
Towards Model-lite Planning: A Proposal For Learning & Planning with
Incomplete Domain Models

Sungwook Yoon
Computer Science & Engineering

Arizona State University
Tempe, AZ 85281

Sungwook.Yoon@asu.edu

Subbarao Kambhampati
Computer Science & Engineering

Arizona State University
Tempe, AZ 85281

rao@asu.edu

Abstract

Due to the difficulty of defining acompletedomain defini-
tion, it is hard to apply planners to real-life application do-
mains. Model-lite planning research has been proposed to
address this issue (Kambhampati 2007). While it takes time
to develop a complete domain definition, it is rather faster
and easier to provide a planner with incomplete but close to
complete domain definition. In this paper, we describe our
on-going research on a new learning and planning scheme
for the model-lite paradigm. In our framework, we useprob-
abilistic logic to leverage the incomplete model and we con-
sider explicit input background knowledge. In the planning
side, the core idea is viewing a planning problem as an MPE
(most plausible explanation) problem, given incomplete do-
main definition and the evidence of initial state and goal. We
show a reduction procedure from a planning problem to an
MPE problem then to a MAXSAT problem, which enables us
to use MAXSAT solvers, as deterministic planning uses SAT
solvers. In the learning side, we show how we update the do-
main model, given trajectories using a weighted logic learn-
ing package, and how we parsimoniously generate axioms
with background knowledge. This is particularly important
to leverage the relational structure during planning.

Introduction
There are many application areas where planning techniques
can play an important role. Web service composition, au-
tomated computing or dynamic compilation are some of
them (Kambhampati 2007). One of the reasons why plan-
ning techniques are not being actively used in these areas
is the burden of developing domain definition. It is well
understood among the planning community that defining
a complete domain for the target application is not easy
(Bartk & McCluskey 2005; Yang, Wu, & Jiang 2007). In-
deed, DARPA has started the Integrated Learning Initiative
to address this issue (DARPA 2006). Recently, (Kambham-
pati 2007) has proposed the model-lite planning paradigm,
which motivates the study of planning techniques that do not
rely on the complete domain definition.

Although it is hard to write a complete domain defini-
tion, it may be relatively easy to provide an approximate
domain definition which may not be complete. The chal-
lenge is to plan with the current-best model and update it

Copyright c© 2007, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

as experiences are gathered. In this paper, we describe our
on-going research on the learning and planning framework
with incomplete domain models. We use probabilistic logic
to represent uncertain domain models. We separate precon-
dition and effect of action definitions into two different sets
of axioms, precondition and effect axioms, where each of the
axiom has an associated probability. This separation helps
a straightforward setup of a well known machine learning
problem. Then, we show that planning can be viewed as an
MPE (most probable explanation) problem, given the initial
state, goal and the current domain model. Next, we view
MPE problem as weighted MAXSAT problem, as consid-
ered by (Park 2002). Thus, the planning problem with an
incomplete domain model becomes a weighted MAXSAT
problem, which enables us to use publicly available approx-
imate solvers that scales well, e.g., maxwalksat. Note that
our proposed approach for planning can also be applied to
probabilistic planning.

There are two aspects of learning in our framework.

• Given a set of weighted precondition and effect ax-
ioms, the learning is mainly updating their weight. A
weight update on logic formulae can straightforwardly be
achieved with MLN (Markov logic network) (Richardson
& Domingos 2006) or Problog (De Raedt, Kimmig, &
Toivonen 2007) approaches. We show how we construct
training data and how the learning updates the domain
model.

• Given explicit background knowledge, we show how we
use the knowledge to reduce the number of potential can-
didate precondition or effect axioms. This will make
later planning easier, as the plangraph construction will
be lighter.

Explicit consideration of background knowledge is an in-
teresting point of our framework. At first glance, it might
be surprising that we assume incomplete domain model but
expect background knowledge. However, this is not an un-
reasonable assumption. In most domain modeling tasks, the
problem is not so much that no background knowledge is
available, but that it is hard to come up with complete and
consistent set of operators that respect all the background
knowledge. This is particularly useful when there are obvi-
ous domain constraints, e.g. no more than one block on top
of a block in Blocksworld, but it is not easy to create a set of



actions that maintains the property.

Representation
A planning domainD specifies a tuple{P, A, P re,Eff, B}.
P defines available predicates and their arities.A defines
available action templates and arities of them.Pre is a set
of precondition axioms. For each action typea ∈ A, there
is at least one precondition axiomP ∈ Pre, s.t. (wp, a →
p1∧p2∧. . .∧pn). In a CNF form this is equivalent to a set of∧

i(wpi
, a → pi). In our representation, we have weightwp

for each axiom. Effect axioms can be defined similarly.E ∈
Eff is (we, a → e1 ∧ e2 ∧ . . . ∧ en). Precondition axioms
dictate the facts at the time when the actions are conducted,
while the effect axioms state the facts on the next time slot.

STRIPS planning domains can be straightforwardly trans-
lated into our representation. For any given STRIPS op-
erator definitionO = {PRE, ADD, DEL}, we can cre-
ate precondition axiom(1, O → PRE), one effect ax-
iom (1, O → ADD ∧ ¬DEL). For example, for the
“pickup” action of Blocksworld domain, STRIPS defines
it as “pickup(x)” = {{(armempty), (ontable x), (clear x)},
{(holding x)}, {(armempty), (ontable x), (clear x)}} In our
scheme, we have two axioms for “pickup”.

• (1, “pickup(x)”→ (armempty)∧ (ontable x)∧ (clear x)),
for precondition axiom

• (1, “pickup(x)”→ (holding x)∧ ¬(armempty)¬(ontable
x) ¬(clear x)) , for effect axiom

When the weights of all the axioms are one, it means
that we have a complete and deterministic planning domain.
When the weights are not one, it means that we have in-
complete or probabilistic domain. So, in this representation,
incomplete domain knowledge and probabilistic domain are
indistinguishable. Indeed, if one does not have complete do-
main knowledge, a natural planning strategy is finding a plan
that is most likely to achieve the goal with the current do-
main knowledge, although the target domain is deterministic
domain.

Incorporating Background Knowledge
When complete domain knowledge is given, there is no need
of background knowledge for domain invariant. For exam-
ple, “at most one block can be on top of some other block” is
an invariant of Blocksworld domain. This invariant is main-
tained by the carefully written set of action definitions. In-
stead, it could be easier to provide a planner with explicit
domain invariant than write a set of action definitions.

We consider explicit domain knowledge in our represen-
tation. In the definition ofD, B is there for this purpose.B
can specify domain invariant or property of solution plans.
Standard planners that assume complete domain knowledge
don’t have to use any domain invariant, since they are au-
tomatically maintained through legal actions. However, for
model-lite planners, background knowledge that defines do-
main invariant can be very useful. For example, when there
is an action which breaks the domain invariant, then the
planner does not consider the action during the plan com-
position. In the following planning section, our proposed
planning approach can directly account forB.

Control Knowledge B can also specify the properties of
good plans. There are such obvious properties for many
planning domains. E.g., for Blocksworld, “don’t take put-
down action after pickup action” is such property. A human
can easily provide this property and planner should exploit
it. This is somewhat similar to TL-Plan’s approach (Bac-
chus & Kabanza 2000). The difference is that we can update
the background knowledge especially when the input con-
trol knowledge is uncertain. Again, our proposed planning
approach can naturally consider background control knowl-
edge.

Planning
We define a planning problem for a domainD with a tuple
of objects and facts(O, I,G). O is a set of objects for the
problem, thus the set of facts and the set of actions are de-
fined by groundingP andA with O. I is the initial state and
G is a set of goal facts that must be achieved at the end of the
solution plan. For deterministic domain, the solution is any
sequence of actions that achieves the goal though we prefer
shorter sequences. For probabilistic or incomplete domains,
the criteria is different. We like to have a sequence of ac-
tions that achieves the goal with maximum likelihood or a
tree-like plan that suggests actions based on the observation,
or contingent plan. In our case we seek the former plan.

Planning as MPE
The objective of planning in this work is finding a plan that
achieves a given goal with maximum probability under the
given domain definitionD.

max
a1,...,aT

Pr(a1 . . . aT |I
1, GT ) (1)

The superscripts ofI andG in the above equation means
the time point. Equation 1 assumes that the planning horizon
is T . Thus, the planning problem here is to find a sequence
of actions that maximizes the probability of the actions given
the initial state and the goal facts. This is very similar to
MPE (most probable explanation) solution to the problem
of finding sequence ofT actions given the evidence of initial
state and goal facts. Indeed, (Verma & Rao 2006) has stud-
ied MPE aspect of MDP (markov decision processes) plan-
ning problems. However the work has remained in a purely
enumerated non-factored state space scenario. In our study,
we will extend the aspect in relational graphplan framework,
thus exploiting the relational structural property. We induce
MPE aspect through novel view of plangraph as bayesian
network.

Plangraph as Bayesian Network
To find a most probable plan for the given problem, we start
with constructing a probabilistic plangraph (Blum & Furst
1995). Plangraph is a leveled graph, where fact level and
action level are interleaved. The 1st level has initial facts
I and actions available withI. Then the next level of facts
are constructed with the addition of the added facts of the
actions. Facts that were true ati-th level are transferred to
the next level throughNO-OP action. Deleted facts are con-
sidered as Mutex relations between facts and actions. Levels



GD0

GC0

NOOPGD0

Dry0

NOOPGC0

PickUPGD0

PickUP0

Paint0

GD1

GC1

BH1

BP1

GD2

GC2

BH2

BP2

NOOPGD1

Dry1

NOOPGC1

PickUPGD1

PickUP1

Paint1

NOOPBH1

NOOPBP1

PaintBH1

0.95

0.50.1?

0.95

0.5

0.1

1

0.1

0.1

Figure 1: A Plangraph for Gripper Problem: a 2 level plan-
graph is drawn. First, third and fifth columns correspond
to facts level 1, 2 and 3. Second and Fourth columns corre-
spond to actions levels 1 and 2. The edges between facts and
actions level are drawn from precondition and effect axiom.
The numbers indicate the probability of the axioms. Edges
with no number indicates probability 1. Edges within action
levels indicate mutex relation

in the plangraph are increased until the saturation of factsin
the fact level or dynamic mutex happens. For deterministic
domains, solution plan is found by searching for truth as-
signment of action levels that achieves the goal and does not
violate the mutex constraints.

In our case, we draw plangraph out of precondition ax-
iom and effect axiom, starting with the initial state. Then
we label each edge with the probabilities associated with the
axiom. Figure 1 shows an example plangraph for a Grip-
per domain. This domain has 5 actions, pickup-gripperdry,
pickup, dry, paint-blockinhand and paint. The pickup ac-
tion achieves block-in-hand (BH) with probability 0.5 and
precondition is not gripper-dry (GD). Pickup-gripperdry
(Pickup-GD) achieves block-in-hand (BH) with probabil-
ity 0.95 and precondition is gripper-dry (GD). Dry action
achieves gripper-dry (GD). Paint-blockinhand (Paint-BH)
action achieves block-painted (BP) with probability 1 and
achieves not gripper-clean (GC) with probability 1. Precon-
dition is block-in-hand (BH). Paint action achieves block-
painted (BP) with probability 1 and achieves not gripper-
clean (GC) with probability 0.1. Precondition is not block-
in-hand (BH).1

The problem of this gripper domain is achieving block-in-
hand (BH), and block-painted (BP), starting from gripper-
dry (GD) and gripper-clean (GC).

Previous works on probabilistic plangraph sought ways
to propagate probabilities through the plangraph (Blum &
Langford 1999). Instead we take the view of (Verma & Rao
2006) and attempt to find the most plausible truth assign-
ment of action variables. To do this, we first interpret the

1Actions with conditional effects are separated into different ac-
tions for each condition from original probabilistic Gripper domian

GD0

GC0

NOOPGD0

Dry0

NOOPGC0

PickUPGD0

PickUP0

Paint0

GD1

GC1

BH1

BP1

GD2

GC2

BH2

BP2

NOOPGD1

Dry1

NOOPGC1

PickUPGD1

PickUP1

Paint1

NOOPBH1

NOOPBP1

PaintBH1

0.95

0.50.1?

0.95

0.5

0.1

1

0.1

0.1

Evidence Variables

0.7

0.7

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.7

0.7

0.7

0.7

Figure 2: A Bayesian Network for Gripper Problem: A
translation of a plangraph to a bayesian network. Arrows
of the edges are now toward facts level, reflecting the condi-
tional probability of facts given the actions in the axioms.

plangraph as a bayesian network. The probabilities of facts
in fact level are described with conditional probability with
adjacent action level actions. The actions in the action lev-
els are given a prior probability distribution of 0.5. Figure 2
shows a bayesian network version of the plangraph.

Below we summarize the construction of conditional
probability table for the plangraph.

• Actions in Action Level: We give probability 0.5 for ac-
tions in the action levels. Alternatively, we can give some
prior probability by solving determinized version of the
problem as FF-Replan did (Yoon, Fern, & Givan 2007).
In this case, we give higher probability than 0.5 for the
actions that are in the solutions of the determinized ver-
sion of the problem.

• Precondition Axiom: We give the probability of facts of
the precondition of the actions as specified in the precon-
dition axiom. E.g., for a precondition axiom (0.95 (pickup
x) → (clear x)), we give 0.95 for (clear a)t when (pickup
a)t is true. If not, we give 0.5.

• No-op actions: No-op actions are treated in differently.
No-op actions do not have precondition axioms. Their
truth values are decided by the truth value of the corre-
sponding facts of the current level. For example (noop-
(clear a))t is true with probability 1, when (clear a)t is
true. The superscript here specifies the level of the fact or
action in the plangraph.

• Effect Axiom: We give the probability of facts of the ef-
fects of the actions as specified in the effect axiom. E.g.,
for an effect axiom (0.95 (pickup x)→ (holding x)), we
give 0.95 for (holding a)t+1 when (pickup a)t is true. No-
op actions are treated in the same way. The effect for
the no-op actions have probability 1. For example (clear
a)t+1 is true with probability 1, when (noop-(clear a)t is
true.

• Static Mutex: Two actions are mutex at the same level if



they delete added facts or precondition of the other. Two
actions are mutex between consecutive level if one action
in the earlier level deletes the precondition of the other.
In our case, the mutex is probabilistic. For two actions
A and B, and when deleted facts of A deletes added facts
of B, we compute the probability of the mutex as follows,
p = max

d∈Deleted Facts in A,a∈Added Facts in BPd ×

Pa. Thus the probability of the mutex is the maximum of
the occurrence of the mutex. Other style of static mutexes
are similarly defined and asserted as conditional probabil-
ity.

• Dynamic Mutex: We propagate probability through levels
of the plangraph only for dynamic Mutex. Two facts are
mutex when all the actions that achieve them are mutex
with each other. The probability of the facts being mu-
tex is then the maximum of the mutex probabilities of the
involved actions.

• Background Knowledge: Background knowledge is as-
serted in the facts level as well as actions level. For exam-
ple, if the background knowledge for a Blocksworld states
that (holding x)→ ¬ (armempty), we generate the condi-
tional probability with probability 1. Thus (armempty) is
false with probability one when (holding a) is true is gen-
erated. Typically this involves generating multiple proba-
bility table entries (proportional to the number of objects)
for one background knowledge.
TL-Plan like background knowledge can also be asserted
as they are available. For example, a Blocksworld con-
trol rule (pickup x)→ ¬ (putdown x), (“don’t putdown
a block right after picking it up from the table”), can be
asserted as, (putdown a)t+1 is false with probability 1,
when (pickup a)t is true. Here interesting part is that back-
ground knowledge can be asserted with probability. This
is particularly useful when the background knowledge it-
self is learned or given with some uncertainty.

• Initial State and Goal Facts: Initial State and Goal Facts
are asserted with probability one as they are the evidence
variables.∀f ∈ I, f1 True and∀g ∈ G, gT True, when
the horizon isT .

Probabilistic planning as MAXSAT
We have made a bayesian network out of plangraph with
previous subsection’s probability assignment. The remain-
ing task is finding an MPE solution for the bayesian network.
Here the evidence variables are initial state and goal factsin
the plangraph. The solution is the most probable truth as-
signment to the rest of the propositions (actions and facts)in
the plangraph, given the probabilities. The exact MPE so-
lution technique would not scale well enough. (Park 2002)
has shown how one can translate a bayesian network to a
weighted MAXSAT problem. We take the approach and we
generate a weighted MAXSAT problem. Then we can use
any available approximate weighted MAXSAT solvers. The
summary of planning procedure is in Figure 3.

Current Experimental Test Status We have tested our
idea on small instance (the Gripper problem) with hand-
coding of the bayesian network of the problem and used

Planning (D, I, G, O)

// Incomplete Domain DefinitionD, Initial StateI, Goal
G, ObjectsO

1. Plg ←Build-a-probabilistic-plangraph(D, I, G, O)
Plg is a probabilistic plangraph for the given prob-

lem
2. BN ← Build-probability-table(Plg)

BN is a bayesian network for the given problem
3. WCNF ← Convert-to-Weighted-CNF(BN)

WCNF is a final translation of the given problem
to a weighted CNF

4. V ← solve-using-weighted-MAXSAT(WCNF )
S is truth assignment of the variables

5. S ← translate-the-solution(V )
finally translate the truth assignment of the vari-

ables into a plan, ignoring truth assignment of fact levels
and focusing on action levels

6. returnS

Figure 3: Incomplete Domain Planning using weighted
MAXSAT

Maxwalksat solver. It has shown promising results. We are
currently implementing the system and investigating poten-
tial impact of approximate solutions to the WCNF.

Learning
When incomplete domain model is given, planning can
be achieved with the planning algorithm that we provided.
However, as experience on the domain is gathered, we can
update the input domain model, and do a better planning.
We update the domain model with state-action pair trajecto-
ries. The source of the trajectories can be either from pure
wandering, during plan execution or human demonstration.

Given state-action pair trajectories, we consider two as-
pects of learning. First, we just update the weights of the
precondition and effect axioms. We can use readily avail-
able package for this purpose, e.g., Alchemy (Richardson &
Domingos 2006). Second, we construct new precondition
and effect axioms, considering background knowledge.

Given a state-action trajectory J =
{(s1, a1), . . . , (sn, an)}, we construct training data for
each axiom set as follows.

1. Precondition Axiom Training Data :
{(s1, a1), . . . , (sn, an)}. Each state and action pair
is a valid world example for precondition axioms.

2. Effect Axiom Training Data :{(ai, si+1)}. Each action
and the next state pair is a valid world example of effect
axioms.

3. Control Knowledge (if the trajectory is from a solution
plan) :{(ai, ai+1)}, or {(s1, a1), . . . , (sn, an)}. The for-
mer one is for learning temporal constraints on action se-
lection, and the latter is for learning reactive control.

Weight Update
Consider an effect axioma = (w, (pickup x)→ (holding x))
of Blocksworld. We construct training examples as in the



second item in the above enumeration. For example,e = {
(pickup a), (ontable b), (holding a). . .} is one instance of
training data, where the first element is the action and the
rest is the observed facts of the next state. Whene is pre-
sented, the axioma can be applied andw is updated with
w = w + s, wheres is learning step size (positive exam-
ple). When another instance,e′ = { (pickup a), (ontable b),
. . .}, is presented,w is reduced bys, w = w − s (negative
example). The same weight update principle is applied to
precondition axiom and control knowledge axioms learning.

There are readily available machine learning package for
this purpose, especially Alchemy (Richardson & Domingos
2006). Such package produces weights for the input axioms,
given a set of training data. Thus, we can directly use such
package, with our training data construction. The idea of
separation of precondition and effect axioms enables this
straightforward machine learning solution.

When a comprehensive set of axioms or control knowl-
edge is presented, we can simply use weight update method
as mentioned. Wrong axioms or unnecessary axioms would
get close to 0 weight after enough training data and updates,
and necessary axioms would get close to the probability of
the precondition or effect axioms. However, it is hard to
have a comprehensive set of axioms. Next, we consider how
we parsimoniously construct candidate axioms with back-
ground knowledge.

Constructing Candidate Axioms

Since we can update weights of the axioms with trajectories,
we might just naively enumerate all the possible candidate
axioms. Let’s just consider precondition axiom first. Effect
axiom or control knowledge can be treated similarly. For
every actiona, we can enumerate all the possible axioms of
the forma(x, y) → p(x, y), with all the available predicates
and variable matching.

This will create unnecessary axioms and make the learn-
ing slower and especially will make planning much slower,
since it will create the plangraph where every potential facts
and actions appear at the first few levels, thus there is no
advantage of considering plangraph. We need to generate
axioms more parsimoniously and we can do this with back-
ground knowledge.

In Blocksworld, consider we are given a background
knowledge that states that “a block cannot be both on the
table and on some other block”, (ontable x)↔ ¬ (on x
y). When we observe a “(pickup a)” action and a state fact
“(ontable a)”, we could immediately cut out(pickup x)→
(on x y) from the candidate axiom set and keep(pickup x)
→ (ontable x). Thus, with background knowledge we can
eliminate axioms that conflict with knowledge and keep the
axiom set small. Again, this is particularly important for
later planning.

Learning Test Status We have conducted domain learn-
ing on Blocksworld with Alchemy software. With 100 state-
action pairs, Alchemy found higher weights on correct ax-
ioms, and lower weights on incorrect axioms.

Discussion
Planning operator learning has been studied by several re-
searchers. Two of the recent and closest approaches are
(Yang, Wu, & Jiang 2007) and (Zettlemoyer, Pasula, &
Kaelbling 2005). (Yang, Wu, & Jiang 2007) learns precondi-
tions and effects of domain operators only from initial state,
goal state and plan. Compared to the approach, our learning
approach can leverage any partial domain knowledge and
produce probabilistic domain model, which is well suited
for incomplete domain planning. (Zettlemoyer, Pasula, &
Kaelbling 2005) learns very complex operator format, us-
ing deicticrepresentation. This study did not consider using
available partial domain knowledge.

Machine learning approach to Model-lite planning is
nothing new at all. Indeed, model-free reinforcement learn-
ing is the simplest and classic approach to applying machine
learning techniques to model-lite planning. The weakness of
reinforcement learning in general is its scalability. Prodigy
or Soar (Russell & Norvig 1995) systems have developed
techniques that can update the relational operators as they
interact with environments. These systems focused on learn-
ing preconditions of the operators. Well specified precondi-
tions can act as a strategy for the target domain. These stud-
ies kept on learning deterministic operators or preconditions
and did not find probabilistic effects or preconditions.

Our planning algorithm is closely related to many proba-
bilistic planning techniques. There are planning techniques
that can handle different form of uncertainties, e.g., confor-
mant planning and probabilistic planning techniques. Con-
formant planning can output robust plan when observing is
not allowed. Probabilistic planning techniques are targeted
to handling uncertain outcomes but typically they don’t con-
sider uncertain preconditions. Our framework in this paper
can uniformly consider uncertainties of preconditions and
effects together. Maxplan work (Majercik & Littman 1998)
has developed a variant of SAT encoding technique from a
probabilistic planning problem. Maxplan used probabilis-
tic variables to represent probabilistic effects, while weused
weight on clauses to represent probabilistic effects. Pgraph-
plan (Blum & Langford 1999) has used plangraph structure
directly and propagated the probabilities through the levels
of the plangraph. Instead we convert the probabilistic plan-
graph to a weighted MAXSAT problem. Another difference
is the treatment of Mutexes. Pgraphplan treated any pair of
actions as mutex if any of the probabilistic effects interferes
each other. In our case, the mutex is weighted proportional
to the probabilities of the occurrence.

One interesting future approach is interleaving the learn-
ing and planning part. Thus, the system is given a prob-
lem and the system builds model as it is attempting to solve
the problem. (Chang & Amir 2006) has approached this
scenario through logical filtering idea, but the planning ap-
proach was limited to deterministic domain and did not
exploit the probabilistic aspect. (Kearns & Singh 1998)
showed theoretical property of the approach but did not give
any realistic implementation on relational representation do-
main.

Our approach in this work is also capable of learning
strategy. As briefly mentioned in previous section, con-



trol knowledge can be represented as a form of background
knowledge that constrains the action choices. Learning and
using such knowledge in SAT has been studied by (Huang,
Selman, & Kautz 2000). In that work, the learned knowl-
edge has been used as deterministic rules and can hurt the
planning performance, as the learning is not perfect. In our
framework, imperfect learning is reflected on the weight of
the rules and can be seamlessly used as weighted clauses.

References

Bacchus, F., and Kabanza, F. 2000. Using temporal logics
to express search control knowledge for planning.Journal
of Artificial Intelligence16:123–191.

Bartk, R., and McCluskey, L. 2005. International knowl-
edge engineering competition.

Blum, A., and Furst, M. 1995. Fast planning through
planning graph analysis. InProceedings of the 14th Inter-
national Joint Conference on Artificial Intelligence (IJCAI
95), 1636–1642.

Blum, A., and Langford, J. 1999. Probabilistic planning in
the graphplan framework. InECP, 319–332.

Chang, A., and Amir, E. 2006. Goal achievement in par-
tially known, partially observable domains. InICAPS.

DARPA. 2006. Integrated learning program.

De Raedt, L.; Kimmig, A.; and Toivonen, H. 2007.
Problog: A probabilistic prolog and its application in link
discovery. InIJCAI.

Huang, Y.-C.; Selman, B.; and Kautz, H. 2000. Learning
declarative control rules for constraint-based planning.In
Proceedings of the 17th International Conference on Ma-
chine Learning, 415–422. Morgan Kaufmann, San Fran-
cisco, CA.

Kambhampati, S. 2007. Model-lite planning for the web
age masses: The challenges of planning with incomplete
and evolving domain theories. InAAAI.

Kearns, M., and Singh, S. 1998. Near-optimal reinforce-
ment learning in polynomial time. InProc. 15th Inter-
national Conf. on Machine Learning, 260–268. Morgan
Kaufmann, San Francisco, CA.

Majercik, S. M., and Littman, M. L. 1998. MAXPLAN: A
new approach to probabilistic planning. InArtificial Intel-
ligence Planning Systems, 86–93.

Park, J. D. 2002. Using weighted MAX-SAT engines to
solve MPE. InEighteenth national conference on Artificial
intelligence, 682–687. Menlo Park, CA, USA: American
Association for Artificial Intelligence.

Richardson, M., and Domingos, P. 2006. Markov logic
network.Machine Learning.

Russell, S., and Norvig, P. 1995.Artificial Intelligence: A
Modern Approach. Prentice Hall.

Verma, D., and Rao, R. 2006. Goal-based imitation as
probabilistic inference over graphical models. InProc.
18th NIPS.

Yang, Q.; Wu, K.; and Jiang, Y. 2007. Learning action
models from plan examples using weighted max-sat.Arti-
ficial Intelligence171:107–143.
Yoon, S.; Fern, A.; and Givan, R. 2007. FF-replan: A
baseline for probabilistic planning. InICAPS.
Zettlemoyer, L.; Pasula, H.; and Kaelbling, L. 2005. Learn-
ing planning rules in noisy stochastic worlds. InAAAI.


