
Learning Activation Rules for Derived
Predicates from Plan Examples

Dongning Rao1, Zhihua Jiang2,1, Yunfei Jiang1

1Software Research Institute, School of Information Science and Technology, Sun Yat-Sen University, Guangzhou 510275, P.R. China
2Department of Computer Science, Jinan University, Guangzhou 510632, P.R. China

E-MAIL: rdn2006@163.com, jnujzh@163.com, issjyf@mail.sysu.edu.cn

Abstract
Derived predicates are a compact way to depict complex
planning domains, and their truth value in the current state
is inferred from that of basic predicates via domain rules.
However, domain rules designed by human experts often
can not explain plan examples well in an intuitive way, and
moreover, they can not explain plan examples when they are
incomplete. In this paper, we develop a novel algorithm
called LAR (Learning Activation Rules) for automatically
discovering rules for derived predicates from a set of
observed plans. Our empirical studies show that the
conversion of activation sets of a derived fact is closely
related to direct effects of actions, and therefore LAR
attempts to build “activation rules” by tracing some special
basic facts and their special state points in training examples.
Indeed, a learned rule could be an approximate activation
set of a derived fact, if training examples are sufficient and
correct. We experiment the approach in the PSR (Power
Supply Restoration) domain and evaluate the effectiveness
of LAR empirically.

Introduction
There are some domains where plain STRIPS/ADL can not
express the effects efficiently. PSR (Power Supply
Restoration) domain is such a domain (Bonet & Thiébaux,
2003). In this case, derived predicates are introduced,
which add additional effects (e.g., power outage of far
away connected-line from the cut-off line) after each
execution of an action. Derived predicates are a compact
way to depict complex planning domains, and their truth
value in the current state is inferred from that of basic
predicates via domain rules.

However, domain rules designed by human experts often
can not explain plan examples well in an intuitive way, and
sometimes they even can not be guaranteed to be a correct
and complete domain theory because of incomplete
information. Often, a mass of deduction steps are needed in
order to tell whether a derived precondition of an action
holds in the current state under recursive rules for derived
predicates. And moreover, if domain rules are incomplete,
one can hardly explain why an observed plan is valid.

Copyright © 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Therefore, it is very interesting and promising that one can
learn intuitive rules for derived predicates from observed
plans in practice.

In the past, various approaches have been explored to
learn rules from training examples. A well-studied territory
is learning Inductive Logic Programming (ILP), which has
been a hot research topic in the mid-90s (Lavrac &
Dzeroski, 1994). A unifying theory of ILP is being built up
around lattice-based concepts such as refinement, least
general generalization, inverse resolution and most specific
corrections. Sequential covering algorithm (Clark &
Niblett, 1989) is one of the most widely used methods for
learning a disjunctive rule set to cover all positive
examples. It uses a subroutine called Learn-One-Rule to
learn a single rule to cover some positive examples each
time. This process is repeated until all positive examples
are covered. FOIL (Quinlan, 1990) is an extension on
sequential covering algorithm and can learn first-order
rules and simple recursive rules. Besides, decision-tree or
genetic algorithms are used to learn classification rules in
order to judge whether a new instance satisfies a target
attribute.

In this paper, we take the first step towards
automatically acquiring rules for derived predicates from
plans examples. Indeed, it is a difficult task assuming no
predefined model of rules is known. Besides, learned rules
must satisfy semantics characteristics of derived predicates.
Here, we present an algorithm to learn rules only in
proposition logic. For learning first-order rules for derived
predicates is more difficult, we leave it as a major future
extension. Our empirical studies show that a derived fact
holds if only at least one of its activation sets is valid and
one conversion of valid activation sets is caused by direct
effects of actions. A basic fact can be an activation factor
for a derived fact. If an activation factor holds in one state
and does not hold in the latter state, then the activation set
containing it is not valid any more and a new activation set
is generated to make the derived fact hold if it is true. Thus
we say a conversion occurs. So we attempt to build the
conditions of a rule by tracing such a basic fact in training
examples. Actually, such a learned rule could be an
approximate activation set of a derived fact, if training
examples are correct and sufficient.

{foo N O T -C LO S E D -C B1}

{foo N O T -C LO S E D -S D 2}

{foo N O T -C LO S E D -S D 3}

{foo N O T -C LO S E D -S D 8}

{foo N O T -C LO S E D -S D 7 N O T -C LO S E D -S D 9}

{foo N O T -C LO S E D -S D 7 N O T -C LO S E D -S D 11}

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎩ ⎭

The rest of this paper is organized as follows. The next
section defines the problem of learning rules for derived
predicates from plan examples. As one of our main
contributions, the LAR algorithm will be presented and
some experimental results will follow. After that, related
work will be introduced. Finally, concludes with a
discussion of future work will be addressed in the last
section.

Problem Statements
In PDDL2.2 (Edelkamp & Hoffmann, 2004), the truth
value of a derived predicate is determined by a set of
domain rules in the form of if

x
Φ then xP , where xP is the

derived predicate and
x

Φ is a first-order formula. A
planning problem containing derived predicates is defined
as a tuple <Σ, I, G, B, D, R>, where Σ = <S, A, X> is a
planning domain, I is the initial state, G is the goal state, B
is the set of basic predicates, D is the set of derived
predicates, and R is the set of rules for derived predicates
in D. Sometimes, we call such a planning problem as a
derived planning problem, a rule for a derived predicate as
a derived rule, and the set R as a domain theory.

In order to include all the instances of a derived
predicate which hold in a state s, a map relation is defined
on s:

() : { ' | ', ((), ()) : , | | | |: 'D s s s s P x x R c c x sφ= ⊆ ∀ ∈ ∀ =∩ ╞
() () ')}c p c sφ ⇒ ∈

╞ is the logical entailment under the closed world
assumption on s’. Therefore, executing an action a in a
state s will lead to a successor state s’:

)' (((\) \)a as D s DPdel add∪= ∪ ∪ , DP is the instance set
of derived predicates which hold in the state s.

)'' (\ a as s del add∪= ∪ ∪ is called as an immediate result
state. A basic fact is obtained by substituting each variable
in the basic predicate with a constant, and so does a
derived fact with respect to the derived predicate. A
derived fact only can appear as a precondition of actions,
called a derived precondition, or a goal, called a derived
goal.

The concept of activation sets was first introduced by
(Gerevini el at., 2005), and implemented in a planning
system, called LPG-td. An activation set for a derived fact
is defined as a set of basic facts which can deduce the
derived fact in the current state under applications of
derived rules. Activation sets are calculated in the rule-
graph and joined into the rule-action graph to drive the
solution extraction process. However, activation sets
defined by (Gerevini et al., 2005) are temporary or state-
dependent, for they need to be recalculated once the
current state changes. Often, these recalculations are very
time-consuming and unworthy. Therefore, for the
convenience of learning rules, we must redefine activation
sets which are expected to deduce derived facts doubtless
under a given rule set, regardless of the current state.
Definition 1. Given a planning problem <Σ, I, G, B, D, R>,
let d be a derived fact. An activation set for d is a minimal

set F of basic facts such that F╞R d. And any member of F
is said to be an activation factor for d.

An activation set defined above is stable and state-
independent, and also can be calculated from a rule graph,
which is a directed and cyclic AND-OR graph built from a
grounded rule set (Gerevini et al., 2005). A derived fact
may have multiple activation sets, and they are composed
of a set called Σ*. Our early work has presented an
effective algorithm to calculate the set Σ* for a derived fact
in a rule graph (for more details see (Jiang et al., 2006)).
Example 1. Consider the domain PSR-MIDDLE-
STRIPS_DERIVEDPREDICATES-P01_DOMAIN.PDDL
from IPC-4 (http://andorfer.cs.uni-dortmund.de/~edelkamp
/ipc-4/). A segment of the rule graph is depicted in Figure 1.
For the simplicity, all rule nodes are omitted. The set Σ* for
the derived fact “NOT-AFFECTED-CB1” is showed as
follows:

There are six activation sets for NOT-AFFECTED-CB1,
which holds in a state only if anyone of its activation sets
holds in that state.

Figure 1: A segment of the rule graph1 for P01_DOMAIN
In fact, an activation set for a derived fact corresponds to

a rule for the derived fact. Formally, we define such a rule
as follows:
Definition 2. Let F = {b1, b2…bm} be an activation set for
a derived fact d. Then we have an activation rule ra:

1 2 ... mb b b∧ ∧ ∧ d with respect to F. Similarly, let Σ* be
the set of activation sets for d, an activation rule set for d is

1The proposition in a white pane is a derived fact, and the proposition

in a grey pane is a basic fact. Each directed edge starts from the
conclusion of a derived rule and ends in the conditions of this rule.
Moreover, two or more connected blank lines point to different conditions
belonging to the same rule, respectively.

NOT-AFFECTED-CB1

NOT-UNSAFE-CB1-SIDE1 NOT-UNSAFE-CB1-SIDE2

fooNOT-UNSAFE-SD2-SIDE1 NOT-UNSAFE-SD1-SIDE1 NOT-CLOSED-CB1

NOT-CLOSED-SD2 NOT-UNSAFE-SD3-SIDE2 NOT-CLOSED-SD1 NOT-UNSAFE-EARTH-SIDE2

NOT-CLOSED-SD3 NOT-UNSAFE-SD8-SIDE1 foo

NOT-UNSAFE-SD9-SIDE2 NOT-UNSAFE-SD7-SIDE2 NOT-CLOSED-SD8

NOT-UNSAFE-SD11-SIDE2 NOT-UNSAFE-SD10-SIDE2 NOT-CLOSED-SD9 NOT-CLOSED-SD7

NOT-CLOSED-SD11 NOT-UNSAFE-EARTH-SIDE2 NOT-CLOSED-SD10

foo

said to be: Ra = {ra | ra is the activation rule with respect to
F, and F ∈Σ*}.

Actually, an activation rule is not recursive; however,
recursive rules designed by human experts often can not
explain observed plans in practice well. The reasons come
from two aspects: (1) a mass of deduction steps are needed
for there are too many hidden derived facts, like NOT-
UNSAFE-CB1-SIDE1. These hidden derived facts do not
appear apparently in the initial state or any action model;
(2) a domain theory may be incomplete, for instance, all
rules about NOT-UNSAFE-CB1-SIDE1 are missing in
Figure 1 and no activation set of NOT-AFFECTED-CB1 is
known. Therefore, when NOT-AFFECTED-CB1 is a
derived precondition or goal in a plan example, we will
never know why the plan is valid. Therefore, it is
significant to learn activation rules from plan examples.

Next, we formally define some performance measures
for our learning problem. We consider a plan P as a
sequence of actions, and a state s as a set of atoms.
Definition 3. A plan is said to be correct with respect to a
rule set defining derived predicates, if each (basic or
derived) precondition of an action holds in the state D(s)
just before the action, and all goal propositions hold in the
state D(s) after the last action.

In our learning problem, if a derived precondition of an
action is not satisfied in the preceding state of the action in
a plan example, then we say an error occurs, and we use
E(a) = E(a) + 1 to count the number of errors with action a
in P. Similarly, if a derived goal is not satisfied in the last
state, then we say an error occurs, and we use E(G) to
count errors in G. Then the Error_rate of P2 is

Therefore, with respect to a set of plan examples ΣP, the
Sample_error_rate of a learned rule set Ra is defined as
follows:

On the other hand, a learned rule must be correct to be
useful.
Definition 4. Given a derived planning problem <Σ, I, G,
B, D, R> and let R be a complete domain theory, an
activation rule r = 1 2 ... mb b b∧ ∧ ∧ d is correct with
respect to R, if 1 2{ ..., }, , mb b b ╞R d.

Similarly, if a learned rule is not correct with respect to
R, then we say an error occurs. Let Ra be a set of learned
rules, and we use E(Ra) to count errors with Ra. The
True_error rate of Ra is:

2derived_precond(a) is the set of derived preconditions of action a, and

derived_goal(G) is the set of derived goals in the goal state G.

The LAR Algorithm
In this section, we will discuss how to build an algorithm
to learn rules for the learning problem described above
from plan examples.

Extracting Training Examples
A plan example can not be a training example directly for
our learning problem. However, if action models are totally
known, then we can apply plan examples to the initial state,
and obtain training examples from the result states.

Let us consider the domain in Example 1. Three solution
plans are obtained from the planning competition 2004.
We list these plan examples in Table 1.
 Plan1 Plan2 Plan3
s0 s1,0 = I s2,0 = I s3,0 = I
a1 WAIT-2-0 WAIT-2-0 WAIT-2-0
s1 s1,1 s2,1 s3,1
a2 OPEN-SD7-0 OPEN-SD7-0 OPEN-SD9-0
s2 s1,2 s2,2 s3,2
a3 OPEN-SD11-0 OPEN-SD9-0 OPEN-SD7-0
s3 s1,3 s2,3 s3,3
a4 CLOSE-SD3-0 CLOSE-SD3-0 CLOSE-SD3-0
s4 D(s1,4) = G s2,4 s3,4
a5 OPEN-SD8-0 OPEN-SD11-0
s5 s2,5 s3,5
a6 CLOSE-SD9-0 CLOSE-SD9-0
s6 s2,6 D(s3,6) = G
a7 OPEN-SD11-0
s7 s2,7
a8 CLOSE-SD8-0
s8 D(s2,8) = G
Table 1: Three plan examples for P01_DOMAIN in PSR3

In Table 1, some propositions are basic facts, like “foo”,
“NOT-CLOSED-*” and “CLOSED-*”, and other
propositions are derived facts, like “FED-*” and “NOT-
AFFECTED-*”. si,j means the immediate result state after
action aj in the ith plan. Apparently, the initial state I is also
an immediate result state after the Meta-action START.
Since there are only basic facts in the initial state and
effects of actions, all immediate result states only contain
basic facts. Actually, Table 1 shows the state-action
sequence for a plan example. Next, we consider an
example of action models in the table above:

(:action WAIT-2-0
:parameters ()

 3I: (foo) (NOT-CLOSED-SD3) (NOT-CLOSED-SD6) (CLOSED-
SD11) (CLOSED-SD10) (CLOSED-SD9) (CLOSED-SD8) (CLOSED-
SD7) (CLOSED-SD5) (CLOSED-SD4) (CLOSED-SD2) (CLOSED-SD1)
(CLOSED-CB2) (CLOSED-CB1). G: (FED-L11) (FED-L10) (FED-L8)
(FED-L7) (FED-L6) (FED-L2) (FED-L1) (NOT-AFFECTED-EARTH)
(NOT-AFFECTED-CB1) (NOT-AFFECTED-CB2) (NOT-AFFECTED-
SD1) (NOT-AFFECTED-SD2) (NOT-AFFECTED-SD3) (NOT-
AFFECTED-SD4) (NOT-AFFECTED-SD5) (NOT-AFFECTED-SD6)
(NOT-AFFECTED-SD7) (NOT-AFFECTED-SD8) (NOT-AFFECTED-
SD9) (NOT-AFFECTED-SD10) (NOT-AFFECTED-SD11)

() ()
_ ()

_ () | _ () |
a P

a P

E a E G
Error rate P

derived precond a derived goal G
∈

∈

+

=
+

∑

∑

_ ()
_ _ ()

| |a

P

Error rate P
Sample error rate R =

Σ

∑

()
_ _ () a

a

a
E R

True Error rate R
R

=

:precondition
(and (AFFECTED-CB2) (NOT-AFFECTED-CB1))
:effect

(and (NOT-CLOSED-CB2) (not (CLOSED-CB2))))
In the definition of action WAIT-2-0, we can see that

NOT-AFFECTED-CB1 is a derived precondition. Since
WAIT-2-0 is applicable in the initial state I, NOT-
AFFECTED-CB1 must hold in I. However, any member of
the power set 2I could be an activation set for NOT-
AFFECTED-CB1. Therefore, we would better use the pair
<I, NOT-AFFECTED-CB1> as a positive training example.

For the convenience of the algorithms, we formally
define a training example as follows:
Definition 5. A positive training example is a pair < si,j, d>,
where si,j is the immediate result state after action aj in the
ith plan, and d is a derived fact which holds in si,j.
 Next, we present an intuitive algorithm to generate
training examples from a set of plan examples.

Algorithm 1 Generating training examples
Input: a planning problem <Σ, I, G, B, D, R>, and a set

of plans {P1, P2…PN}
Output: a set of training example T
Begin
1. T ← ∅
2. For i = 1 to N do
3. si,0 ← I
4. For j = 1 to | Pi| do
5. For each derived precondition d of action ai,j

do
6. T ← T ∪ {< si,j-1, d>}
7. si,j is the immediate result state after

applying action ai,j in the state si,j-1
8. If j = | Pi| then
9. For each derived goal g ∈ G do
10. T ← T ∪ {< si,j, g>}
End
Figure 2: Pseudo code for generating training examples

Learning Activation Rules
In a training example <s, d>, any subset of the state s could
be an activation set for the derived fact d, but it does not
make any sense for guessing one subset randomly to build
an activation rule. The effects of an action affect the truth
of basic facts, and thus the activation sets related to these
basic facts are influenced indirectly, becoming valid or
invalid. Consider the derived fact NOT-AFFECTED-CB1,
whose activation sets have been found out in Example 1. In
Table 2, we list all activation sets for this derived fact in
each of its training examples from three plans in Table 1.
Due to the limitations of space, training examples are
shortened with the state name, since they are for the same
derived fact. Besides, a state contains too many atoms, so
we only list the atoms which are directly affected by
effects of an action.

Training
Examples

State
(Atoms affected by an action)

Activation
Sets 4

s1,0 I5 F1
s1,1 (NOT-CLOSED-CB2) (not (CLOSED-CB2)) F1
s1,2 (NOT-CLOSED-SD7) (not (CLOSED-SD7)) F1
s1,3 (NOT-CLOSED-SD11) (not (CLOSED-

SD11))
F1 , F2

s1,4 (CLOSED-SD3) (not (NOT-CLOSED-SD3)) F2
s2,0 I F1
s2,1 (NOT-CLOSED-CB2) (not (CLOSED-CB2)) F1
s2,2 (NOT-CLOSED-SD7) (not (CLOSED-SD7)) F1
s2,3 (NOT-CLOSED-SD9) (not (CLOSED-SD9)) F1 , F3
s2,4 (CLOSED-SD3) (not (NOT-CLOSED-SD3)) F3
s2,5 (NOT-CLOSED-SD8) (not (CLOSED-SD8)) F3 , F4
s2,6 (CLOSED-SD9) (not (NOT-CLOSED-SD9)) F4
s2,7 (NOT-CLOSED-SD11) (not (CLOSED-

SD11))
F4 , F2

s2,8 (CLOSED-SD8) (not (NOT-CLOSED-SD8)) F2
s3,0 I F1
s3,1 (NOT-CLOSED-CB2) (not (CLOSED-CB2)) F1
s3,2 (NOT-CLOSED-SD9) (not (CLOSED-SD9)) F1
s3,3 (NOT-CLOSED-SD7) (not (CLOSED-SD7)) F1 , F3
s3,4 (CLOSED-SD3) (not (NOT-CLOSED-SD3)) F3
s3,5 (NOT-CLOSED-SD11) (not (CLOSED-

SD11))
F3 , F2

s3,6 (CLOSED-SD9) (not (NOT-CLOSED-SD9)) F2
Table 2: activation sets for NOT-AFFECTED-CB1 in its
training examples
 NOT-AFFECTED-CB1 is a derived precondition of
every action in plan examples and also a derived goal, so it
is not surprising that its training examples include all result
states in Table 1. Some interesting disciplines are observed
from Table 2. First, in such a derived planning domain as
PSR, actions are often used to generate an activation factor
for a new activation set, or make an old activation set
invalid. Second, one conversion of activation sets is caused
by the change of the truth value of some basic fact. When
the basic fact is made true, an activation set containing it is
coming into being, and when it is made false, the activation
set containing it becomes invalid. An example of such a
basic fact is NOT-CLOSED-SD9. Third, some basic facts
act as default activation factors, like “foo”.
 It is hard to explain how these disciplines work
theoretically; however, our empirical studies show that
they really work in the domain PSR or PROMELA. Next,
we formally define some terms for the convenience of the
presentation of our algorithm.
Definition 6. In the set of training examples for a derived
fact, let si,j and si,j+k be the immediate result state after
action ai,j and ai,j+k in the ith plan, respectively, and k > 0.
A basic fact b is said to be a conversion factor, if b is a
positive effect of ai,j and also a negative effect of ai,j+k. And

4F1 stands for {foo, NOT-CLOSED-SD3}. F2 stands for {foo, NOT-

CLOSED-SD7, NOT-CLOSED-SD11}. F3 stands for {foo, NOT-
CLOSED-SD7, NOT-CLOSED-SD9}. F4 stands for {foo, NOT-
CLOSED-SD8}.

5I is exactly same with I in Table 1.

we say that si,j and si,j+k are two special state points of b, si,j
is called as T_point, and si,j+k is called as F_point.
 An example of conversion factors is NOT-CLOSED-
SD9, s3,2 is its T_point, and s3,6 is its F_point. Of course, a
conversion factor may have more than one pair of special
state points in a plan example. Conversion factors in the
same training example set are often similar, like NOT-
CLOSED-SD9 and NOT-CLOSED-SD8. Sometimes, we
find that Definition 6 is too strict, so a relaxed case is
considered. If a basic fact first holds in the initial state and
then becomes a negative effect of some action in a latter
state and is similar with other conversion factors, we say it
is a relaxed conversion factor. An example is NOT-
CLOSED-SD3 in Table 2, s1,0 is its T_point, and s1,4 is its
F_point.
Definition 7. A basic fact is said to be an invariable fact, if
it holds in the initial state but does not appear in any action
model.
 Next, we present the LAR algorithm to learn activation
rules based on the disciplines above. The algorithm is
feasible, no matter that whether the domain theory is
complete. If a domain theory is complete, the
True_error_rate of learned rules can be evaluated. If not,
some important initial guidance is provided by learned
rules for complementing the incomplete domain theory.

Algorithm 2 Learning activation rules (LAR)
Input: a planning problem <Σ, I, G, B, D, R>, and a set

of training examples T
Output: a set of activation rules Ra
Begin
1. Ra ← ∅
2. Let {d1, d2…dN} be the set of derived facts

contained in T, and T is grouped into T1, T2…TN,
with Ti only containing the training examples
corresponding to di

3. For each rule r = c1 ∧ c2 ∧…∧cm d in R do
4. If c1, c2…cm are basic facts and d ∈{d1, d2…dN}

then
5. Ra ← Ra ∪ {r}
6. For h = 1 to N do
7. For each (relaxed) conversion factor b in Th do
8. rgeneral = b dh
9. Ra ← Ra ∪ { rgeneral }
10. For each pair < si,j = T_point, si,j+k = F_point >

of b do
11. Let {e1, e2…en} be the positive effect set

from action ai,j to action ai,j+k-1 in the ith plan,
which does not contain any conversion factor
in negated form

12. rspecial = e1 ∧ e2 ∧…∧en dh
13. Ra ← Ra ∪ { rspecial }
14. Remove all redundant rules in Ra
15. Find out the invariable fact set Finvar = {f1, f2…fm}
16. For each rule r = b1 ∧ b2 ∧…∧bn d in Ra do
17. r’ = b1 ∧ b2 ∧…∧bn ∧ f1 ∧ f2 ∧…∧bm d
18. Ra ← (Ra - {r}) ∪ {r’}
19. For each rule rgeneral in Ra do

20. If there exists a rule rspecial in Ra and rspecial is
more special than rgeneral then

21. Ra ← Ra - { rgeneral }
End
Figure 3: Pseudo code for learning activation sets

 In the algorithm above, the training examples set T is
built on state-action sequences from plan examples, so
each grouping Ti (1≤i≤N) can be sorted naturally by the
state-action sequences. If the domain theory R contains
some original activation rules, they should be joined into
Ra to decrease the error_rate (step 3~5). The algorithm
actually generates two kinds of activation rules, according
to a conversion factor b and each pair of its state points: At
T_point, b becomes true as a positive effect, which means
that an activation set containing b is coming in being.
Therefore, a most general rule b dh is built in step 8. At
F_point, b becomes false as a negative effect, which means
the activation set containing b is invalid, and another new
activation set is functioning. So, a most special rule e1 ∧ e2
∧…∧en dh is built in step 12, where {e1, e2…en} is the
set of all positive effects between the two state points but
does not contain any conversion factor in negated form.
Some reasonable adjustments for the learned rules are
carried out in step 15~21. First, invariable facts are joined
into each rule as default activation factors. Second, if there
are two rules r1 = a c and r2 = a ∧ b c, we can say r1
is more general than r2, whereas r2 is more special than r1.
It is possible that some activation factors are omitted when
we build a most general rule. Therefore, if there is a rule
which is more special than a most general rule, the most
general rule should be removed.
 Considering an example, we try to learn activation rules
for the derived fact NOT-AFFECTED-CB1, whose
training examples have been listed in Table 2. According
to the (relaxed) definition of conversion factors, there are
three: NOT-CLOSED-SD9, NOT-CLOSED-SD8, NOT-
CLOSED-SD3. Finally, we obtain the rule set as follows:
① foo ∧ NOT-CLOSED-SD3 NOT-AFFECTED-CB1
② foo ∧ NOT-CLOSED-CB2 ∧ NOT-CLOSED-SD7 ∧

NOT-CLOSED-SD11 NOT-AFFECTED-CB1
③ foo ∧ NOT-CLOSED-CB2 ∧ NOT-CLOSED-SD7 ∧

NOT-CLOSED-SD9 NOT-AFFECTED-CB1
④ foo ∧ NOT-CLOSED-SD8 NOT-AFFECTED-CB1
⑤ foo ∧ NOT-CLOSED-SD11 NOT-AFFECTED-CB1
⑥foo ∧ NOT-CLOSED-SD7 ∧ NOT-CLOSED-SD11

NOT-AFFECTED-CB1
 Comparing with activation sets in Example 1, we can
see that rule , and are ① ④ ⑥ totally correct, rule②, ③
and ⑤ are partially correct. A redundant condition NOT-
CLOSED-CB2 appears in ② or ③, and a necessary
condition NOT-CLOSED-SD7 is missing in ⑤.

Experiments
To validate the effectiveness of the algorithms, we develop
a simple learning system, called DPLAR. The input is the
description of a planning problem (DOMAIN.PDDL and
PROBLEM.PDDL) and a set of plan examples

(PLANS.TXT), and the output is a learned rule set
(RULES.TXT). We use a planner called FF-DP which was
developed in our early work (Jiang et al., 2006), to
calculate activation sets of a derived fact involved in a plan
example. The results from FF-DP can be used to evaluate
the true_error_rate of the learned rules.

Domain6 #t_examples #rules s_err_rate t_err_rate
P01_Domain 294 126 7% 22%
P02_Domain 147 119 3% 25%
P03_Domain 290 196 3% 37%
P04_Domain 281 132 4% 31%
P05_Domain 284 106 2% 19%
P06_Domain 648 208 9% 30%
P07_Domain 307 156 6% 11%
P08_Domain 269 210 5% 26%
P09_Domain 303 108 3% 28%

P010_Domain 1197 315 2% 30%
Table 3: Experiments on PSR-Middle-StripsDerived

 From the table above, we can see that the
sample_error_rate of the learned rule set is acceptable. On
the other hand, the true_error_rate is not satisfactory. The
learned rules are not completely correct, even if most of
them are very close to target rules. Therefore, some further
refinement strategies should be considered to improve the
precision of learned rules.

Related Work and Discussions
Many methods have been developed to learn rules in AI
planning; however, to the best of our knowledge, few
efforts have been put on learning rules for derived
predicates. (Zettlemoyer et al., 2005) has presented an
algorithm to learn a model of the effects of actions in noisy
stochastic worlds, while also learning derived predicates.
They apply some predefined operators to literals to
iteratively construct new predicates and test their
usefulness in the learned action models. Indeed, they learn
derived effects in an action model, not rules for derived
predicates. Besides, Inductive Logic Programming (ILP)
systems develop predicate descriptions from examples and
background knowledge. The underlying techniques check
every candidate literal and test its usefulness in covering
positive examples. An essential assumption for this is that
training examples are plentiful. However, in our
experiment domains, the number of training examples for
each derived fact is less than 50, and so these domains are
not a well-suited application area for ILP systems.

Conclusions
In this paper, we have developed an algorithm for
automatically learning rules for derived predicates from a

6#t_examples is the total number of training examples. #rule is the total

number of learned rules. s_err_rate is the sample_error_rate of the learned
rule set. t_err_rate is the true_error_rate of the learned rule set.

set of plan examples even if the domain theory is
incomplete. With conversion disciplines of activation sets
of a derived fact in training examples, we can learn a set of
“activation rules” that are nearly consistent with domain
rules designed by human experts. We have shown
empirically that it is feasible to learn these rules in a
reasonable way using conversion factors and their special
state points to construct most general or special rules. The
learned activation rules can explain plan examples in a
very intuitive way. While we take the first step towards
automatically acquiring rules for derived predicates, there
are a few limitations of the current work, which we plan to
overcome in our future extensions. First, the learned rules
are limited in proposition logic only for STRIPS plans
examples, and it is an important task to extend them to be
first-order rules for ADL plans. Second, to learn the
domain from plans executed in the "real" world is very
significative, which also implies learning probabilistic
knowledge (as real world is noisy).

References
Lavrac, N., and Dzeroski, S. 1994. Inductive Logic
Programming: Techniques and Applications. Ellis
Horwood, New York, 1994.
Clark, P., and Niblett, R. 1989. The CN2 induction
algorithm. Machine Learning, 1989, 3, 261-284.
Quinlan, J.R. 1990. Learning logical definitions from
relations. Machine Learning, 1990, 5, 239-266.
Edelkamp, S., and Hoffmann, J. 2004. PDDL2.2: The
language for the classical part of the 4th international
planning competition. Technical Report 195, Albert-
Ludwigs-Universität, Freiburg, Germany, 2004.
Bonet, B., and Thiébaux, S. 2003. GPT meets PSR. In
Proceedings of the 13th International Conference on
Automated Planning and Scheduling (ICAPS-03), Trento,
Italy, 2003, 102–111.
Gerevini, A., Saetti, A., Serina, I., and Toninelli, P. 2005.
Fast planning in domains with derived Predicates: an
approach based on rule-action graphs and local search. In
Proceedings of the Twentieth National Conference on
Artificial Intelligence (AAAI-05), AAAI-Press, Pittsburgh,
USA, 2005, 1157-1162.
Jiang, Z.H., and Jiang, Y.F. 2006. Planning with domain
rules based on state-independent activation sets. In
Proceedings of Pacific Knowledge Acquisition Workshop
of PRICAI06, Guilin, China, 2006, 243-248.
Zettlemoyer, L., Pasula, H., and Kaelbling, L. 2005.
Learning Planning Rules in Noisy Stochastic Worlds. In
Proceedings of Workshop on Planning and Learning in A
Priori Unknown or Dynamic Domains of IJCAI05,
Edinburgh, United Kingdom, 2005, 1-8.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

