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Abstract

We introduce cost-sensitive regression as a way to introduce
information obtained by planning as background knowledge
into a relational reinforcement learning algorithm. By of-
fering a trade-off between using knowledge rich, but com-
putationally expensive knowledge resulting from planning
like approaches such as minimax search and computationally
cheap, but possibly incorrect generalizations, the reinforce-
ment learning agent can automatically learn when to apply
planning and when to build a generalizing strategy. This ap-
proach would be useful for problem domains where a model
is given but which are too large to solve by search. We dis-
cuss some difficulties that arise when trying to define costs
that are semantically well founded for reinforcement learning
problems and present a preliminary algorithm that illustrates
the feasibility of the approach.

Introduction
A lot of decision making problem domains can be modeled
as aMarkov decision process(MDP), where an agent inter-
acts with his environment by making observations and tak-
ing actions, while trying to attain certain goals. If the model
behind such an environment is (completely) known, various
planning algorithms can be used to find the optimal solution,
at least in theory. In practice these algorithms are often too
time-consuming to be practical in many interesting but large
domains.

Another way of solving these problems is by perform-
ing reinforcement learning (Sutton & Barto 1998). When
the environment is structured (for example, states are de-
fined by the existence of objects in the world and relations
between those objects),relational reinforcement learning
(RRL) (Džeroski, De Raedt, & Driessens 2001) can be used.
When doing reinforcement learning, the agent does not com-
pute the exact optimal solution through reasoning with a
given model, but it will improve its policy or solution strat-
egy through exploration of the environment. Reinforcement
learning agents build a utility function which represents the
value of every state-action pair. This utility function can be
used after the training period, usually without much extra
computational cost, to find the best action for every situ-
ation. (This in contrast to many planning approaches that
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generally need to re-compute the path to the goal for every
new situation they encounter.) A problem with the RRL ap-
proach (a variation of Q-learning (Watkins 1989)) and with
many reinforcement learning approaches in general, is that
the agent treats his environment as a black-box, ignoring any
information he has about the problem domain. This results
in the need for a large amount of exploration experience be-
fore the agent is able to find the correct, or even an appro-
priately accurate approximation of the utility function.

For large environments for which an accurate model is
given, but that are too large to make planning or search prac-
tical, the combination learning and planning could yield sub-
stantial benefits. In this paper we will discuss one approach
that combines the two. The intuition behind our approach
is that the agentlearnswhen it needs to use planning, and
when it can build a generalized policy such as those result-
ing from reinforcement learning. To prevent the agent solv-
ing the task solely through planning (which is guaranteed
to find an optimal solution), wepenalizethe use of planning
through a cost-function that reflects the added computational
effort the agent needs to make when opting to plan instead
of generalize. This combination of using models and expe-
rience could yield substantial benefits in applications where
a model is given but which are too large to solve through
search, or when a strong time-constraint is imposed by the
environment during the decision making phase ((McMillen
& Veloso 2007)).

The rest of this paper is structured as follows: in the next
section we will elaborate on the motivation behind our sug-
gested approach. This is followed by a section in which re-
lated work is discussed. The section after explains the ap-
proach we suggest, the difficulties which need to be consid-
ered and a more pragmatic variation which will be evaluated
and discussed in more detail in the section following it.

Motivation
A standarddecision making problemcan be defined as fol-
lows:

Given an MDP< S,A, R, δ >, whereS is the set of pos-
sible states,A the set of available actions,R : S → R a
reward function, andδ(s, a, s′) : S × A× S → [0, 1] the
transition function that expresses the probability that per-
forming actiona in states leads to states′, and a discount



factorγ which indicates the relative value of future versus
immediate rewards,

Find the policyπ : S × A → [0, 1] indicating the prob-
ability with which a action will be selected in any given
state, that results in the highest expected (discounted and
cumulative) reward:

E

 ∑
sj∈S;i

γidπ
i (sj)R(sj)


where dπ

i (.) indicates the probability distribution over
states encountered at time stepi when following policy
π.

When a complete model of the MDP is given to the agent,
the agent can use a planning algorithm (for example a dy-
namic programming approach) to construct an optimal strat-
egy for the domain, i.e., a mapping from every possible state
to the action which will give the maximal expected reward.
However, if the state-space is large, these approaches be-
come too time-consuming to be of practical use. Consider
for example the game of chess, where in theory it is possible
to find a perfect strategy using the minimax algorithm, but
where this approach is not feasible in practice.

Another approach islearningand building a generalized
strategy through experience: if a state-action-pair is ex-
plored, give it a utility value which indicates whether a re-
ward is received and what the value of the best (according
to current knowledge of the agent) action in the next state is.
This reinforcement learning algorithm,Q-learning(Watkins
1989), is guaranteed to converge to the actual utility func-
tion, given enough training time. In structured domains one
can use a variation of this, the RRL algorithm (Džeroski,
De Raedt, & Driessens 2001), to learn a first-order gen-
eralization of the utility function. In RRL-TG (Driessens,
Ramon, & Blockeel 2001), the agent performs tests on the
states of the environment and the chosen actions and uses a
relational regression tree to partition the state-space accord-
ing to the results of these tests. Through exploration, the
agent learns which tests are relevant for an accurate approx-
imation of the utility function (for example, for the game
of chess, a test ‘Does this move put my opponent in check-
mate?’ would be a highly significant test). An advantage of
this approach is that it learns a generalization of the utility
function, which can be readily used after a training or explo-
ration phase. A problem with this standard RRL approach
is however, that, while it allows the introduction of some
background knowledge about the domain through the intro-
duction of a task specific language bias for the tree building
algorithm, it neglects given information about the model of
the task, and that it takes a lot of valuable training time to
compensate for this.

For many domains, one would like to combine the advan-
tages of both these approaches: use the model to compute
the optimal solution unless this is too time-consuming, and
learn a generalized utility function for the situations where
planning is impractical. This is comparable to, for example,
the way a human chess-expert plays the game. At the start
of the game, an expert player will rely on his generalized

knowledge about openings and their responses (built from
experience), while further into the game, when the number
of pieces and possible moves goes down, the player will of-
ten think a number of steps ahead (i.e. using search and
adversarial-planning) to choose his or her actions.

The combined use of models and experience, particularly
useful for domains where an accurate model of the underly-
ing MDP is given, but which is too complex to solve through
search, is underdeveloped. To this extend, we propose to
automatically trade off computation (i.e. search) and gener-
alization through the use of a cost function, that defines the
cost of choosing an action in a given state. In this respect, we
characterize the cost functionc as:c(π, s) : (S×A)×S →
R.

The task to solve is therefor transformed into:

Given an MDP< S, A,R, δ >, a discount factorγ and a
cost functionc : (S × A) × S → R which maps policies
to the cost they incur in a state,

Find the policyπ which gives the highest expected (again
discounted and cumulative)net return:

E

 ∑
sj∈S;i

γidπ
i (sj)(R(sj)− c(π, sj))


In the suggested approach, which is based on RRL-TG,

we supply extra available tests on the state-action space to
the learning agent (in the form of computable background
knowledge) that correspond to the knowledge used by a
planning approach. An example of such a test for a two-
player game would be ‘If the agent performs this move, for
any possible response of the opponent, can we win the game
in the next move ?’, which allows the agent to make a dis-
tinction between the utility value of the different state-action
pairs by means of a minimax-type approach. Due to the
computational cost, the agent should only use these tests
if another test, that is just as informative but computation-
ally cheaper, is not available. To this extend, we introduce a
cost functionon tests, which gives an indication of the com-
putational complexity of the test, and use acost-sensitive
regression-tree algorithm. We will discuss this approach in
more detail later.

Related Work
There are other approaches which combine reinforcement
learning with planning, and most of them follow the ap-
proach of the TD-leaf algorithm (Baxter, Tridgell, & Weaver
2000) for two-player games. This is a minimax-based al-
gorithm: it learns a utility function (by using the TD al-
gorithm (Tesauro 1995)), but instead of it using only for
the possible actions of the current state to decide on the
best move, it generates a tree of all possible sequences of
moves up to a certain depth and uses the utility function of
the resulting leaf-nodes to find the action which gives the
highest expected reward. This algorithm combines planning
and reinforcement learning in a more direct way, but the ad-
vantage of our approach is that the agent can learn only to
use planning when necessary. In a way, our approach is re-
lated toquiescence searchwhere the search depth (and thus



the amount of planning knowledge) is increased in those
branches of the tree where the agent thinks it is necessary.

Also related is the work on symbolic dynamic program-
ming that solves relational MDPs through the use of a model
at the abstract, i.e. non-instantiated level. This approach
was first proposed by Boutilier et al. (Boutilier, Reiter, &
Price 2001) using a situation calculus language. Later, it was
implemented as a working system by Kersting et al. (Ker-
sting, van Otterlo, & De Raedt 2004) using a probabilistic
STRIPS-like formalism. The ReBel algorithm introduced in
this work is able to reason backwards from the goal: first
it looks for all abstract states from which the goal can be
reached, then the abstract states from which the first set can
be reached, and so on. This works well for simple and small
domains, and returns an optimal generalized strategy, but
does not scale up to larger domains. In later work by Sanner
and Boutilier (Sanner & Boutilier 2005), approximate linear
programming techniques and first order basis function were
used to approximate the value-function instead of having to
explicitly represent all necessary abstract states. Although
this approach presented impressive results, we believe there
could be substantial gain in letting the agent automatically
trade-off planning and learning.

There is quite some literature on cost-sensitivity and
learning, but most of this concentrates on supervised clas-
sification tasks, for example (Domingos 1999). Some re-
lated material exists in the field of sensor planning (Koenig
& Liu 2000), but to the best of our knowledge, it is lim-
ited in the field of reinforcement learning. The lack of cost-
sensitive reinforcement learning algorithms might be due to
some complications which will be elaborated on in the next
section.

Combining Planning and Learning using Costs

In this section we will first discuss how a cost-sensitive
RRL-TG algorithm should behave according to our intu-
ition. As explained in the previous section, the agent has
a set of differenttestsavailable that can be used on its en-
vironment. Using these tests the agent should be able to
decide which action to take in the given situation. Every
test has a cost related to it which indicates its computational
requirements. In the cost-sensitive classification literature,
the cost of a test is expressed in the same terms as the mis-
classification costs, which give the cost a clear semantical
interpretation: a test is useful if its cost does not outweigh
the decrease in expected misclassification cost. We would
like to give similar semantics to the cost-function in our
cost-sensitive RRL-TG algorithm, replacing misclassifica-
tion costs by differences in the obtained (cumulative and
discounted) rewards. This would result in the following ap-
proach: The agent finds itself in a states ∈ s0 for which,
without other tests, he would perform actiona0 with ex-
pected utilityu0. Consider a test, with costc which would
enable the agent to distinguish between two separate parts of
the state space,s1 ands2 (s1∪s2 = s0), with corresponding
actionsa1 anda2 and utilitiesu1 andu2. As the agent uses
more information, bothu1 andu2 will be better thanu0, on
average. If the increase of total expected utility outweighs

the cost of the test, i.e. when

c ≤ p(s1)u1 + p(s2)u2 − u0

wherep(si) represents the probability that a states ∈ s0

belongs tosi, then the test should be used1.
There are some problems with this approach, however. To

learn whether the increase of utility is worth the cost of a
test, the test must be used often enough to enable accurate
estimates of its value. If a lot of costly tests are to be con-
sidered, all of these should be experimented with during the
exploration phase. This implies a large cost for learning a
good strategy that will have to be taken into account on any
exploration-exploitation strategies.

The advantage is that in the end a generalized utility func-
tion is learned which, when used, only uses a cost which is
accounted for by an increase of average reward. The sug-
gested approach would be specifically useful in systems with
long exploitation phases and a good generalization of a low-
cost, high-return policy is more important than time used
while training (e.g. be a system which is trained in the fac-
tory, where the learned policy is copied and sold to a large
group of customers).

Another (and in our case more acute) problem is that the
RRL-TG algorithm does not directly map a state to the ap-
propriate action, but for the current state, computes the util-
ity value for every possible action in that state. This means
that, when using a cost-sensitive approach, the total cost of a
decision depends largely on the number of available actions.
This defeats our intuitive interpretation of a clearly inter-
pretable cost function when using the current implementa-
tion of RRL.

This latter consideration led us to a more pragmatic pre-
liminary implementation. This implementation will be dis-
cussed in the next section.

A Preliminary Approach
Our algorithm is a variation of the RRL-TG algo-
rithm (Driessens, Ramon, & Blockeel 2001). The RRL-TG
algorithm uses an incremental, first-order logic, regression
tree learner named TG. The TG algorithm starts with a tree
consisting of a single leaf. During training, all encountered
state-action pairs are gathered in this leaf, together with their
estimated utility value. If a test is found which significantly
decreases the variance of the average utility value of the en-
countered examples, the leaf is replaced by a node contain-
ing this test, with two leaf nodes as branches (each contain-
ing those examples for which the test was either positive or
negative). When the training or exploration phase is over
and a regression tree is learned (a simple example of such
a tree for the connect-4 game can be seen in Fig. 1 – the
meaning of the tests in the nodes will be explained later), the
exploitationof the learned utilities starts. When the agent
needs to select an action, all actions available in its current
state are considered. The test in the root node is performed
on every possible state-action pair; if it tests positive, the

1In fact, given the problem definition above, the definition of
p(.) should incorporate the shift in the probability distribution over
the states ins0 caused by the change in the resulting policyπ



<state,action>

makesLine(4) ?

1.0

yes

makesLine(3,acc,acc) ?

no

0.8

yes

0.05

no

Figure 1: An example of a regression tree such as used by
RRL-TG

algorithm goes on to the positive branch, otherwise to the
negative branch. When a leaf node is reached the average
utility of the examples stored there will be returned as the
estimated utility. The agent then performs that action which
has the highest estimated utility.

Our variation of this algorithm is that instead of judging
the worth of a test solely by the decrease of the variance of
the utility of the examples stored in that node, we judge it by
the decrease of the standard deviation of the utility, minus
the cost of the test. The reasoning behind this is that a useful
test reduces the average prediction error by some amount
larger than the cost of the test.

The experiments were conducted in the abstract board-
game ‘connect-four’. The game consists of a grid of 7
columns, 6 places high, in which the players can drop mark-
ers (see Fig 2). The first player to get four of his markers in

Figure 2: A Connect-4 game in progress

a row (horizontal, vertical or diagonal), wins the game. The
rewards used in the game are+1 for a won game,−1 for a
lost game, and0 for a drawn game. Our RRL-agent plays
against a rather weak opponent, who uses minimax with a
depth of 2 (he is able to spot a way in which to win in two
moves, and will not play a move which allows the agent to
win in two moves (if possible), and plays a random move

otherwise).
The available tests in the agent’s language bias are some

cost-free tests of the form ‘Does the move make3 in a row
where the two points next to the row are accessible?’. This
is a very limited set of tests.

The set of tests was extended by a number of planning-
tests, which did have a cost corresponding to the computa-
tional cost. These tests were inspired by the minimax search
approach and took the form ‘After performing this move in
this situation, for any possible move of the opponent, do we
have a guaranteed win inn moves?’. We used a cost of
c× 49(n−1), with c a constant indicating how important the
cost function is. The cost function used follows from the
fact that we computen levels of moves of both the opponent
and the agent, and both have (in most situations) a choice of
7 moves. The complete set of available tests can be found
in Fig 3. HereEnd1andEnd2refer to the points in the grid
at both ends of the line, and are eitherempty(there is no
marker at the endpoint of the line,accessible(empty and the
spot below is not empty, such that in the next move a marker
can be played here),o to indicate there is a marker of the op-
ponent in this spot ornull, meaning that the line ends at the
border of the playing grid.ForcedWin(n) means that a win is
guaranteed in at mostn moves,forcedLose(n) indicates that
after this move, the opponent has a forced win inn moves.

test level cost
makesLine(4) 0 0
makesLine(3,End1,End2) 0 0
makesLine(2,End1,End2) 0 0
forcedWin(1) 1 c
forcedWin(2) 2 49×c
forcedWin(3) 3 2401×c
forcedLose(1) 1 c
forcedLose(2) 2 49×c
forcedLose(3) 3 2401×c

Figure 3: Available tests in the connect-4 experiment

In the experiments we used five different setting for the
cost constantc, c ∈ {0.0; 0.0001; 0.001; 0.01; 1.0}. As was
explained in the previous section, it is difficult to implement
a semantically well founded cost function for these tests in
our current setup. This is why we tested a wide range of
cost-values and report on the different behaviors that arise.

We let the algorithm train for 1000 games and then let it
play 100 test-games using the learned regression tree. We
counted the number of won games and the number of tests
of each level which were used in the entire tree (level 0 indi-
cating the cost-free tests). Reported values are averages over
5 runs. The results can be seen in Table 1. From this table
we see that as the costs decrease, the algorithm will indeed
use higher level tests in the tree, as was expected. The al-
gorithm did not learn a prefect tree for thec = 0 case, and
only 22 % of the games were won - while the agent could,
in theory, perform minimax to a depth of 3, which is bet-
ter than the opponent. Given more time and more practice
games, the agent might improve his strategy. This points
to an important future improvement: supply the algorithm



c % won level 0 level 1 level 2 level 3
1.0 12.0 10.8 0.0 0.0 0.0
0.01 11.6 11.0 0.4 0.2 0.0
0.001 11.2 10.8 0.8 1.6 0.0
0.0001 24.5 10.0 0.4 0.8 2.0

0.0 21.8 11.4 0.4 1.2 2.0

Table 1: Results of the connect-4 experiment

with an initial, high-cost strategy and let itrevisethis strat-
egy to a lower cost, without losing too much accuracy (Ra-
mon, Driessens, & Croonenborghs 2007). From the Table 1
we see that there is a great increase of performance, and of
the use of higher-cost tests, between valuesc = 0.001 and
c = 0.0001. This indicates that a value between these two
should be appropriate for this domain. Indeed, for higher
values the performance is not significantly worse than for
c = 0.001, neither is the performance for the cost-free ver-
sion better than the performance withc = 0.0001.

Conclusions and Future Work

In this paper we present a cost-sensitive approach to value-
function approximation. Introducing computational costs
for adding planning knowledge into a relational reinforce-
ment learning algorithm could present an intuitive ap-
proach to automatically trade-off planning and general-
ization in large but structured decision making problem-
domains where a model of the underlying MDP is given.

We illustrated the feasibility of this approach through
an empirical evaluation of a prototype algorithm using the
connect-four board game.

Cost-sensitive reinforcement learning can be useful for
other things than trading off planning and generalization.
Imagine for example a robot in an environment which, us-
ing the robot’s standard sensors, is only partially observable.
The robot has the ability of using a number of extra sensors
which give additional information about the exact state of
the environment (and itself) but these sensors use more, and
often precious, power. The robot could learn to only use
these costly sensors when having more information is cru-
cial for its task.

In future work, we intend to expand on the presented se-
mantics for the costs connected to the added background
knowledge and implement a system that uses these well-
defined costs. This will however also require changes to
the current representational format of policies as they are
learned by the RRL system. To this extend, we will require
a direct translation of the current state into the action that
needs to be performed, without the necessity of listing (and
testing) all actions that are available in that state.

One important driving point for the line of research we are
pursuing is the option to provide our reinforcement learning
agent with an initial, high-cost policy that uses computation-
ally complex knowledge and allowing the agent to revise this
strategy into a computationally cheaper but nearly equally
(or possibly even better) performing policy.
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