δ0) |= ϕ after α?

Possible World Approach: Our knowledge is a belief state (set of
possible states) bel(δ0)

0-approximation: Our knowledge is a partial state δ

Basic Idea
Characterize when reasoning with bel(δ0) is the same as reasoning
with δ (w.r.t. ϕ) — δ provides enough knowledge for reasoning about ϕ.

Illustration

Approach
Dependency / between literals: l / g implies that to reason about
l , may need to know g
Reducibility: S �ϕ δ if there exists a state s ∈ S such that ϕ does
not depend on s \ δ

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 72 / 105

Completeness Condition for Approximation Based Reasoning Condition

Dependencies and Reducibility I

A literal l depends on a literal g, written as l / g, if
l = g or ¬l / ¬g, or
there exists a causes l if ψ such that g ∈ ψ, or
there exists l / h and h / g.

An action a depends on a literal l , written as a / l , if either
there exists a executable ψ such that ¬l ∈ ψ, or
there exists a literal g such that a / g and g / l .

Example

Db =


dunk causes ¬armed if armed
dunk causes clogged
flush causes ¬clogged
dunk executable ¬clogged


¬armed / ¬armed as / is reflexive

¬armed / armed because of the first statement

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 73 / 105

Completeness Condition for Approximation Based Reasoning Condition

Dependencies and Reducibility II

A disjunction γ = l1 ∨ · · · ∨ ln depends on a literal g, written as
γ / g, if there exists some li such that , written as li / g.
A belief state S is reducible to δ w.r.t. ϕ = γ1 ∧ · · · ∧ γn, denoted by
S �ϕ δ if

δ is a subset of every state s in S,
for 1 ≤ i ≤ n, there exists a state s ∈ S such that γi 6 (s \ δ), and
for any action a, there exists a state s ∈ S such that a 6 (s \ δ).

Example
For δ = {clogged} (or {¬clogged}), bef (δ) 6�¬armed δ
as ¬armed / s \ δ for every s ∈ bef (δ)
But, for δ = {armed} (or {¬armed}), bef (δ) �¬armed δ
as ¬armed 6 s \ δ for some s ∈ bef (δ) (e.g.
s = {clogged ,armed}).

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 74 / 105

Completeness Condition for Approximation Based Reasoning Condition

Example (Summary)

Db =


dunk causes ¬armed if armed
dunk causes clogged
flush causes ¬clogged
dunk executable ¬clogged


Dependencies:

¬armed / ¬armed
¬armed / armed

Reducibility:
For δ = {clogged} (or {¬clogged}),

bef (δ) 6�¬armed δ

But, for δ = {armed} (or {¬armed})

bef (δ) �¬armed δ

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 75 / 105

Completeness Condition for Approximation Based Reasoning Condition

Condition for Completeness of 0-approximation

Theorem
Let (D, δ0) be an action theory without static causal laws and ϕ be a
fluent formula. If bef (δ0) �ϕ δ0 then for every sequence of actions α,

(D, δ0) |=P ϕ after α⇔ (D, δ0) |=0 ϕ after α

Examples

Cannot say whether (D1, {{clogged}}) |=P ¬armed after α iff
(D1, {{clogged}}) |=0 ¬armed after α for every α as
bef ({clogged}) 6�¬armed {clogged}
But, (D1, {{armed}}) |=P ¬armed after α iff
(D1, {{armed}}) |=0 armed after α for every α as
bef ({armed}) �¬armed {armed}

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 76 / 105

Completeness Condition for Approximation Based Reasoning Condition

Condition for Completeness of 0-approximation

Theorem
Let (D, δ0) be an action theory without static causal laws and ϕ be a
fluent formula. If bef (δ0) �ϕ δ0 then for every sequence of actions α,

(D, δ0) |=P ϕ after α⇔ (D, δ0) |=0 ϕ after α

Examples

Cannot say whether (D1, {{clogged}}) |=P ¬armed after α iff
(D1, {{clogged}}) |=0 ¬armed after α for every α as
bef ({clogged}) 6�¬armed {clogged}
But, (D1, {{armed}}) |=P ¬armed after α iff
(D1, {{armed}}) |=0 armed after α for every α as
bef ({armed}) �¬armed {armed}

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 76 / 105

Completeness Condition for Approximation Based Reasoning Complete Reasoning

How to make |=0 complete?

Basic Idea: find a set of fluents F , called decisive set, to split δ0
into ∆0 such that for each δ ∈ ∆0,

bef (δ) �ϕ δ

as by the completeness theorem, this guarantees

(D, δ0) |=P ϕ after α⇔ (D,∆0) |=0 ϕ after α

Example: {armed} is a decisive set for ∅ w.r.t. ϕ = ¬armed but
{clogged} is not

We developed an algorithm for computing such a decisive set
based on analyzing dependency relationships
most of the time returns a minimal one
runs in polynomial time

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 77 / 105

Completeness Condition for Approximation Based Reasoning Complete Reasoning

How to make |=0 complete?

Basic Idea: find a set of fluents F , called decisive set, to split δ0
into ∆0 such that for each δ ∈ ∆0,

bef (δ) �ϕ δ

as by the completeness theorem, this guarantees

(D, δ0) |=P ϕ after α⇔ (D,∆0) |=0 ϕ after α

Example: {armed} is a decisive set for ∅ w.r.t. ϕ = ¬armed but
{clogged} is not

We developed an algorithm for computing such a decisive set
based on analyzing dependency relationships
most of the time returns a minimal one
runs in polynomial time

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 77 / 105

Completeness Condition for Approximation Based Reasoning Complete Reasoning

Computing A Decisive Set

Algorithm

DECISIVE((D, δ0), ϕ)
INPUT: an action theory (D, δ0) and a formula ϕ = γ1 ∧ · · · ∧ γn
OUTPUT: a decisive set for δ0 w.r.t. ϕ
1. BEGIN
2. F = ∅
3. compute dependencies between literals
4. compute dependencies between actions and literals
5. for each fluent f unknown in δ0 do
6. if there exists 1 ≤ i ≤ n s.t. γi depends on both f and ¬f or
7. an action a s.t. a depends on both f and ¬f
8. then F = F ∪ {f}
9. return F ;
10. END

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 78 / 105

Completeness Condition for Approximation Based Reasoning Complete Reasoning

Dealing with Static Causal Laws

Definition
Let D be an action domain. A fluent literal l depends on a fluent literal
g, written as l C g, if and only if one of the following conditions holds.

1 l = g
2 D contains a dynamic causal law [a causes l if ψ] such that

g ∈ ψ.
3 D contains a static causal law [l if ψ] such that g ∈ ψ.
4 There exists a fluent literal h such that l C h and h C g.
5 The complement of l depends on the complement of g, i.e.,
¬l C ¬g.

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 79 / 105

Completeness Condition for Approximation Based Reasoning Complete Reasoning

Completeness Condition for Simple Theories

A belief state S is reducible to δ w.r.t. ϕ = γ1 ∧ · · · ∧ γn, denoted by
S �ϕ δ if

δ is a subset of every state s in S,
for 1 ≤ i ≤ n, there exists a state s ∈ S such that γi 6 (s \ δ), and
for any action a, there exists a state s ∈ S such that a 6 (s \ δ).

Definition
An action theory (D, δ0) is simple if every static causal law in D is of
the form l if g.

Theorem
Let (D, δ0) be a simple action theory and ϕ be a fluent formula. If
bef (δ0) �ϕ δ0 then for every sequence of actions α,

(D, δ0) |=P ϕ after α⇔ (D, δ0) |=0 ϕ after α

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 80 / 105

Disjunctive Information

Reasoning with disjunctive information

Reasoning with disjunctive information can be done similar to
reasoning in the presence of incomplete information since the
knowledge of a reasoner can be represented by a belief states.

Not a problem with reasoning but representation for possible world
approach ⇒ compact representation of the initial belief state or
belief states during the reasoning process is useful (e.g. CFF)
For approximation based reasoning: compacting a belief state into
a single partial state causes losing of information ⇒ expansion
into set of partial states if completeness is required (e.g. CpA)
Completeness condition still holds

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 81 / 105

Disjunctive Information Experiments

Bomb-In-The-Toilet Domain

Problem KACMBP POND CFF CPA+

Bomb(5,1) 0.00 0.03 0.03 0.00
Bomb(10,1) 0.01 0.07 0.05 0.00
Bomb(20,1) 0.05 0.57 0.17 0.03
Bomb(50,1) 0.51 28.69 5.33 0.31
Bomb(100,1) 3.89 682.33 121.8 2.28
Bomb(5,5) 0.04 0.10 0.04 0.00
Bomb(10,5) 0.09 0.65 0.07 0.02
Bomb(20,5) 0.30 7.28 0.16 0.07
Bomb(50,5) 1.66 348.28 4.70 0.68
Bomb(100,5) 6.92 - 113.95 4.50
Bomb(5,10) 0.11 0.35 0.03 0.01
Bomb(10,10) 0.30 2.50 0.05 0.05
Bomb(20,10) 0.97 27.69 0.13 0.15
Bomb(50,10) 5.39 960.00 4.04 1.26
Bomb(100,10) 35.83 - 102.56 7.44

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 82 / 105

Incorporating Sensing Actions

1 Reasoning About Actions and Changes (RAC) and Planning

2 Incompleteness and Conformant Planning

3 Approximation Based Reasoning

4 Completeness Condition for Approximation Based Reasoning

5 Disjunctive Information

6 Incorporating Sensing Actions

7 Conclusions

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 83 / 105

Incorporating Sensing Actions Importance

Why sensing actions?

Some properties of the domain can be observed after some
sensing actions are executed

Cannot decide whether a package contains a bomb until we use a
special device to detect it
A robot cannot determine an obstacle until it uses a sensor to
detect it

Two important questions:
What is a plan?
How to reason about sensing actions?

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 84 / 105

Incorporating Sensing Actions Importance

Why sensing actions?

Some properties of the domain can be observed after some
sensing actions are executed

Cannot decide whether a package contains a bomb until we use a
special device to detect it
A robot cannot determine an obstacle until it uses a sensor to
detect it

Two important questions:
What is a plan?

How to reason about sensing actions?

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 84 / 105

Incorporating Sensing Actions Importance

Why sensing actions?

Some properties of the domain can be observed after some
sensing actions are executed

Cannot decide whether a package contains a bomb until we use a
special device to detect it
A robot cannot determine an obstacle until it uses a sensor to
detect it

Two important questions:
What is a plan?
How to reason about sensing actions?

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 84 / 105

Incorporating Sensing Actions ALK Language

Extending AL to handle sensing actions

Allow knowledge-producing laws of the form

a determines θ

“if sensing action a is executed, then the values of l ∈ θ will be known”

New language is called ALK

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 85 / 105

Incorporating Sensing Actions ALK Language

Why sensing actions? — Example

One bomb, two packages; exactly one package contains the bomb
Initially, the toilet is not clogged. No flush action.
Bomb can be detected by only by X-ray.

D2 =


oneof {armed(1),armed(2)}
dunk(P) causes ¬armed(P)
dunk(P) causes clogged
impossible dunk(P) if clogged
x−ray determines {armed(1),armed(2)}


No conformant plan for

P1 = (D2, {¬clogged}, {¬armed(1),¬armed(2)})

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 86 / 105

Incorporating Sensing Actions ALK Language

What is a plan in the presence of sensing actions?

Conditional Plans: take into account contingencies that may arise
If a is a non-sensing action and 〈β〉 is a conditional plan then 〈a, β〉
is a conditional plan
If a is a sensing action that senses literals l1, . . . , ln, and 〈βi〉 is a
conditional plan then〈

a,cases

 l1 → β1
. . .
ln → βn

〉

is a conditional plan

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 87 / 105

Incorporating Sensing Actions ALK Language

Example of Conditional Plan

〈
x−ray ,cases

(
armed(1) → dunk(1)
armed(2) → dunk(2)

)〉
is a solution of

P1 = (D2, {¬clogged}, {¬armed(1),¬armed(2)})

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 88 / 105

Incorporating Sensing Actions Approach

How to reason about sensing actions?

Must take into account different outcomes of sensing actions
Transition function: Actions × Partial States → 2Partial States

For each A ∈ {ph,pc}, we define a transition function ΦA
S as

follows
for a non-sensing action a, ΦA

S is the same as ΦA

for a sensing action a, each partial state in ΦA
S corresponds to a

literal that is sensed by a

Result in four different approximations of ALK domain
descriptions
Entailment |=A

S
(D, δ0) |=A

S ϕ after α

if ϕ is true in every final partial state of the execution of α
Properties

ΦA
S can be computed in polynomial time

the polynomial-length conditional planning: NP-complete

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 89 / 105

Incorporating Sensing Actions Approach

How to reason about sensing actions?

Must take into account different outcomes of sensing actions
Transition function: Actions × Partial States → 2Partial States

For each A ∈ {ph,pc}, we define a transition function ΦA
S as

follows
for a non-sensing action a, ΦA

S is the same as ΦA

for a sensing action a, each partial state in ΦA
S corresponds to a

literal that is sensed by a

Result in four different approximations of ALK domain
descriptions

Entailment |=A
S

(D, δ0) |=A
S ϕ after α

if ϕ is true in every final partial state of the execution of α
Properties

ΦA
S can be computed in polynomial time

the polynomial-length conditional planning: NP-complete

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 89 / 105

Incorporating Sensing Actions Approach

How to reason about sensing actions?

Must take into account different outcomes of sensing actions
Transition function: Actions × Partial States → 2Partial States

For each A ∈ {ph,pc}, we define a transition function ΦA
S as

follows
for a non-sensing action a, ΦA

S is the same as ΦA

for a sensing action a, each partial state in ΦA
S corresponds to a

literal that is sensed by a

Result in four different approximations of ALK domain
descriptions
Entailment |=A

S
(D, δ0) |=A

S ϕ after α

if ϕ is true in every final partial state of the execution of α

Properties
ΦA

S can be computed in polynomial time
the polynomial-length conditional planning: NP-complete

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 89 / 105

Incorporating Sensing Actions Approach

How to reason about sensing actions?

Must take into account different outcomes of sensing actions
Transition function: Actions × Partial States → 2Partial States

For each A ∈ {ph,pc}, we define a transition function ΦA
S as

follows
for a non-sensing action a, ΦA

S is the same as ΦA

for a sensing action a, each partial state in ΦA
S corresponds to a

literal that is sensed by a

Result in four different approximations of ALK domain
descriptions
Entailment |=A

S
(D, δ0) |=A

S ϕ after α

if ϕ is true in every final partial state of the execution of α
Properties

ΦA
S can be computed in polynomial time

the polynomial-length conditional planning: NP-complete

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 89 / 105

Incorporating Sensing Actions Approach

How to reason about sensing actions?

Must take into account different outcomes of sensing actions
Transition function: Actions × Partial States → 2Partial States

For each A ∈ {ph,pc}, we define a transition function ΦA
S as

follows
for a non-sensing action a, ΦA

S is the same as ΦA

for a sensing action a, each partial state in ΦA
S corresponds to a

literal that is sensed by a

Result in four different approximations of ALK domain
descriptions
Entailment |=A

S
(D, δ0) |=A

S ϕ after α

if ϕ is true in every final partial state of the execution of α
Properties

ΦA
S can be computed in polynomial time

the polynomial-length conditional planning: NP-complete

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 89 / 105

Incorporating Sensing Actions Approach

ALK Approximations

Definition
If a is not executable in δ then

ΦA
S(a, δ) = ∅

If a is a non-sensing action then

ΦA
S(a, δ) =

{
∅ if ΦA(a, δ) is consistent
{ΦA(a, δ)} otherwise

If a is a sensing action associated with
a determines θ

then
ΦA

S(a, δ) = {ClD(δ ∪ {g}) | g ∈ θ and ClD(δ ∪ {g}) is consistent}

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 90 / 105

Incorporating Sensing Actions Application

Application in Conditional Planning

Conditional Planning Problem: P = (D, δ0,G)
A solution of P is a conditional plan α such that

(D, δ0) |=P G after α

ASCP:
Implemented in logic programming
Approximation: Φpc

S
Can generate both concurrent plans and sequential plans
Soundness and completeness of ASCP are proved
Competitive with some other conditional planners

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 91 / 105

Incorporating Sensing Actions Application

Application in Conditional Planning

Conditional Planning Problem: P = (D, δ0,G)
A solution of P is a conditional plan α such that

(D, δ0) |=P G after α

ASCP:
Implemented in logic programming
Approximation: Φpc

S
Can generate both concurrent plans and sequential plans
Soundness and completeness of ASCP are proved
Competitive with some other conditional planners

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 91 / 105

Incorporating Sensing Actions Application

Experiments

Problem Min. ASCP SGP POND MBP
Plan cmodels smodels

BTS1(4) 4x4 0.808 1.697 0.22 0.189 0.048
BTS1(6) 6x6 5.959 83.245 2.44 0.233 0.055
BTS1(8) 8x8 25.284 - 24.24 0.346 0.076
BTS1(10) 10x10 85.476 - - 0.918 0.384
BTS2(4) 4x4 1.143 3.858 0.32 0.198 0.067
BTS2(6) 6x6 19.478 1515.288 3.23 0.253 2.163
BTS2(8) 8x8 245.902 - 25.5 0.452 109.867
BTS2(10) 10x10 345.498 - - 1.627 178.823
BTS3(4) 4x4 1.099 5.329 0.44 0.195 1.93
BTS3(6) 6x6 7.055 - 3.89 0.258 147.76
BTS3(8) 8x8 56.246 - 28.41 0.549 -
BTS3(10) 10x10 248.171 - - 2.675 -
BTS4(4) 4x4 1.696 3.556 0.64 0.191 -
BTS4(6) 6x6 13.966 149.723 4.92 0.264 -
BTS4(8) 8x8 115.28 - 30.34 0.708 -
BTS4(10) 10x10 126.439 - - 4.051 -

Table: Performance of ASCP on the Bomb domainsTran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 92 / 105

Conclusions

Lessons Learned

1 Study in reasoning about actions and changes might provide
useful ways for dealing with planning in complex domains

2 Approximations can compensate for the inaccuracy of heuristics
3 Approximations can be useful when the computation of the next

state is more complicated
4 Completeness conditions can be used to deal with sensing

actions in conditional planners: deciding when to execute a
sensing action?

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 93 / 105

Conclusions

Intuition

Return

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 94 / 105

Conclusions

Illustration

Return

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 95 / 105

Conclusions

Splitting ∅ to {armed} and {¬armed} works

Return

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 96 / 105

Conclusions

Splitting ∅ to {clogged} and {¬clogged} does not work

Return

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 97 / 105

Conclusions

Acknowledgment

Thanks to Tu Phan for helping with the preparation of the slides.

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 98 / 105

Conclusions

References I

Baral, C., Kreinovich, V., & Trejo, R. 2000.
Computational complexity of planning and approximate planning in
the presence of incompleteness.
Artificial Intelligence, 122, 241–267.

Etzioni, O., Golden, K., & Weld, D. 1996.
Sound and Efficient Closed-World Reasoning for Planning.
Artificial Intelligence, 89, 113–148.

Fikes, R., & Nilson, N. 1971.
STRIPS: A new approach to the application of theorem proving to
problem solving.
Artificial Intelligence, 2(3–4), 189–208.

Gelfond, M., & Lifschitz, V. 1993.
Representing actions and change by logic programs.
Journal of Logic Programming, 17(2,3,4), 301–323.

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 99 / 105

Conclusions

References II

Ghallab, M., Howe, A., Knoblock, C., McDermott, D., Ram, A.,
Veloso, M., Weld, D., & Wilkins, D. 1998.
PDDL — The Planning Domain Definition Language. Version 1.2.
Tech. rept. CVC TR98003/DCS TR1165. Yale Center for Comp,
Vis and Ctrl.

Goldman, R., & Boddy, M. 1994.
Representing uncertainty in simple planners.
Pages 238–245 of: KR 94.

Kowalski, R., & Sergot, M. 1986.
A logic-based calculus of events.
New Generation Computing, 4, 67–95.

Liberatore, P. 1997.
The Complexity of the Language A.
Electronic Transactions on Artificial Intelligence, 1(1–3), 13–38.

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 100 / 105

Conclusions

References III

McCarthy, J. 1959.
Programs with common sense.
Pages 75–91 of: Proceedings of the Teddington Conference on the
Mechanization of Thought Processes.
London: Her Majesty’s Stationery Office.

McCarthy, J., & Hayes, P. 1969.
Some philosophical problems from the standpoint of artificial
intelligence.
Pages 463–502 of: Meltzer, B., & Michie, D. (eds), Machine
Intelligence, vol. 4.
Edinburgh: Edinburgh University Press.

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 101 / 105

Conclusions

References IV

Petrick, Ronald P. A., & Bacchus, Fahiem. 2004.
Extending the Knowledge-Based Approach to Planning with
Incomplete Information and Sensing.
Pages 2–11 of: Proceedings of the Sixth International Conference
on Automated Planning and Scheduling, 2004.

Reiter, R. 2001.
KNOWLEDGE IN ACTION: Logical Foundations for Describing
and Implementing Dynamical Systems.
MIT Press.

Son, T.C., & Baral, C. 2001.
Formalizing sensing actions - a transition function based
approach.
Artificial Intelligence, 125(1-2), 19–91.

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 102 / 105

Conclusions

References V

Son, Tran Cao, & Tu, Phan Huy. 2006.
On the Completeness of Approximation Based Reasoning and
Planning in Action Theories with Incomplete Information.
Pages 481–491 of: Proceedings of the 10th International
Conference on Principles of Knowledge Representation and
Reasoning.

Son, Tran Cao, Tu, Phan Huy, Gelfond, Michael, & Morales,
Ricardo. 2005a.
An Approximation of Action Theories of AL and its Application to
Conformant Planning.
Pages 172–184 of: Proceedings of the the 7th International
Conference on Logic Programming and NonMonotonic Reasoning.

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 103 / 105

Conclusions

References VI

Son, Tran Cao, Tu, Phan Huy, Gelfond, Michael, & Morales,
Ricardo. 2005b.
Conformant Planning for Domains with Constraints — A New
Approach.
Pages 1211–1216 of: Proceedings of the the Twentieth National
Conference on Artificial Intelligence.

Thiebaux, S., Hoffmann, J., & Nebel, B. 2003.
In Defense of PDDL Axioms.
In: Proceedings of the 18th International Joint Conference on
Artificial Intelligence (IJCAI’03).

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 104 / 105

Conclusions

References VII

Thielscher, M. 2000 (Oct.).
The Fluent Calculus: A Specification Language for Robots with
Sensors in Nondeterministic, Concurrent, and Ramifying
Environments.
Tech. rept. CL-2000-01. Computational Logic Group, Department
of Computer Science, Dresden University of Technology.

Turner, H. 2002.
Polynomial-length planning spans the polynomial hierarchy.
Pages 111–124 of: Proc. of Eighth European Conf. on Logics in
Artificial Intelligence (JELIA’02).

Tu, P.H. 2007.
Reasoning and Planning with Incomplete Information in the
Presence of Static Causal Laws.
Ph.D Dissertation, NMSU 2007.

Tran Cao Son (NMSU) BRIDGING RAC AND PLANNING ICAPS 2007 105 / 105

	Reasoning About Actions and Changes (RAC) and Planning
	
	

	Incompleteness and Conformant Planning
	
	

	Approximation Based Reasoning
	
	
	

	Completeness Condition for Approximation Based Reasoning
	
	

	Disjunctive Information
	

	Incorporating Sensing Actions
	
	
	
	

	Conclusions

