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Abstract 
Derived predicates are a compact way to depict complex 
planning domains, and their truth value in the current state 
is inferred from that of basic predicates via domain rules. 
However, domain rules designed by human experts often 
can not explain plan examples well in an intuitive way, and 
moreover, they can not explain plan examples when they are 
incomplete. In this paper, we develop a novel algorithm 
called LAR (Learning Activation Rules) for automatically 
discovering rules for derived predicates from a set of 
observed plans. Our empirical studies show that the 
conversion of activation sets of a derived fact is closely 
related to direct effects of actions, and therefore LAR 
attempts to build “activation rules” by tracing some special 
basic facts and their special state points in training examples. 
Indeed, a learned rule could be an approximate activation 
set of a derived fact, if training examples are sufficient and 
correct. We experiment the approach in the PSR (Power 
Supply Restoration) domain and evaluate the effectiveness 
of LAR empirically. 

Introduction   
There are some domains where plain STRIPS/ADL can not 
express the effects efficiently. PSR (Power Supply 
Restoration) domain is such a domain (Bonet & Thiébaux, 
2003). In this case, derived predicates are introduced, 
which add additional effects (e.g., power outage of far 
away connected-line from the cut-off line) after each 
execution of an action. Derived predicates are a compact 
way to depict complex planning domains, and their truth 
value in the current state is inferred from that of basic 
predicates via domain rules. 

However, domain rules designed by human experts often 
can not explain plan examples well in an intuitive way, and 
sometimes they even can not be guaranteed to be a correct 
and complete domain theory because of incomplete 
information. Often, a mass of deduction steps are needed in 
order to tell whether a derived precondition of an action 
holds in the current state under recursive rules for derived 
predicates. And moreover, if domain rules are incomplete, 
one can hardly explain why an observed plan is valid. 
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Therefore, it is very interesting and promising that one can 
learn intuitive rules for derived predicates from observed 
plans in practice. 

In the past, various approaches have been explored to 
learn rules from training examples. A well-studied territory 
is learning Inductive Logic Programming (ILP), which has 
been a hot research topic in the mid-90s (Lavrac & 
Dzeroski, 1994). A unifying theory of ILP is being built up 
around lattice-based concepts such as refinement, least 
general generalization, inverse resolution and most specific 
corrections. Sequential covering algorithm (Clark & 
Niblett, 1989) is one of the most widely used methods for 
learning a disjunctive rule set to cover all positive 
examples. It uses a subroutine called Learn-One-Rule to 
learn a single rule to cover some positive examples each 
time. This process is repeated until all positive examples 
are covered. FOIL (Quinlan, 1990) is an extension on 
sequential covering algorithm and can learn first-order 
rules and simple recursive rules. Besides, decision-tree or 
genetic algorithms are used to learn classification rules in 
order to judge whether a new instance satisfies a target 
attribute. 

In this paper, we take the first step towards 
automatically acquiring rules for derived predicates from 
plans examples. Indeed, it is a difficult task assuming no 
predefined model of rules is known. Besides, learned rules 
must satisfy semantics characteristics of derived predicates. 
Here, we present an algorithm to learn rules only in 
proposition logic. For learning first-order rules for derived 
predicates is more difficult, we leave it as a major future 
extension. Our empirical studies show that a derived fact 
holds if only at least one of its activation sets is valid and 
one conversion of valid activation sets is caused by direct 
effects of actions. A basic fact can be an activation factor 
for a derived fact. If an activation factor holds in one state 
and does not hold in the latter state, then the activation set 
containing it is not valid any more and a new activation set 
is generated to make the derived fact hold if it is true. Thus 
we say a conversion occurs. So we attempt to build the 
conditions of a rule by tracing such a basic fact in training 
examples. Actually, such a learned rule could be an 
approximate activation set of a derived fact, if training 
examples are correct and sufficient. 
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The rest of this paper is organized as follows. The next 
section defines the problem of learning rules for derived 
predicates from plan examples. As one of our main 
contributions, the LAR algorithm will be presented and 
some experimental results will follow. After that, related 
work will be introduced. Finally, concludes with a 
discussion of future work will be addressed in the last 
section. 

Problem Statements  
In PDDL2.2 (Edelkamp & Hoffmann, 2004), the truth 
value of a derived predicate is determined by a set of 
domain rules in the form of if 

x
Φ  then xP , where xP  is the 

derived predicate and
x

Φ is a first-order formula. A 
planning problem containing derived predicates is defined 
as a tuple <Σ, I, G, B, D, R>, where Σ = <S, A, X> is a 
planning domain, I is the initial state, G is the goal state, B 
is the set of basic predicates, D is the set of derived 
predicates, and R is the set of rules for derived predicates 
in D. Sometimes, we call such a planning problem as a 
derived planning problem, a rule for a derived predicate as 
a derived rule, and the set R as a domain theory. 

In order to include all the instances of a derived 
predicate which hold in a state s, a map relation is defined 
on s: 

( ) : { ' | ', ( ( ), ( )) : , | | | |: 'D s s s s P x x R c c x sφ= ⊆ ∀ ∈ ∀ =∩ ╞ 
( ) ( ) ')}c p c sφ ⇒ ∈  

╞ is the logical entailment under the closed world 
assumption on s’. Therefore, executing an action a in a 
state s will lead to a successor state s’: 

)' ((( \ ) \ )a as D s DPdel add∪= ∪ ∪ , DP is the instance set 
of derived predicates which hold in the state s. 

)'' ( \ a as s del add∪= ∪ ∪  is called as an immediate result 
state. A basic fact is obtained by substituting each variable 
in the basic predicate with a constant, and so does a 
derived fact with respect to the derived predicate. A 
derived fact only can appear as a precondition of actions, 
called a derived precondition, or a goal, called a derived 
goal. 

The concept of activation sets was first introduced by 
(Gerevini el at., 2005), and implemented in a planning 
system, called LPG-td. An activation set for a derived fact 
is defined as a set of basic facts which can deduce the 
derived fact in the current state under applications of 
derived rules. Activation sets are calculated in the rule-
graph and joined into the rule-action graph to drive the 
solution extraction process. However, activation sets 
defined by (Gerevini et al., 2005) are temporary or state-
dependent, for they need to be recalculated once the 
current state changes. Often, these recalculations are very 
time-consuming and unworthy. Therefore, for the 
convenience of learning rules, we must redefine activation 
sets which are expected to deduce derived facts doubtless 
under a given rule set, regardless of the current state. 
Definition 1. Given a planning problem <Σ, I, G, B, D, R>, 
let d be a derived fact. An activation set for d is a minimal 

set F of basic facts such that F╞R d. And any member of F 
is said to be an activation factor for d. 

An activation set defined above is stable and state-
independent, and also can be calculated from a rule graph, 
which is a directed and cyclic AND-OR graph built from a 
grounded rule set  (Gerevini et al., 2005). A derived fact 
may have multiple activation sets, and they are composed 
of a set called Σ*. Our early work has presented an 
effective algorithm to calculate the set Σ* for a derived fact 
in a rule graph (for more details see (Jiang et al., 2006)). 
Example 1. Consider the domain PSR-MIDDLE-
STRIPS_DERIVEDPREDICATES-P01_DOMAIN.PDDL 
from IPC-4 (http://andorfer.cs.uni-dortmund.de/~edelkamp 
/ipc-4/). A segment of the rule graph is depicted in Figure 1. 
For the simplicity, all rule nodes are omitted. The set Σ* for 
the derived fact “NOT-AFFECTED-CB1” is showed as 
follows: 

 
 
 
 
 
 
 
 

There are six activation sets for NOT-AFFECTED-CB1, 
which holds in a state only if anyone of its activation sets 
holds in that state. 

Figure 1: A segment of the rule graph1 for P01_DOMAIN 
In fact, an activation set for a derived fact corresponds to 

a rule for the derived fact. Formally, we define such a rule 
as follows: 
Definition 2. Let F = {b1, b2…bm} be an activation set for 
a derived fact d. Then we have an activation rule ra: 

1 2 ... mb b b∧ ∧ ∧ d with respect to F. Similarly, let Σ* be 
the set of activation sets for d, an activation rule set for d is 

                                                 
1The proposition in a white pane is a derived fact, and the proposition 

in a grey pane is a basic fact. Each directed edge starts from the 
conclusion of a derived rule and ends in the conditions of this rule. 
Moreover, two or more connected blank lines point to different conditions 
belonging to the same rule, respectively. 

NOT-AFFECTED-CB1

NOT-UNSAFE-CB1-SIDE1 NOT-UNSAFE-CB1-SIDE2

fooNOT-UNSAFE-SD2-SIDE1 NOT-UNSAFE-SD1-SIDE1 NOT-CLOSED-CB1

NOT-CLOSED-SD2 NOT-UNSAFE-SD3-SIDE2 NOT-CLOSED-SD1 NOT-UNSAFE-EARTH-SIDE2

NOT-CLOSED-SD3 NOT-UNSAFE-SD8-SIDE1 foo

NOT-UNSAFE-SD9-SIDE2 NOT-UNSAFE-SD7-SIDE2 NOT-CLOSED-SD8

NOT-UNSAFE-SD11-SIDE2 NOT-UNSAFE-SD10-SIDE2 NOT-CLOSED-SD9 NOT-CLOSED-SD7

NOT-CLOSED-SD11 NOT-UNSAFE-EARTH-SIDE2 NOT-CLOSED-SD10

foo



said to be: Ra = {ra | ra is the activation rule with respect to 
F, and F ∈Σ*}. 

Actually, an activation rule is not recursive; however, 
recursive rules designed by human experts often can not 
explain observed plans in practice well. The reasons come 
from two aspects: (1) a mass of deduction steps are needed 
for there are too many hidden derived facts, like NOT-
UNSAFE-CB1-SIDE1. These hidden derived facts do not 
appear apparently in the initial state or any action model; 
(2) a domain theory may be incomplete, for instance, all 
rules about NOT-UNSAFE-CB1-SIDE1 are missing in 
Figure 1 and no activation set of NOT-AFFECTED-CB1 is 
known. Therefore, when NOT-AFFECTED-CB1 is a 
derived precondition or goal in a plan example, we will 
never know why the plan is valid. Therefore, it is 
significant to learn activation rules from plan examples. 

Next, we formally define some performance measures 
for our learning problem. We consider a plan P as a 
sequence of actions, and a state s as a set of atoms. 
Definition 3. A plan is said to be correct with respect to a 
rule set defining derived predicates, if each (basic or 
derived) precondition of an action holds in the state D(s) 
just before the action, and all goal propositions hold in the 
state D(s) after the last action. 

In our learning problem, if a derived precondition of an 
action is not satisfied in the preceding state of the action in 
a plan example, then we say an error occurs, and we use 
E(a) = E(a) + 1 to count the number of errors with action a 
in P. Similarly, if a derived goal is not satisfied in the last 
state, then we say an error occurs, and we use E(G) to 
count errors in G. Then the Error_rate of P2 is 

Therefore, with respect to a set of plan examples ΣP, the 
Sample_error_rate of a learned rule set Ra is defined as 
follows: 

On the other hand, a learned rule must be correct to be 
useful. 
Definition 4. Given a derived planning problem <Σ, I, G, 
B, D, R> and let R be a complete domain theory, an 
activation rule r = 1 2 ... mb b b∧ ∧ ∧ d is correct with 
respect to R, if 1 2{ ..., }, , mb b b ╞R d. 

Similarly, if a learned rule is not correct with respect to 
R, then we say an error occurs. Let Ra be a set of learned 
rules, and we use E(Ra) to count errors with Ra. The 
True_error rate of Ra is: 
 
 
 

                                                 
2derived_precond(a) is the set of derived preconditions of action a, and 

derived_goal(G) is the set of derived goals in the goal state G. 

The LAR Algorithm  
In this section, we will discuss how to build an algorithm 
to learn rules for the learning problem described above 
from plan examples. 

Extracting Training Examples 
A plan example can not be a training example directly for 
our learning problem. However, if action models are totally 
known, then we can apply plan examples to the initial state, 
and obtain training examples from the result states. 

Let us consider the domain in Example 1. Three solution 
plans are obtained from the planning competition 2004. 
We list these plan examples in Table 1. 
 Plan1 Plan2 Plan3 
s0 s1,0 = I s2,0 = I s3,0 = I 
a1 WAIT-2-0 WAIT-2-0 WAIT-2-0 
s1 s1,1 s2,1 s3,1 
a2 OPEN-SD7-0 OPEN-SD7-0 OPEN-SD9-0 
s2 s1,2 s2,2 s3,2 
a3 OPEN-SD11-0 OPEN-SD9-0 OPEN-SD7-0 
s3 s1,3 s2,3 s3,3 
a4 CLOSE-SD3-0 CLOSE-SD3-0 CLOSE-SD3-0 
s4 D(s1,4) = G s2,4 s3,4 
a5  OPEN-SD8-0 OPEN-SD11-0 
s5  s2,5 s3,5 
a6  CLOSE-SD9-0 CLOSE-SD9-0 
s6  s2,6 D(s3,6) = G 
a7  OPEN-SD11-0  
s7  s2,7  
a8  CLOSE-SD8-0  
s8  D(s2,8) = G  
Table 1: Three plan examples for P01_DOMAIN in PSR3 

In Table 1, some propositions are basic facts, like “foo”, 
“NOT-CLOSED-*” and “CLOSED-*”, and other 
propositions are derived facts, like “FED-*” and “NOT-
AFFECTED-*”. si,j means the immediate result state after 
action aj in the ith plan. Apparently, the initial state I is also 
an immediate result state after the Meta-action START. 
Since there are only basic facts in the initial state and 
effects of actions, all immediate result states only contain 
basic facts. Actually, Table 1 shows the state-action 
sequence for a plan example. Next, we consider an 
example of action models in the table above: 

(:action WAIT-2-0 
:parameters () 

                                                 
 3I: (foo) (NOT-CLOSED-SD3) (NOT-CLOSED-SD6) (CLOSED-
SD11) (CLOSED-SD10) (CLOSED-SD9) (CLOSED-SD8) (CLOSED-
SD7) (CLOSED-SD5) (CLOSED-SD4) (CLOSED-SD2) (CLOSED-SD1) 
(CLOSED-CB2) (CLOSED-CB1). G: (FED-L11) (FED-L10) (FED-L8) 
(FED-L7) (FED-L6) (FED-L2) (FED-L1) (NOT-AFFECTED-EARTH) 
(NOT-AFFECTED-CB1) (NOT-AFFECTED-CB2) (NOT-AFFECTED-
SD1) (NOT-AFFECTED-SD2) (NOT-AFFECTED-SD3) (NOT-
AFFECTED-SD4) (NOT-AFFECTED-SD5) (NOT-AFFECTED-SD6) 
(NOT-AFFECTED-SD7) (NOT-AFFECTED-SD8) (NOT-AFFECTED-
SD9) (NOT-AFFECTED-SD10) (NOT-AFFECTED-SD11) 
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:precondition 
(and (AFFECTED-CB2) (NOT-AFFECTED-CB1)) 
:effect 

(and (NOT-CLOSED-CB2) (not (CLOSED-CB2)))) 
In the definition of action WAIT-2-0, we can see that 

NOT-AFFECTED-CB1 is a derived precondition. Since 
WAIT-2-0 is applicable in the initial state I, NOT-
AFFECTED-CB1 must hold in I. However, any member of 
the power set 2I could be an activation set for NOT-
AFFECTED-CB1. Therefore, we would better use the pair 
<I, NOT-AFFECTED-CB1> as a positive training example. 

For the convenience of the algorithms, we formally 
define a training example as follows: 
Definition 5. A positive training example is a pair < si,j, d>, 
where si,j is the immediate result state after action aj in the 
ith plan, and d is a derived fact which holds in si,j. 
 Next, we present an intuitive algorithm to generate 
training examples from a set of plan examples. 

Algorithm 1 Generating training examples 
Input: a planning problem <Σ, I, G, B, D, R>, and a set 

of plans {P1, P2…PN} 
Output: a set of training example T 
Begin 
1. T ← ∅ 
2. For i = 1 to N do 
3.       si,0 ← I 
4.       For j = 1 to | Pi| do 
5.             For each derived precondition d of action ai,j 

do 
6.                    T ← T ∪ {< si,j-1, d>} 
7.              si,j is the immediate result state after 

applying action ai,j in the state si,j-1 
8.              If j = | Pi| then 
9.                   For each derived goal g ∈ G do 
10.                          T ← T ∪ {< si,j, g>} 
End 
Figure 2: Pseudo code for generating training examples 

Learning Activation Rules 
In a training example <s, d>, any subset of the state s could 
be an activation set for the derived fact d, but it does not 
make any sense for guessing one subset randomly to build 
an activation rule. The effects of an action affect the truth 
of basic facts, and thus the activation sets related to these 
basic facts are influenced indirectly, becoming valid or 
invalid. Consider the derived fact NOT-AFFECTED-CB1, 
whose activation sets have been found out in Example 1. In 
Table 2, we list all activation sets for this derived fact in 
each of its training examples from three plans in Table 1. 
Due to the limitations of space, training examples are 
shortened with the state name, since they are for the same 
derived fact. Besides, a state contains too many atoms, so 
we only list the atoms which are directly affected by 
effects of an action.  

Training 
Examples 

State 
(Atoms affected by an action) 

Activation 
Sets 4 

s1,0 I5 F1 
s1,1 (NOT-CLOSED-CB2) (not (CLOSED-CB2)) F1 
s1,2 (NOT-CLOSED-SD7) (not (CLOSED-SD7)) F1 
s1,3 (NOT-CLOSED-SD11) (not (CLOSED-

SD11)) 
F1 , F2 

s1,4 (CLOSED-SD3) (not (NOT-CLOSED-SD3)) F2 
s2,0 I F1 
s2,1 (NOT-CLOSED-CB2) (not (CLOSED-CB2)) F1 
s2,2 (NOT-CLOSED-SD7) (not (CLOSED-SD7)) F1 
s2,3 (NOT-CLOSED-SD9) (not (CLOSED-SD9)) F1 , F3 
s2,4 (CLOSED-SD3) (not (NOT-CLOSED-SD3)) F3 
s2,5 (NOT-CLOSED-SD8) (not (CLOSED-SD8)) F3 , F4 
s2,6 (CLOSED-SD9) (not (NOT-CLOSED-SD9)) F4 
s2,7 (NOT-CLOSED-SD11) (not (CLOSED-

SD11)) 
F4 , F2 

s2,8 (CLOSED-SD8) (not (NOT-CLOSED-SD8)) F2 
s3,0 I F1 
s3,1 (NOT-CLOSED-CB2) (not (CLOSED-CB2)) F1 
s3,2 (NOT-CLOSED-SD9) (not (CLOSED-SD9)) F1 
s3,3 (NOT-CLOSED-SD7) (not (CLOSED-SD7)) F1 , F3 
s3,4 (CLOSED-SD3) (not (NOT-CLOSED-SD3)) F3 
s3,5 (NOT-CLOSED-SD11) (not (CLOSED-

SD11)) 
F3 , F2 

s3,6 (CLOSED-SD9) (not (NOT-CLOSED-SD9)) F2 
Table 2: activation sets for NOT-AFFECTED-CB1 in its 
training examples 
 NOT-AFFECTED-CB1 is a derived precondition of 
every action in plan examples and also a derived goal, so it 
is not surprising that its training examples include all result 
states in Table 1. Some interesting disciplines are observed 
from Table 2. First, in such a derived planning domain as 
PSR, actions are often used to generate an activation factor 
for a new activation set, or make an old activation set 
invalid. Second, one conversion of activation sets is caused 
by the change of the truth value of some basic fact. When 
the basic fact is made true, an activation set containing it is 
coming into being, and when it is made false, the activation 
set containing it becomes invalid. An example of such a 
basic fact is NOT-CLOSED-SD9. Third, some basic facts 
act as default activation factors, like “foo”. 
 It is hard to explain how these disciplines work 
theoretically; however, our empirical studies show that 
they really work in the domain PSR or PROMELA. Next, 
we formally define some terms for the convenience of the 
presentation of our algorithm. 
Definition 6. In the set of training examples for a derived 
fact, let si,j and si,j+k be the immediate result state after 
action  ai,j and ai,j+k  in the ith plan, respectively, and k > 0. 
A basic fact b is said to be a conversion factor, if b is a 
positive effect of ai,j and also a negative effect of ai,j+k. And 

                                                 
4F1 stands for {foo, NOT-CLOSED-SD3}. F2 stands for {foo, NOT-

CLOSED-SD7, NOT-CLOSED-SD11}. F3 stands for {foo, NOT-
CLOSED-SD7, NOT-CLOSED-SD9}. F4 stands for {foo, NOT-
CLOSED-SD8}. 

5I is exactly same with I in Table 1. 



we say that si,j and si,j+k are two special state points of b, si,j 
is called as T_point, and si,j+k is called as F_point.  
 An example of conversion factors is NOT-CLOSED-
SD9, s3,2 is its T_point, and s3,6 is its F_point. Of course, a 
conversion factor may have more than one pair of special 
state points in a plan example. Conversion factors in the 
same training example set are often similar, like NOT-
CLOSED-SD9 and NOT-CLOSED-SD8. Sometimes, we 
find that Definition 6 is too strict, so a relaxed case is 
considered. If a basic fact first holds in the initial state and 
then becomes a negative effect of some action in a latter 
state and is similar with other conversion factors, we say it 
is a relaxed conversion factor. An example is NOT-
CLOSED-SD3 in Table 2, s1,0 is its T_point, and s1,4 is its 
F_point. 
Definition 7. A basic fact is said to be an invariable fact, if 
it holds in the initial state but does not appear in any action 
model. 
 Next, we present the LAR algorithm to learn activation 
rules based on the disciplines above. The algorithm is 
feasible, no matter that whether the domain theory is 
complete. If a domain theory is complete, the 
True_error_rate of learned rules can be evaluated. If not, 
some important initial guidance is provided by learned 
rules for complementing the incomplete domain theory. 

Algorithm 2 Learning activation rules (LAR) 
Input: a planning problem <Σ, I, G, B, D, R>, and a set 

of training examples T 
Output: a set of activation rules Ra 
Begin 
1. Ra ← ∅ 
2. Let {d1, d2…dN} be the set of derived facts 

contained in T, and T is grouped into T1, T2…TN, 
with Ti only containing the training examples 
corresponding to di 

3. For each rule r = c1 ∧ c2 ∧…∧cm  d in R do 
4.         If c1, c2…cm are basic facts and d ∈{d1, d2…dN}                

then  
5.            Ra ← Ra ∪ {r} 
6. For h = 1 to N do 
7.     For each (relaxed) conversion factor b in Th do 
8.          rgeneral = b  dh 
9.          Ra ← Ra ∪ { rgeneral } 
10.         For each pair < si,j = T_point,  si,j+k = F_point > 

of b do 
11.             Let {e1, e2…en} be the positive effect set 

from action ai,j to action ai,j+k-1 in the ith plan, 
which does not contain any conversion factor 
in negated form 

12.             rspecial = e1 ∧ e2 ∧…∧en  dh 
13.             Ra ← Ra ∪ { rspecial } 
14. Remove all redundant rules in Ra 
15. Find out the invariable fact set Finvar = {f1, f2…fm} 
16. For each rule r = b1 ∧ b2 ∧…∧bn  d in Ra do 
17.        r’ = b1 ∧ b2 ∧…∧bn ∧ f1 ∧ f2 ∧…∧bm  d 
18.        Ra ← (Ra - {r}) ∪ {r’} 
19. For each rule rgeneral in Ra do 

20.       If there exists a rule rspecial in Ra and rspecial is 
more special than rgeneral then 

21.           Ra ← Ra - { rgeneral } 
End 
Figure 3: Pseudo code for learning activation sets 

 In the algorithm above, the training examples set T is 
built on state-action sequences from plan examples, so 
each grouping Ti (1≤i≤N) can be sorted naturally by the 
state-action sequences. If the domain theory R contains 
some original activation rules, they should be joined into 
Ra to decrease the error_rate (step 3~5). The algorithm 
actually generates two kinds of activation rules, according 
to a conversion factor b and each pair of its state points: At 
T_point, b becomes true as a positive effect, which means 
that an activation set containing b is coming in being. 
Therefore, a most general rule b  dh is built in step 8. At 
F_point, b becomes false as a negative effect, which means 
the activation set containing b is invalid, and another new 
activation set is functioning. So, a most special rule e1 ∧ e2 
∧…∧en  dh is built in step 12, where {e1, e2…en} is the 
set of all positive effects between the two state points but 
does not contain any conversion factor in negated form. 
Some reasonable adjustments for the learned rules are 
carried out in step 15~21. First, invariable facts are joined 
into each rule as default activation factors. Second, if there 
are two rules r1 = a  c and r2 = a ∧ b  c, we can say r1 
is more general than r2, whereas r2 is more special than r1. 
It is possible that some activation factors are omitted when 
we build a most general rule. Therefore, if there is a rule 
which is more special than a most general rule, the most 
general rule should be removed. 
 Considering an example, we try to learn activation rules 
for the derived fact NOT-AFFECTED-CB1, whose 
training examples have been listed in Table 2. According 
to the (relaxed) definition of conversion factors, there are 
three: NOT-CLOSED-SD9, NOT-CLOSED-SD8, NOT-
CLOSED-SD3. Finally, we obtain the rule set as follows: 
① foo ∧ NOT-CLOSED-SD3  NOT-AFFECTED-CB1 
② foo ∧ NOT-CLOSED-CB2 ∧ NOT-CLOSED-SD7 ∧ 

NOT-CLOSED-SD11  NOT-AFFECTED-CB1 
③ foo ∧ NOT-CLOSED-CB2 ∧ NOT-CLOSED-SD7 ∧ 

NOT-CLOSED-SD9  NOT-AFFECTED-CB1 
④ foo ∧ NOT-CLOSED-SD8  NOT-AFFECTED-CB1 
⑤ foo ∧ NOT-CLOSED-SD11  NOT-AFFECTED-CB1 
⑥foo ∧ NOT-CLOSED-SD7 ∧ NOT-CLOSED-SD11  

NOT-AFFECTED-CB1 
  Comparing with activation sets in Example 1, we can 
see that rule ,  and  are ① ④ ⑥ totally correct, rule②, ③ 
and ⑤ are partially correct. A redundant condition NOT-
CLOSED-CB2 appears in ② or ③, and a necessary 
condition NOT-CLOSED-SD7 is missing in ⑤. 

Experiments 
To validate the effectiveness of the algorithms, we develop 
a simple learning system, called DPLAR. The input is the 
description of a planning problem (DOMAIN.PDDL and 
PROBLEM.PDDL) and a set of plan examples 



(PLANS.TXT), and the output is a learned rule set 
(RULES.TXT). We use a planner called FF-DP which was 
developed in our early work (Jiang et al., 2006), to 
calculate activation sets of a derived fact involved in a plan 
example. The results from FF-DP can be used to evaluate 
the true_error_rate of the learned rules.  

Domain6 #t_examples #rules s_err_rate t_err_rate
P01_Domain 294 126 7% 22% 
P02_Domain 147 119 3% 25% 
P03_Domain 290 196 3% 37% 
P04_Domain 281 132 4% 31% 
P05_Domain 284 106 2% 19% 
P06_Domain 648 208 9% 30% 
P07_Domain 307 156 6% 11% 
P08_Domain 269 210 5% 26% 
P09_Domain 303 108 3% 28% 

P010_Domain 1197 315 2% 30% 
Table 3: Experiments on PSR-Middle-StripsDerived 

 From the table above, we can see that the 
sample_error_rate of the learned rule set is acceptable. On 
the other hand, the true_error_rate is not satisfactory. The 
learned rules are not completely correct, even if most of 
them are very close to target rules. Therefore, some further 
refinement strategies should be considered to improve the 
precision of learned rules. 

Related Work and Discussions 
Many methods have been developed to learn rules in AI 
planning; however, to the best of our knowledge, few 
efforts have been put on learning rules for derived 
predicates. (Zettlemoyer et al., 2005) has presented an 
algorithm to learn a model of the effects of actions in noisy 
stochastic worlds, while also learning derived predicates. 
They apply some predefined operators to literals to 
iteratively construct new predicates and test their 
usefulness in the learned action models. Indeed, they learn 
derived effects in an action model, not rules for derived 
predicates. Besides, Inductive Logic Programming (ILP) 
systems develop predicate descriptions from examples and 
background knowledge. The underlying techniques check 
every candidate literal and test its usefulness in covering 
positive examples. An essential assumption for this is that 
training examples are plentiful. However, in our 
experiment domains, the number of training examples for 
each derived fact is less than 50, and so these domains are 
not a well-suited application area for ILP systems.  

Conclusions 
In this paper, we have developed an algorithm for 
automatically learning rules for derived predicates from a 

                                                 
6#t_examples is the total number of training examples. #rule is the total 

number of learned rules. s_err_rate is the sample_error_rate of the learned 
rule set. t_err_rate is the true_error_rate of the learned rule set. 

set of plan examples even if the domain theory is 
incomplete. With conversion disciplines of activation sets 
of a derived fact in training examples, we can learn a set of 
“activation rules” that are nearly consistent with domain 
rules designed by human experts. We have shown 
empirically that it is feasible to learn these rules in a 
reasonable way using conversion factors and their special 
state points to construct most general or special rules. The 
learned activation rules can explain plan examples in a 
very intuitive way. While we take the first step towards 
automatically acquiring rules for derived predicates, there 
are a few limitations of the current work, which we plan to 
overcome in our future extensions. First, the learned rules 
are limited in proposition logic only for STRIPS plans 
examples, and it is an important task to extend them to be 
first-order rules for ADL plans. Second, to learn the 
domain from plans executed in the "real" world is very 
significative, which also implies learning probabilistic 
knowledge (as real world is noisy). 
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