
Set-Additive and TSP Heuristics for Planning
with Action Costs and Soft Goals

Emil Keyder
Universitat Pompeu Fabra

Passeig de Circumvalació 8
08003 Barcelona Spain

emil.keyder@upf.edu

Héctor Geffner
ICREA & Universitat Pompeu Fabra

Passeig de Circumvalació 8
08003 Barcelona Spain

hector.geffner@upf.edu

Abstract

We introduce a non-admissible heuristic for planning with ac-
tion costs, called theset-additive heuristic, that combines the
benefits of theadditive heuristicused in the HSP planner and
therelaxed plan heuristicused in FF. The set-additive heuris-
tic is defined mathematically and handles non-uniform action
costs like the additive heuristic but like FF’s heuristic, it en-
codes the cost of a specificrelaxed planand hence is com-
patible with FF’s helpful action pruning and its enforced hill
climbing search. The set-additive heuristic changes the def-
inition of the additive heuristic slightly by associating with
each atom a relaxed plan rather than its numeric cost. The
new formulation is used then to introduce a further variation
that takes certain delete information into account by forcing
the values of certain multivalued variables in the relaxed plan
to be spanned by a path rather than by a tree. Finally, we show
how soft goals can be compiled away and report empirical re-
sults using a modification of the FF planner that incorporates
these ideas, leading to a planner that is as robust as FF but
capable of producing better plans in a broader set of contexts.

Motivation
The additive heuristic used in HSP (Bonet & Geffner 2001)
and the relaxed plan heuristic used in FF (Hoffmann &
Nebel 2001) are two of the best known heuristics in classi-
cal planning. While both are based on the delete-relaxation,
the latter produces more accurate estimates along with in-
formation in the form of ’helpful actions’ that is exploited
in the ’enforced hill climbing’ (EHC) search. The addi-
tive heuristic, however, has some advantages as well; it is
defined mathematically rather than procedurally, and takes
non-uniform action costs naturally into account.

In this work, we aim to combine the benefits of thead-
ditive and relaxed planheuristics in a new non-admissible
heuristic for planning that we call theset-additive heuris-
tic. The set-additive heuristichs

a is defined mathematically
and accounts naturally for non-uniform action costs, but like
FF’s heuristichFF, it encodes the cost of a specificrelaxed
planand thus is compatible with FF’s helpful action pruning
and its effective enforced hill climbing search. The moti-
vation for this extension is similar to the works in (Sapena
& Onaindia 2004; Fuentetaja, Borrajo, & Linares) that also

Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

aim to make the FF planner sensitive to cost information,
but rather than modifying the planning graph construction
or extraction phases to take action costs into account, we
modify the cost-sensitive additive heuristic to yield relaxed
plans.

In addition, we use the formulation of the new heuristic to
introduce a variation that overcomes some of the limitations
of delete-based relaxations by forcing the values of certain
multivalued variablesin the relaxed plan to be spanned by
a path rather than by atree. For example, in a problem
where a number of rocks have to be collected from vari-
ous locationsl1, . . . , ln starting from a locationl0, an ac-
tion sequence where the agent repeatedly moves froml0 to
each locationli, i = 1, . . . , n is not possible in the orig-
inal problem but is possible in the delete-relaxation. The
result is that the cost of such problems is approximated in
terms of themin cost treerooted atl0 that spans all the
locations li. The new heuristic, on the other hand, ap-
proximates the cost of such problems in terms of the cost
of the best paththat visits all such locations, a problem
that corresponds to a Traveling Salesman Problem. Un-
like other recent proposals that rely on quick but suboptimal
TSP algorithms for planning however (Long & Fox 2000;
Smith 2004), our approach integrates such algorithms in the
computation of the domain-independent heuristic that is de-
fined in a declarative way.

Finally, we show how these cost-sensitive heuristics can
be used without change in the context ofsoft goals: atoms
that produce a positive reward if achieved by the end of the
plan (Smith 2004; Sanchez & Kambhampati 2005). In order
to achieve this, we show howsoft goals can be compiled
away leaving an equivalent problem with an extended set
of fluents and actions but no soft goals. Some preliminary
experiments are reported as well.

Planning Model and Heuristics
We consider planning problemsP = 〈F, I, O, G〉 expressed
in Strips, whereF is the set of relevant atoms or fluents,
I ⊆ F andG ⊆ F are the initial and goal situations, andO
is a set of (grounded) actionsa with precondition, add, and
delete listsPre(a), Add(a), andDel(a) respectively, all of
which are subsets ofF .

For each actiona ∈ O, there is anon-negative cost
cost(a) and we are interested in plansπ that minimize the

cost
cost(π) =

∑
i=1,n

cost(ai) . (1)

This problem is a generalization of the problem in classi-
cal planning wherec(a) is uniform and equal to1, andc(π)
measures the number of actions in the plan. We are not inter-
ested however in optimal planning according to this metric,
but in finding good plans using heuristics that are sensitive
to the cost information.

Two of the most common heuristics in planning are the
additive heuristicused in HSP (Bonet & Geffner 2001) and
therelaxed plan heuristicused in FF. Both are based on the
delete-relaxationP+ of the problem, and both attempt to ap-
proximate the optimal delete-relaxation heuristich+ which
is well-informed but intractable. We review them below. In
order to simplify the definition of some of the heuristics, we
introduce in some cases a new dummyEnd action withzero
cost, whose preconditionsG1, . . . , Gn are the goals of the
problem, and whose effect is a dummy atomG. In such
cases, we will obtain the estimateh(s) of the cost from state
s to the goal, from the estimateh(G; s) of achieving the
’dummy’ atomG from s.

The Additive Heuristic
Since the computation of the optimal delete-free heuristic
h+ is intractable, HSP introduces a polynomial approxi-
mation in which all subgoals are assumed to beindepen-
dent. This assumption is normally false (as is the delete-
relaxation) but results in a simple heuristic function

ha(s) def= h(G; s) (2)

that can be computed quite efficiently in every states visited
in the search defined as:

h(p; s) def=
{

0 if p ∈ s
mina∈O(p)[h(a; s)] otherwise (3)

whereh(p; s) stands for an estimate of the cost of achieving
the atomp from s, O(p) is the set of actions in the problem
that addp, and

h(a; s) def= cost(a) +
∑

q∈Pre(a)

h(q; s) (4)

stands for the cost of achieving the preconditions of an ac-
tion a and applying it.

The additive heuristic is optimal forP+ when the goal
and preconditions include one atom at most, where it coin-
cides with thehmax heuristic (Bonet & Geffner 2001). Ver-
sions of the additive heuristic appear in (Do & Kambhampati
2001; Sapena & Onaindia 2004; Smith 2004), where the cost
of joint conditions in action preconditions or goals is set to
thesumof the costs of each condition in isolation.

The Relaxed Planning Graph Heuristic
The planner FF improves HSP along two dimensions, the
heuristic and the search algorithm. Unlikeha, the heuristic
hFF used in FF makes no independence assumption for ap-
proximatingh+, computing instead one plan forP+ which

is not guaranteed to be optimal. This is done by a Graphplan-
like procedure (Blum & Furst 1995), which due to the ab-
sence of deletes, constructs a planning graph with no mu-
texes, from which a planπFF(s) is extracted backtrack-free
(Hoffmann & Nebel 2001). The heuristichFF(s) is then set
to |πFF(s)|. Likewise, the search procedure in FF is notbest-
first as in HSP but (enforced)hill-climbing (EHC), in which
the search moves from the current states to a neighboring
states′ with smaller heuristic value by performing abreadth
first search.This breadth first search is carried out with are-
duced branching factor, ignoring actionsa that are not found
to be ’helpful’ in states. The ’helpful actions’ in a states
are the actions applicable ins that add a relevant subgoal
p, as determined during the computation of the relaxed plan
πFF(s).

The more accurate planning graph heuristic, along with
the reduced branching factor in the breadth first search,
makes the FF planner scale up better than HSP (Hoffmann
& Nebel 2001). On the other hand, the heuristichFF is not
cost-sensitive. A possibility for making FF sensitive to cost
information is to move to an alternative heuristichc

FF defined
as the sum of the action costscost(a) over the actions in the
relaxed planπFF. Yet, this move does not solve the problem
that the computation of the relaxed plan itself ignores the
cost information. We will say more about the heuristicshFF
andhc

FF in the experimental section.

The Set-Additive Heuristic
Theset-additive heuristicis a simple modification of the ad-
ditive heuristic that produces relaxes plans taking the cost in-
formation into account. The definition of the additive heuris-
tic can be rewritten as

h(p; s) def=
{

0 if p ∈ s
h(ap; s) otherwise

where

ap = argmina∈O(p)h(a; s)

is thebest supporting actionof p in s, andh(a; s) is as be-
fore

h(a; s) = cost(a) +
∑

q∈Pre(a)

h(q; s)

In the additive heuristic, thevalueh(ap; s) of the best sup-
porterap for p is propagated to obtain the heuristic value
h(p; s). In theset-additiveheuristic, thebest supporteritself
is propagated, resulting in a functionπ(p; s) that represents
a set of actions, which can be defined similarly toh(p; s) as
1:

π(p; s) =
{

{} if p ∈ s
π(ap; s) otherwise (5)

1Unlike the value of the normal additive heuristic, the value of
the set-additive heuristichs

a(s) depends on the way ties are broken
in the selection of supports. We assume that among several sup-
portsap with the same costsCost(ap; s), the one containing fewer
actions, i.e., smaller|π(ap; s)|, is preferred.

where

ap = argmina∈O(p)Cost(π(a; s)) (6)

π(a; s) = {a}
⋃

{∪q∈Pre(a) π(q; s)} (7)

Cost(π(a; s)) =
∑

a′∈π(a;s)

cost(a′) (8)

That is, the best supporterap of p is propagated to com-
puteπ(p; s) and supports for preconditions are combined by
set-union rather than by sum. We will see that the set of ac-
tionsπ(p; s) stands actually for a relaxed plan that achieves
p from s, while π(a; s) is a relaxed plan that achieves each
of the preconditions ofa and applies thena.

The set-additive heuristichs
a(s) for a states is then de-

fined as

hs
a(s) = Cost(π(G; s)) (9)

Thoughπ(p; s) is a set and not asequenceof actions, its
definition ensures that the actions it contains can be ordered
into an action sequence that is aplan for p in the relaxed
problemP+ from the start states. One such parallel plan
can be obtained by scheduling in a ’first layer’A0 the actions
a in π(p; s) with empty supportsπ(a; s) = {}, in a ’second
layer’ A1 the actionsa with supports in the first layer only,
i.e., withπ(a; s) ⊆ A0, and so on.

Proposition 1 π(p; s) represents arelaxed planfor p from
s.

This means thatπ(G; s) for the dummy goalG can play
the role of therelaxed planin FF in place of the planning
graph extraction procedure that is not sensitive to cost infor-
mation.

The rest of FF’s machinery, i.e. helpful actions, enforced
hill climbing, and so on, can be kept in place, as long as the
relaxed plan computed in each states is the one encoded by
π(p; s).

Note that sinceπ(G; s) is actually asetof actions, there
areno action duplicatesin the corresponding relaxed plan.
This property is also true of the relaxed plan computed by
FF, following from the NO-OP first heuristic (Hoffmann &
Nebel 2001). The normal additive heuristic can actually be
understood as a version of the set-additive heuristic in which
relaxed plansπ(p; s) are used to denotebagsor multisets
rather thansets, leading to a single action being counted
many times.

We have implemented the set-additive heuristichs
a on top

of the code that computes the normal additive heuristicha

in HSP, which is a Bellman-Ford algorithm for solving a
shortest-path problem (Bertsekas 1991; Cormen, Leiserson,
& Rivest 1989). For the set-additive heuristic, the label of a
’node’ p in the graph must represent both the set of actions
π(p; s) and its costCost(π(p; s)). The sets of actions are
represented as sparse, ordered lists so that the union of two
such sets is done in time linear in the sum of their sizes.
The analogous operation for the additive heuristic is a sum.
While this is certainly cheaper, as the experiments below
show, the computational cost of the unions is not prohibitive.

Evaluating the hs
a heuristic

We tested the heuristicshFF, hc
FF, andhs

a in the context of an
EHC search. The first two heuristics are based on the relaxed
plan extracted by FF with the difference that the first counts
the number of actions in the plan, while the latter adds up
their costs. The last is the set-additive heuristic where the
relaxed plan extraction itself is cost-sensitive. We refer to
the resulting planners as FF, FF-C, and FF(hs

a) respectively.
The EHC search with theset-additive heuristicuses

π(G; s) as the relaxed plan froms. In addition, due to
the costs involved, two changes are done with respect to
FF. First, while a single step of EHC in FF ends as soon
as a states′ is found by a breadth-first search froms such
that h(s′) < h(s), in FF(hs

a) (and in FF-C), all statess′

resulting from applying a helpful actiona in s are eval-
uated, and among those for whichh(s′) < h(s) holds,
the action minimizing the expressioncost(a) + h(s′) is se-
lected.2 Second, while helpful actions in FF are defined as
H(s) = {a ∈ A|add(a) ∩ G1 6= ∅}, whereG1 denotes
the set of atoms in the first layer of the planning graph aris-
ing from the extraction of the planπFF (s), in FF(hs

a), G1

is defined as the set of atomsp achievable in one step, i.e.,
|π(p; s)| = 1, such thatp is a precondition of some action in
the relaxed planπ(G; s).

The three planners above were implemented on top
of Metric-FF, an extension of the FF planner (Hoffmann
2003). This is because the current accepted syntax for non-
uniform action costs is expressed through numeric fluents
that Metric-FF can handle. Numeric fluents, however, are
used only to encode cost information, and are then pruned
away.

The experiments were performed over six domains: four
are modified versions of the numeric domains Satellite,
Rovers, Depots, and Zenotravel from the Third International
Planning Competition (IPC3). In all cases, once the action
costsc(a) are extracted from the problem, all the numeric
variables are eliminated, leaving us with a Strips planning
problem with non-uniform costs. The sixth domain, Cost-
grid, is a simple grid domain in which movements between
squares are randomly assigned costs between0 and100. It
is possible to prove that in such a domain, the additive and
set-additive heuristics are optimal.

All experiments were run on a grid consisting of 76 nodes,
each a dual-processor Xeon “Woodcrest” dual core com-
puter, with a clock speed of 2.33 GHz and 8 Gb of RAM.
Execution time was limited to 1,800 seconds.

We have found that the set-additive heuristichs
a yields

better plans than bothhFF andhc
FF, the differences being sig-

nificant in Satellite, Zeno, and Costgrid. In terms of search
time, search withhs

a takes longer than withhFF, because it
is more expensive to compute and because sometimes the
better plans are simply longer. Yet the difference in time in
the experiments is constant factor that ranges between4 and
10 with both searches scaling up roughly in the same way.
Figures 1 and 3 show the quality of the plans for Satellite

2Actually, when an actiona mapss into a states′ in the first
level such thath(s)−cost(a) = h(s′) and the size of the computed
relaxed plan is decreased by1, such an action is selected right away.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

FF(h)
FF

FF-C

Figure 1: Plan costs for Satellite (h = hs
a)

 0.01

 0.1

 1

 10

 100

 1000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

FF(h)
FF

FF-C

Figure 2: Plan times for Satellite (h = hs
a)

and Zeno, while Figure 2 shows the search time for Satel-
lite. The heuristichc

FF is not a clear improvement over the
normal cost insensitive heuristichFF, and this is probably
why this heuristic is not used in Metric-FF.

We have also done experiments in domains withuniform
costs. In such domains the heuristic values returned byhFF
andhs

a are very much alike, and since the latter is more ex-
pensive to compute, its use does not appear to be justified.
Both heuristics also produce estimates that are lower than
the normal additive heuristic that tends to overestimate as a
result of the action duplicates.

Richer Labels and the TSP Heuristic
The additive heuristicha(s) is defined by associating a num-
berha(p; s) to every atomp in the problem (Equations 2–4).
The set-additive heuristichs

a(s) on the other hand associates
with every atom a relaxed planπ(p; s) (Equation 5–9). The
latter can be generalized by replacing the plansπ(p; s) with
more genericlabelsL(p; s) that can be numeric, symbolic,
or a suitable combination, provided that there is a function
Cost(L(p; s)) that maps labelsL(p; s) to numbers.

Here we consider labelsL(p; s) that result from treating

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

FF(h)
FF

FF-C

Figure 3: Plan costs for Zeno (h = hs
a)

one designated multivalued variableX in the problem in a
special way. A multivalued variableX is a set of atomsx1,
. . . , xn such that exactly onexi holds in every reachable
state. For example, in a task where there aren rocksr1, . . . ,
rn to be picked up at locationsl1, . . . , ln, the set of atoms
at(l0), at(l1), . . . , at(ln), whereat(l0) is the initial agent
location, represent one such variable, encoding the possible
locations of the agent. If the cost of going from locationli
to locationlk is c(li, lk), then the cost of picking up all the
rocks is the cost of the best (min cost)paththat visits all the
locations, added to the costs of the pickups. This problem
is a TSP that is intractable but whose cost can be approxi-
mated by quick and suboptimal TSP algorithms. The delete-
relaxation on the other hand approximates the model of the
problem by relating its cost to the cost the besttreerooted at
t0 that spans all the locations. The modification of the labels
π(a; s) in the set-additive heuristic allows us to move from
theapproximate modelcaptured by the delete-relaxation to
approximate TSP algorithmsover a more accurate model.

For this, we assume that the actions that affect the selected
multivalued variableX do not affect other variables in the
problem, and maintain in the labelsπ(p; s) two disjoint sets:
a set ofactionsthat do not affectX, and the set ofX-atoms
required by these actions. The heuristichX(s) is then de-
fined as

hX(s) def= CostX(π(G; s)) (10)

whereCostX(S) is the sum of the action costs for the ac-
tions inS that do not affectX plus the estimated cost of the
’local plan’ (Brafman & Domshlak 2006) that generates all
theX-atoms inS, expressed asTSPX(S ∩X; s) and to be
defined below:

CostX(S) =
∑

a∈(S∩X̄)

cost(a) + TSPX(S ∩X; s) (11)

The equations for the labelsπ(p; s) follow the ones in the
set-additive heuristic with the difference thatno commitment
is made about the supports ofX-atoms; the requiredX-
atoms are accumulated in the label instead, with their sup-
ports left to be determined by the TSP algorithm. As a result,

the equations for atomsp 6∈ X and actionsa that do not af-
fectX are:3

π(p; s) =
{

{} if p ∈ s
π(ap; s) otherwise (12)

where

ap = argmina∈O(p)CostX(π(a; s))

π(a; s) = {a} ∪ {∪q:X−(a) π(q; s)} ∪ {∪x:X+(a){x}}

with X−(a) = {Pre(a)∩X̄} andX+(a) = {Pre(a)∩X}.

Finally, the estimateTSPX(V ; s) of the cost of the best
action sequence that generates all the atomsxi ∈ V start-
ing from s (such atoms are mutex and cannot be achieved
jointly) is obtained by a fast but suboptimal TSP algorithm
over a directed graph with vertex setV ′ = V ∪ {xs, xd},
wherexs is theX-atom that is true ins andxd is a dummy
vertex. The edges in this graph are the pairs(xi, xj) of ’ver-
tices’xi andxj in V ′, xi 6= xj , and their costsci,j is

ci,j =

{
Ds(xi, xj) if xi 6= xd andxj 6= xd

0 if xi = xd andxj = xs

∞ if xi = xd andxj 6= xs

where the costs0 and ∞ for the edges involving the
’dummy’ vertex xd ensure that the any tour stands for a
path that starts inxs and ’visits’ all the atoms inV , while
the distance matrixDs(xi, xj) encodes the cost of achiev-
ing xj from the statesi obtained froms by deletingxs and
addingxi. Such distances can be computed by any delete-
based heuristic, including the additive and max heuristics
ha and hmax (Bonet & Geffner 2001). When the multi-
valued variableX stands for aroot variable in the causal
graph (Helmert 2004), a situation that is not uncommon for
’location’ variables in planning benchmarks, the max and
additive heuristics yield equivalent distances that areopti-
mal. Moreover, in such a case,it is sufficient to precompute
the distances once, as they do not change when the states
changes. In the general case, such distances need to be re-
computed for each state, which is not critical as long as the
size ofX is not too large. This, however, can be optimized
with caching, as the distancesDs(xi, xj) do not depend on
the whole states, but only on the values of the variables that
are ancestors ofX in the causal graph.

Our current implementation only supports the computa-
tion of the TSP heuristic for a ’root variable’X in the causal
graph, which automatically complies with the assumption
above that actions that affectX do not affect any other
atoms. The set of helpful actions for the EHC search is
changed to be the union of the helpful actions inπ(G; s)
along with the action in the resulting TSP tour that deletes
theX-atom true ins (recall that actions affectingX do not
appear explicitly inπ(G; s)).

Soft Goals
In many problems, there is a preference over atomsp in a
problem expressed by positive rewardsrwd(p), so that plans

3Notice that the goalG is a dummy atom not inX.

are sought that achieve all the ’hard’ goals (if any) while
satisfying such preferences as much as possible. We denote
that a planπ makes an atomp true asπ |= p. The valuev(π)
of a plan that achieves all hard goals can then be formalized
as the sum of the gathered rewards minus the cost of the
plan:

v(π) =
∑

p:π|=p

rwd(p)−
∑
ai∈π

cost(ai) (13)

so that plans with max value are sought.
Variations of this model of planning with soft goals have

been recently considered in (Smith 2004; Sanchez & Kamb-
hampati 2005; Bonet & Geffner 2006). Here we want to
show thatsoft goals can be compiled awayresulting in a
problem with more fluents, actions, and hard goals, but no
soft goals. This transformation is important as it implies that
any cost-sensitive heuristic can be used to handle soft goals.

Let P be a Strips planning problem extended with cost in-
formationc(a) ≥ 0 over its actions, and reward information
rwd(p) ≥ 0 over a subset of its atoms (rwd(p) for all other
atoms is assumed to be zero). For simplicity, we will assume
first that atomsp with strictly positive rewardrwd(p) > 0
cannot be deleted. This is not a central issue in dealing with
soft goals, and we will later see how this restriction can be
dropped. We will call such soft goalspersistent.

We define a Strips problemP ′ with action costsc(a) ≥ 0
andno rewards, such that there is a direct correspondence
between the optimal plans forP andP ′. LetS(P) stand for
the set of ’soft goals’ inP :

S(P) = {p | p ∈ F ∧ rwd(p) > 0}
and let

S′(P) = {p′ | p′ 6∈ F , p ∈ S(P)}
stand for a set of atomsp′ not inP , in correspondence with
the soft goalsp. Then forP = 〈F, I, G,O〉 whereF is the
set of fluents,I andG are the initial and goal situations, and
O is the set of actions, the problemP ′ = 〈F ′, I ′, G′, O′〉
can be defined as:

• F ′ = F ∪ S′(P)
• I ′ = I

• G′ = G ∪ S′(P)
• O′ = O ∪ {Collect(p), Forgo(p) | p ∈ S(P)}
whereCollect(p) has preconditionp, effectp′, and cost0,
while Forgo(p) has an empty precondition, effectp′ and
cost equal torwd(p).

In words, we ’copy’ the soft goalsp into atomsp′ and
make them ’hard goals’ inP ′. Such hard goals can then
be achieved with the actionCollect(p) that requiresp to be
true, at no cost, or can be achieved ’artificially’ by means of
the actionForgo(p) at the price of not collecting the reward
for p. We will use this transformation in the experiments
below.

Proposition 2 (Elimination of Soft Goals) An action se-
quenceπ is an optimal plan for the problemP with per-
sistent soft goalsif and only ifπ is the result of stripping off
the Collect and Forgo actions in an optimal plan for the
problemP ′ with no soft goals.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

FF(h)
FF

FF-C
FF(h-tsp)

Figure 4: Plan Costs for Rocks with Soft Goals

A sketch for the proof proceeds as follows. A planπ is
optimal for P if it maximizes the valuev(π) in (13). The
plan π remains optimal as well if we subtract the constant
R =

∑
p rwd(p) given by the sum ofall possible rewards

to the plan metric, resulting in a value functionv′(π) over
all plansπ given by:

v′(π) = −
∑

p:π 6|=p

rwd(p)−
∑
ai∈π

cost(ai)

Maximizingthis value function is equivalent in turn tomini-
mizingthe function

c′(π) =
∑

p:π 6|=p

rwd(p) +
∑
ai∈π

cost(ai)

which is exactly the cost of the planπ′ obtained inP ′ by ap-
pending toπ theCollect(p) actions for the atomsp achieved
by π, and theForgo(p) actions for the atomsp not achieved
by π (π 6|= p).

When soft goals are not persistent, i.e., there are actions in
P that may delete them once they are achieved, the transfor-
mation ofP into P ′ is slightly different, as it must enforce
that allCollect(p) actions occur after the actions that may
deletep in P . For computingdelete-relaxation heuristics,
however, this modification is not needed as in the delete-
relaxation, all atoms, soft-goals or not, are persistent (the
same is true for the TSP heuristichX(s) as long as noX-
atom is a soft goal).

Evaluating the hX heuristic
ThehX heuristic is implemented on top of thehs

a heuristic
and uses the 2-opt algorithm for solving the TSP subtasks.
The k-opt algorithm, fork = 2, 3, . . . is a family of local
search algorithms for the TSP that try to improve the current
tour by swappingk edges in the tour (Lawler & Rinnooy-
Kan 1985; Papadimitriou & Steiglitz 1999).

We tested thehX heuristic with EHC on a rover-type do-
main similar to the one discussed in (Smith 2004), where
rocks at various places must be visited, sampled and their
data transmitted. The rocks are placed in grid with size

 0.01

 0.1

 1

 10

 100

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

FF(h)
FF

FF-C
FF(h-tsp)

Figure 5: Plan Times for Rocks with Soft Goals

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

FF(h)
FF

FF-C
FF(h-tsp)

Figure 6: Plan Costs for Rocks with hard goals

100 x 100, with the travel costs between rocks given by the
Euclidean distances and 75% of these paths assumed to be
traversable. In one version of the problem, the goals are
’soft’, i.e. there is a reward for sending data for a rock. In
the other the goals are ’hard’. In the soft goals domain, re-
wards for rocks are selected randomly in the range 0 – 200.

Figures 4 and 6 show the costs of the plans produced by
thehX heuristic, withX being the rover location, in com-
parison with the heuristicshFF, hc

FF, andhs
a. The horizontal

axis shows the variable number of rocks in the problem set,
ranging from5 to 62. Clearly, thehX heuristic finds by far
the best plans in both variants of the domain, doing very well
in time as well. In the soft-version of the problem, FF and
FF-C are faster because they simply forgo all the rewards.
Surprinsingly, the plans found by thehs

a heuristic in the hard
version of the problem are inferior to both; we have yet to
understand why.

Summary
We have introduced a new non-admissible heuristic for plan-
ning, theset-additive heuristic, that combines the benefits
of the additive and relaxed planheuristics by modifying

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

FF(h)
FF

FF-C
FF(h-tsp)

Figure 7: Plan times for Rocks with hard goals

the former to yield relaxed plans that can be used in the
EHC search. The resulting formulation suggests other re-
finements that result from the propagation of labels rather
than numbers in the equations. We have considered one
such extension, where the required values of a designated
multivalued variableX are accumulated and spanned by a
path computed by a quick but suboptimal TSP algorithm.
The resulting heuristichX approximates the cost of the re-
laxationP+

X of the problemP where the only deletes that
are preserved are the ones involving the atomsxi associated
with the multi-valued variableX, a relaxation that Patrik
Haslum has aptly called theall-but-X delete-relaxation. We
have also shown that soft goals can be compiled away and
presented some experimental results. A number of practical
issues remain open, such as the automatic selection of the
TSP variable, the exploitation of precedence constraints on
the possible tours, and the efficient implementation of the
approach when the TSP variable is not a root of the causal
graph or when multiple TSP variables must be accommo-
dated. Recently, Mirkis and Domshlak have proposed a dif-
ferent variant of the additive heuristic which is based on
the propagation of cost vectors rather than sets (Mirkis &
Domshlak 2007), whose relation to the ideas proposed in
this paper is worth exploring too.

Acknowledgements.We thank B. Bonet and P. Haslum for
useful discussions about this topic, and the anonymous re-
viewers for useful comments, including the suggestion to
add the heuristichc

FF (FF-C) in the evaluation. H.Geffner is
partially supported by Grant TIN2006-15387-C03-03 from
MEC, Spain.

References
Bertsekas, D. 1991.Linear Network Optimization: Algo-
rithms and Codes. MIT Press.

Blum, A., and Furst, M. 1995. Fast planning through plan-
ning graph analysis. InProceedings of IJCAI-95, 1636–
1642. Morgan Kaufmann.

Bonet, B., and Geffner, H. 2001. Planning as heuristic
search.Artificial Intelligence129(1–2):5–33.

Bonet, B., and Geffner, H. 2006. Heuristics for planning
with penalties and rewards compiled knowledge. InProc.
KR-06.
Brafman, R., and Domshlak, C. 2006. Factored planning:
How, when, and when not. InAAAI-06.
Cormen, T. H.; Leiserson, C. E.; and Rivest, R. L. 1989.
Introduction to Algorithms. The MIT Press.
Do, M. B., and Kambhampati, S. 2001. Sapa: A domain-
independent heuristic metric temporal planner. InProc.
ECP 2001, 82–91.
Fuentetaja, R.; Borrajo, D.; and Linares, C. Improving
relaxed planning graph heuristics for metric optimization.
In Proc. 2006 AAAI Workshop on Heuristic Search.
Helmert, M. 2004. A planning heuristic based on causal
graph analysis. InProc. ICAPS-04, 161–170.
Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: Fast plan generation through heuristic search.Journal
of Artificial Intelligence Research14:253–302.
Hoffmann, J. 2003. The metric-ff planning system: Trans-
lating ”ignoring delete lists” to numeric state variables.J.
Artif. Intell. Res. (JAIR)20:291–341.
Lawler, E., and Rinnooy-Kan, A., eds. 1985.The Travel-
ing Salesman Problem : A Guided Tour of Combinatorial
Optimization. Wiley.
Long, D., and Fox, M. 2000. Extracting route-planning:
First steps in automatic problem decomposition. InProc.
AIPS Workshop on Analysing and Exploiting Domain
Knowledge for Efficient Planning.
Mirkis, V., and Domshlak, C. 2007. Cost-sharing approxi-
mations forh+. In Proc. ICAPS-07.
Papadimitriou, C., and Steiglitz, K. 1999.Combinatorial
Optimization : Algorithms and Complexity. Dover.
Sanchez, R., and Kambhampati, S. 2005. Planning graph
heuristics for selecting objectives in over-subscription
planning problems. InProc. ICAPS-05.
Sapena, O., and Onaindia, E. 2004. Handling numeric cri-
teria in relaxed planning graphs. InAdvances in Artificial
Intelligence: Proc. IBERAMIA 2004, LNAI 3315, 114–123.
Springer.
Smith, D. E. 2004. Choosing objectives in over-
subscription planning. InProc. ICAPS-04, 393–401.

