
Symbolic Shortest Paths Planning

Stefan Edelkamp∗

Computer Science Department
University of Dortmund, Germany

stefan.edelkamp@cs.uni-dortmund.de

Abstract

This paper studies the impact of pattern databases for solving
shortest path planning problems with limited memory. It con-
tributes a bucket implementation of Dijkstra’s algorithm for
the construction of shortest path planning pattern databases
and their use in symbolic A* search. For improved efficiency,
the paper analyzes the locality for weighted problem graphs
and shows that it matches the duplicate detection scope in
best-first search graphs. Cost-optimal plans for compiled
competition benchmark domains are computed.

Introduction
Optimal planning for action with costs is a natural require-
ment for many applications. It is common that costs are
positive bounded integers1. As an example, take macros
actions (Korf 1985) that dramatically reduce search ef-
forts. Unfortunately, planners for macro actions are of-
ten not optimal (Botea, Müller, & Schaeffer 2005). Con-
sider a (deterministic) planning problem P = (S,A, I,G),
and the search for a cost-optimal sequence of actions π =
(a1 . . . , ak), ai ∈ A, that leads from the initial state I ⊆ S
to the planning goal G ⊆ S. In other words, the objective is
to minimize the costs of applying all actions in the plan π.
We distinguish the following cost models:

C1 uniform action costs ; e.g., c(a) = 1 for a ∈ A;
C2 function c(a) of action a ∈ A;
C3 function c(a, u) of action a ∈ A and state u ∈ S; and
C4 arbitrary cost function encoded as part of the problem.

So far, the series of international planning competitions
has focused on action counting in cost model C1 (Bacchus
2001) full metric planning in cost model C4 (Fox & Long
2003), and preference constraints (Gerevini & Long 2005),
which penalize plans that go through certain states in cost
models C3 and C4. According to a current proposal, tack-
ling cost model C2 to compute the sum

∑
ai∈π c(ai) is one

central aims for the deterministic part of the sixth interna-
tional planning competition (IPC-6).

∗Thanks to DFG for support in project ED 74/4
Copyright c© 2007, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

1For fractional values it is also possible and beneficial to
achieve this by rescaling

In PDDL shortest-path planning in cost model C2 can
be modeled by specialized variables increased by a constant
amount in the effects. Alternatively, we may extend PDDL
by introducing a tag (cost) for each action, whose contri-
bution is monitored in the plan objective (total-cost).

This paper contributes symbolic single-source shortest-
path search for additive cost functions in cost model C2.
In contrast to existing cost-optimal symbolic search algo-
rithms, not all states are visited. Instead we conduct sym-
bolic shortest-path pattern database A* search.

The paper is structured as follows. First we recall sym-
bolic planning. To indicate the relation to the state-of-the-
art, we draw some initial experiments. We then discuss
the symbolic implementation of Dijkstra’s single-source
shortest-paths algorithm and its complexity. Next we ad-
dress symbolic shortest-path planning pattern databases and
their construction for cost model C2. To restrict the scope
for duplicate detection, we extend the concept of locality
from breadth-first to best-first search graphs. We show how
to combine a set of disjoint symbolic pattern databases into
one. In the experiments, we provide promising results for
cost-optimal variants of existing competition benchmarks.

Symbolic Planning
Symbolic planning often refers to analyzing planning
graphs (Blum & Furst 1995) or by checking the satisfi-
ability of formulas (Kautz & Selman 1996; Biere et al.
1999). Here, we refer to the symbolic exploration in the
context of using BDDs (Bryant 1985), although more gen-
eral automata concepts may apply (Borowski & Edelkamp
2007). While invented in model checking, BDDs contri-
bute to many successful AI planning systems (Cimatti,
Roveri, & Traverso 1998; Jensen 2003; Jensen et al. 2006;
Edelkamp 2003). The idea is to lessen the costs associated
with the exponential memory requirements for the state sets
involved as problem sizes get bigger. We assume a binary
(or at least a finite domain) encoding of a planning problem.

Action are formalized as relations, representing sets of tu-
ples of predecessor and successor states. This allows to com-
pute the image as a conjunction of the state set (formula)
and the transition relation (formula), existentially quanti-
fied over the set of predecessor state variables. This way,
all states reached by applying one action to one state in
the input set are determined. Iterating the process (start-

ing with the representation of the initial state) yields a sym-
bolic implementation of breadth-first search (BFS). Fortu-
nately, by keeping sub-relations Transa attached to each ac-
tion a ∈ A it is not required to build a monolithic tran-
sition relation. The image of state set S then reads as∨

a∈A (∃x (Transa(x, x′) ∧ S(x))) .

Step-Optimal Symbolic Planning
For step-optimal symbolic planning, uni- and bidirectional
symbolic BFS (Edelkamp & Helmert 2001), as well as dif-
ferent symbolic implementations of A* (Edelkamp & Ref-
fel 1998; Hansen, Zhou, & Feng 2002; Jensen, Bryant, &
Veloso 2002; Qian 2006) and branch-and-bound (Jensen et
al. 2006) have been proposed.

Our planner MIPS-BDD first generates a grounded plan-
ning instance in PDDL (ground) together with a minimized
state encoding (Edelkamp & Helmert 1999; Helmert 2004),
and then starts a symbolic exploration (bdd-solver).

By the dominance of parallel-optimal especially SAT-
based planners, the state-of-the-art in solving planning prob-
lems step-optimal is less known. To illustrate that BDDs are
competive, we compare symbolic BFS in MIPS-BDD with
other step-optimal planners. That blind BFS often performs
well wrt. heuristic search is an observation also encountered
in explicit search (Helmert & Röger 2007).

First we select competition results of top-performing
(parallel-)optimal planners SATPLAN (Kautz, Selman, &
Hoffmann 2006) and MAXPLAN (Xing, Chen, & Zhang
2006) at IPC-5. The results for Openstack, (obtained with
matching resource limits) are shown in Figure 1. The solu-
tion length match, as for this domain all possible plans are
sequential. We see a clear advantage of applying BDDs.

Problem OPT MIPS-BDD SAT-PLAN MAX-PLAN CPT2
01 23 1.02 >1,800 979 >1,800
02 23 0.98 >1,800 1,353 >1,800
03 23 1.00 >1,800 1,148 >1,800
04 23 0.99 >1,800 841 >1,800
05 23 1.00 >1,800 1,438 >1,800
06 45 3.33 >1,800 >1,800 >1,800
07 46 3.44 >1,800 >1,800 >1,800
08 87 1,132 >1,800 >1,800 >1,800
09 87 544 >1,800 >1,800 >1,800

Figure 1: Step-optimal search in Openstack (IPC-5).

A recent paper by Helmert, Haslum, & Hoffmann (2007)
pushes the envelope for step-optimal planning. Their plan-
ner LFPA outperformed other step-optimal heuristic search
planners like HSP (max-pair), BFHS (Zhou & Hansen
2004), PDB (Haslum et al. 2007), and FDP (Grandcolas
& Pain-Barre 2007)2 (on the selected benchmark problems).
It was also compared with MIPS-BDD IPC-5 competition
results. In one domain (TPP), MIPS-BDD was the clear-
cut winner, while in the other domain (Pipesworld) its per-
formance degrades. This is partly due to the fact that for

2Unfortunately, another recent step-optimal planner Petrify
(Hickmott et al. 2006) was not evaluated.

this particular domain MIPS-BDD’s backward BFS itera-
tions produce extra-ordinary large BDDs3.

In new runs4 we could validate all published solutions
length of LFPA to be optimal, while showing how well blind
symbolic BFS actually scales. The results are shown in Ta-
ble 2 (PSR), Table 3 (Pipesworld/Tankage), Table 4 (Logis-
tics), and Table 5 (Satellite). Note that heuristic search ab-
stractions as applied in LFPA require some additional input
parameters, while symbolic BFS in MIPS-BDD does not.

Problem OPT MIPS-BDD LFPA PDB BFS HSP BFHSP
29 21 2.35 3.47 255 2.30 3.66 1.43
36 22 6.85 67.94 1026 16.82 27.49 25.15
40 20 2.26 38.29 1309 11.91 15.11 7.94
48 37 128 36.16 787 457 >1,800 >1,800
49 47 3,255 67.75 >1,800 >1,800 >1,800 >1,800

Figure 2: Step-optimal search in PSR (IPC-4).

Problem OPT MIPS-BDD LFPA PDB BFS HSP BFHSP FDP
01 5 1.12 1.00 10.59 0.00 0.00 0.15 0.05
02 12 1.30 1.91 20.48 0.01 0.04 0.20 0.41
03 8 4.43 3.99 99.27 1.45 1.60 5.21 2.17
04 11 5.98 9.98 244 5.66 17.56 20.44 27.75
05 8 9.13 8.68 162 0.34 1.97 5.04 1.27
06 10 13.22 17.43 409 1.63 8.17 16.35 8.57
07 8 91.33 25.84 >1,800 379 1,295 >1,800 12.41
08 11 601 43.70 >1,800 >1,800 >1,800 >1,800 1,092
11 22 757 26.22 795 55.91 436 >1,800 >1,800
13 16 2,261 70.14 >1,800 >1,800 >1,800 >1,800 >1,800
15 30 3,247 161 >1,800 >1,800 >1,800 >1,800 >1,800
21 14 854 52.79 >1,800 121 736 >1,800 375
31 39 10,730 50.36 >1,800 24.53 673 >1,800 >1,800

Figure 3: Step-optimal search in Pipesworld (IPC-4).

Cost-Optimal Symbolic Planning
In the context of introducing preferences (Gerevini & Long
2005), cost-optimal symbolic search (wrt. the problem’s
metric) applies (Edelkamp 2006). The approach generates
the entire search space via BFS, incrementally improving
the solution quality with increasing depth.

In Figure 6 we show that MIPS-BDD computes optimal
solutions in planning domains with preferences (and state
trajectory constraints), producing significantly better plans
than sub-optimal solvers. As expected, the price for opti-
mality is a drastic increase in the search time. The last result
shows the time when the optimal solution was generated,
while optimality was proven after 4,607s.

3Implementation refinements wrt MIPS-BDD IPC-5 include
improvements to the ordering of the minimized state encoding
(e.g. by imposing conflict-dependent sorting ordering), an transi-
tion relation that is kept partitioned wrt. action and cost, improved
garbage-collection and a 64-bit version for handling larger BDDs.

4Experiments were conducted on a 64-bit computer with a 2.4
GHz CPU (with 8 GB RAM). The other planners (in this section)
are evaluated on 3GHz (with 1.5 GB RAM).

Problem OPT MIPS-BDD LFPA PDB BFS HSP BFHSP
4-0 20 1.15 0.10 3.21 0.09 0.06 0.11
4-1 19 1.15 0.09 5.48 0.08 0.04 0.16
5-0 27 1.23 0.87 16.75 1.12 1.03 2.41
5-1 17 1.13 0.88 4.58 0.22 0.09 0.18
6-0 25 1.20 3.65 16.48 5.96 3.34 3.62
6-1 14 1.09 3.85 3.16 0.28 0.06 0.11
7-0 36 10.70 24.56 91.12 >1,800 >1,800 >1,800
7-1 44 21.82 26.84 156 >1,800 >1,800 >1,800
8-0 31 5.94 37.09 79.49 >1,800 >1,800 >1,800
8-1 44 13.69 40.77 160 >1,800 >1,800 >1,800
9-0 36 8.42 55.47 127 >1,800 >1,800 >1,800
9-1 30 4.52 53.42 92.85 >1,800 >1,800 >1,800
10-0 45 694 117 497 >1,800 >1,800 >1,800
10-1 42 577 129 405 >1,800 >1,800 >1,800
11-0 48 546 129 377 >1,800 >1,800 >1,800
11-1 60 2,320 284 >1,800 >1,800 >1,800 >1,800
12-0 42 473 185 545 >1,800 >1,800 >1,800
12-1 68 15,112 221 >1,800 >1,800 >1,800 >1,800

Figure 4: Step-optimal search in Logistics (IPC-2).

Problem OPT MIPS-BDD LFPA PDB BFS HSP BFHSP
01 9 1.04 0.01 0.27 0.00 0.00 0.03
02 13 1.35 0.08 0.32 0.01 0.01 0.08
03 11 1.99 3.16 2.10 0.30 0.18 0.16
04 17 2.52 6.92 11.54 9.34 6.26 3.08
05 15 37.78 47.74 110 >1,800 >1,800 119
06 20 27.40 21.19 634 >1,800 707 265

Figure 5: Step-optimal search in Satellite (IPC-3).

Symbolic Shortest Paths Planning
For positive action costs, the first plan reported by Dijk-
stra’s 1959 algorithm is already optimal. For implicit graphs,
we need two data structures, one to access nodes in the
search frontier and one to detect duplicates. In model C2

Algorithm 1 Symbolic-Shortest-Path.
Input: State space planning problem P = (S,A, I,G) in symbolic form

with I(x), G(x), and Transa(x, x′)

Output: Optimal solution path

Open[0](x)← I(x)

for all f = 0, . . . , fmax

Min(x)← Open[f](x)

if (Min(x) ∧ G(x) 6= ⊥)

return Construct(Min(x) ∧ G(x))

for all i = 1 . . . , C

Succi(x
′)←

∨
a∈A,c(a)=i(∃x(Min(x) ∧ Transa(x, x′))

Succi(x)← ∃x′(Succi(x
′) ∧ x = x′)

Open[f + i](x)← Open[f + i](x) ∨ Succi(x)

the priority queue can be partitioned into a list of buckets
Open[0], . . . , Open[fmax]. We assume that the largest action
cost (inducing the difference between the largest and small-
est key) is bounded by some constant C. An according sym-
bolic search procedure is implemented in Algorithm 1. The
algorithm works as follows. The BDD Open[0] is initialized
to the representation of the start state. Unless one goal state
is reached, in one iteration we first choose the next f -value

Problem MIPS-BDD SG-PLAN MIPS-XXL HPlan-P
1 0 0.01 8 0.00 0 0.09 0 0.17
2 1 0.02 13 0.00 1 3.08 1 3.73
3 2 0.31 26 0.01 10 299 17 160
4 5 1,026 39 0.02 44 6,043 36 287

Figure 6: Cost-optimal symbolic search in Storage, Quali-
tative Preferences (IPC-5).

together with the BDD Min of all states in the priority queue
having this value. Then for each a ∈ A with c(a) = i the
transition relation Transa(x, x′) is applied to determine the
BDD for the subset of all successor states that can be reached
with cost i. In order to attach new f -values to this set, we
insert the result into bucket f + i.

A slightly advanced implementation for the priority queue
is a one-level bucket (Dial 1969). This priority queue imple-
mentation consists of an array of size C + 1, each of which
is the link to a BDD for the elements.

If all previous layers remain in main memory, sequential
solution reconstruction is sufficient. If layers are eliminated
as in frontier search (Korf et al. 2005) or breadth-first heuris-
tic search (Zhou & Hansen 2004), additional relay layers
have to be maintained. The state closest to the start state in
the relay layer is used for divide-and-conquer solution re-
construction. Alternatively, already expanded buckets are
flushed to the disk (Edelkamp 2005). For large values of
C, multi-layered bucket and radix-heap data structures are
appropriate, as they improve the time for scanning interme-
diate empty buckets (Ahuja et al. 1990).

Theorem 1 (Optimality and Complexity of Algorithm 1)
For transition weights w ∈ {1, . . . , C}, the symbolic ver-
sion of Dijkstra’s algorithm in a one-level bucket priority
queue finds the optimal solution with at most O(C · f∗) full
and O(C · |A| · f∗) partitioned images, where f∗ is the op-
timal solution cost.

Proof: Since f is monotonically increasing, the first goal
expanded with cost f∗ delivers a cost-optimal plan. Given
that the action costs are positive, we compute at most O(C ·
f∗) full and O(C · |A| · f∗) partitioned images.

The above algorithm traverses the search tree expansion
of the problem graph. It is sound as it finds an optimal so-
lution if it exists. In the above implementation, however, it
is not complete, as it does not necessarily terminate if there
is no solution. We consider termination in form of delayed
duplicate detection in the next two sections.

Symbolic Pattern Databases
Abstraction is the key to the automated design of search
heuristics. Applying abstractions simplifies a problem, and
exact distances in these relaxed problems can serve as lower
bound estimates for the concrete state space (provided that
each concrete path maps to an abstract path). Moreover, the
combination of heuristics based on different abstractions of-
ten leads to a better search guidance. Pattern databases (Cul-
berson & Schaeffer 1998) completely evaluate the abstract
search space P ′ = (S ′,A′, I ′,G′) prior to the concrete,
base-level search in P . More formally, a pattern database

is a lookup table indexed by u′ ∈ S ′ containing the short-
est path cost from u′ to the abstract goal G′. The size of a
pattern database is the number of states in P ′.

Symbolic pattern databases (Edelkamp 2002) are pat-
tern databases that have been constructed symbolically for
later use either in symbolic or explicit heuristic search.
They are based on the advantage of the fact that Trans has
been defined as a relation. In backward search we suc-
cessively compute the preimage according to the formula
∃x

∨
a∈A(S(x) ∧ Transa(x′, x)). Each state set in a short-

est path layer is efficiently represented by a corresponding
BDD. Different to the posterior compression of the state set,
the construction itself works on a compressed representa-
tion, allowing the generation of much larger databases.

In its original form, symbolic pattern databases are rela-
tions of tuples (f, x), which evaluate to true if the heuris-
tic estimate of a states encoded in x matches the heuris-
tic value encoded in f . Such relation can represented as
a BDD for the entire problem space. Equivalently, a sym-
bolic pattern database can be maintained by set of BDDs
PDB[0], . . . , PDB[hmax]. For such construction of a sym-
bolic shortest-path pattern database, Algorithm 1 is adapted
as follows. The list is initialized with the abstracted goal
(setting PDB[0] to G′) and, as long as there are newly en-
countered states, we take the current frontier and generate
the set of predecessors with respect to the abstract transition
relation. Then we attach the matching bucket index to the
new state set, and iterate the process.

Different to Algorithm 1, the exploration has to termi-
nate, once the abstract search space has been fully explored.
Therefore, duplicates have to be detected and eliminated. If
the entire list of BDDs is available we simply subtract the
PDB[0]∨ . . .∨PDB[i− 1] from the current layer PDB[i]. If
memory is sparse, a strategy to reduce the duplicate detec-
tion scope becomes crucial.

Shortest-Path Locality
How many layers are sufficient for full duplicate detection
in general is dependent on a property of the search graph
called locality (Zhou & Hansen 2004). In the following we
generalize the concept from unweighted to weighted search
graphs. Let succ(u) = {v ∈ S | ∃a ∈ A : a(u) = v}.

Definition 1 (Shortest Path Locality) For a problem graph
G with cost function c and δ being defined as the minimal
cost between two states, the shortest path locality is

L = max
u∈S,v∈succ(u)

{δ(I, u)− δ(I, v) + c(u, v)}.

In unweighted, undirected graphs δ(I, u) and δ(I, v) dif-
fer by at most one, so that the locality is two5

We will see that the locality determines the thickness of
the search frontier needed to prevent duplicates in the search.
In contrast to explicit-state search, in symbolic planning

5Due to a more general setting, our definition for unweighted
graphs is off by 1 compared to the definition of (Zhou &
Hansen 2004), where locality does not include the edge cost
max{maxu∈S,v∈succ(u){δ(I, u)− δ(I, v)}, 0}).

there are no duplicates within one bucket, since the BDD
representation is unique.

While the locality is dependent on the graph the duplicate
detection scope also depends on the search algorithm ap-
plied. For BFS, the search tree is generated with increasing
path lengths (number of edges), while for weighted graphs
the search tree is generated with increasing path cost (this
corresponds to Dijkstra’s exploration strategy in the one-
level bucket priority queue data structure). The following
result extends a finding for breadth-first to best-first graphs.
Theorem 2 (Shortest-Path Locality determines Boundary
for Best-First Search Graphs) In a positively weighted
search graph the number of shortest-path buckets that need
to be retained to prevent duplicate search effort is equal to
the shortest path locality of the search graph.
Proof: Let us consider two nodes u and v, with v ∈ succ(u).
Assume that u has been expanded for the first time, generat-
ing the successor v which has already appeared in the layers
0, . . . , δ(I, u)−L implying δ(I, v) ≤ δ(I, u)−L. We have

L ≥ δ(I, u)− δ(I, v) + c(u, v)
≥ δ(I, u)− (δ(I, u)− L) + c(u, v) = L + c(u, v)

This is a contradiction to c(u, v) > 0.
The condition δ(I, u)−δ(I, v)+c(u, v) maximized over

all nodes u and v ∈ succ(u) is not a property that can be
easily checked before the search. To determine the number
of shortest-path layers prior to the search, it is important to
establish sufficient criteria for the locality of a search graph.
The question is, if we can establish a sufficient condition for
an upper bound.
Theorem 3 (Upper Bound on Shortest Path Locality) In a
positively weighted search graph the shortest path locality
can be bounded by the minimal distance to get back from a
successor node v to u, maximized over all u, plus C.
Proof: For any states I, u, v in a graph, the triangular prop-
erty of shortest path δ(I, u) ≤ δ(I, v) + δ(v, u) is satis-
fied, in particular for v ∈ succ(u). Therefore δ(v, u) ≥
δ(I, u)− δ(I, v) and max{δ(v, u) | u ∈ S, v ∈ succ(u)} ≥
max{δ(I, u)− δ(I, v) | u ∈ S, v ∈ succ(u)}. In positively
weighted graphs, we additionally have δ(v, u) ≥ 0 such that
max{δ(v, u)| u ∈ S, v ∈ succ(u)} + C is larger than the
shortest path locality.

Theorem 4 (Upper Bounds on Shortest-Path Locality in
Undirected Graphs) For undirected weighted graphs with
maximum edge weight C we have L ≤ 2C.
Proof: For undirected graphs with with maximum edge cost
C we have L ≤ max{δ(v, u) | u ∈ S, v ∈ succ(u)} +
C = max{δ(u, v) | u ∈ S, v ∈ succ(u)} + C =
max{c(u, v) | u ∈ S, v ∈ succ(u)}+ C = 2C.

Automated Pattern Selection
In domain-dependent planning, the abstraction functions are
selected by the user. For domain-independent planning the
system has to infer the abstractions automatically. Unfor-
tunately, there is a huge number of feasible abstractions to
choose from (Hoffmann, Sabharwal, & Domshlak 2006).

Nonetheless, first progress in computing abstractions au-
tomatically has been made (Haslum, Bonet, & Geffner
2005). One natural option applicable to propositional do-
mains is to select a pattern set R and apply u ∩ R to each
planning state u ∈ S. The interpretation is that all vari-
ables not in R are mapped to don’t care. More formally,
the abstraction P ′ = (S ′,A′, I ′,G′) of a (propositional)
planning problem P = (S,A, I,G) wrt. R is defined
by setting S ′ = {u ∈ S | R ∩ u}, G′ = R ∩ G, and
A′ = {a′ = (P ∩R,A∩R,D ∩R) | a = (P,A, D) ∈ A}.
This definition naturally extends to finite domain planning.

Algorithm 2 Symbolic-SSSP-PDB-Construction
Input: Abstract state space problem P′ = (S′,A′, I′,G′) in symbolic form

with G′(x), Trans′a(x, x′), shortest path locality L

Output: Shortest-path symbolic pattern database

PDB[0](x′)← G′(x′)
for all f = 0, . . . , fmax

for all l = 1, . . . , L with g − l ≥ 0

PDB[g](x′)← PDB[g](x′) \ PDB[g − l](x′)

Min(x′)← PDB[f](x′)

for all i = 1 . . . , C

Succi(x)←
∨

a∈A′,c(a)=i(∃x
′(Min(x′) ∧ Trans′a(x, x′))

Succi(x
′)← ∃x(Succi(x) ∧ x = x′)

PDB[f + i](x′)← PDB[f + i](x′) ∨ Succi(x
′)

A shortest-path symbolic pattern database is the outcome
of a backward exploration in abstract space. The pseudo-
code of the construction is shown in Algorithm 2. We
see that up to L many previous layers are subtracted be-
fore a bucket is expanded. Multiple pattern database can
be combined by either taking the maximum (always ap-
plicable), or the sum of individual pattern database en-
tries (only applicable if the pattern databases are addi-
tive) (Korf & Felner 2002). One possible approach to select
a disjoint pattern partition automatically (Edelkamp 2001;
Haslum, Bonet, & Geffner 2005) uses bin packing to divide
the state vector into parts R1, . . . , Rk, with Ri 6= Rj for
i 6= j. It restricts the candidates for R1, . . . , Rk to the ones
with an expected pattern database size (e.g. 2|R1| · . . . ·2|Rk|)
smaller than a pre-specified memory limit M .

The effectiveness of a pattern database heuristic can be
predicted by its mean. In most search spaces, a linear gain
in the mean corresponds to an exponential gain in the search.
The mean can be determined by sampling the problem space
or by constructing the pattern database. For computing the
strength for a multiple pattern databases we compute the
mean heuristic value for each of the databases individually
and add (or maximize) the outcome. More formally, if PDBi

is the i-th pattern database in the disjoint set, i ∈ {1, . . . , k},
then the strength of a disjoint pattern database set is

k∑
i=1

maxh∑
j=0

j · |PDBi[j]|/
maxh∑
j=0

|PDBi[j]|.

The definition applies to both unweighted and weighted
pattern databases. Once the BDD for PDBi[j] is created,
|PDBi[j]| can be efficiently computed (model counting).

Heuristic Symbolic Planning
BDDA* (Edelkamp & Reffel 1998) can be casted as a
variant of the BDD-based implementation of Dijkstra’s al-
gorithms with consistent heuristics. The algorithm was
invented in the context of solving the single-agent chal-
lenges. ADDA* developed by Hansen, Zhou, & Feng (2002)
is an alternative implementation of BDDA* with ADDs,
while SetA* by Jensen, Bryant, & Veloso (2002)introduces
branching partitioning. Symbolic branch-and-bound search
has been proposed by Jensen et al. (2006). In an experi-
mental study Qian & Nymeyer (2003) suggest that weaker
heuristics perform often better.

The unified symbolic A* algorithm we consider uses a
two-dimensional layout of BDDs. The advantage is that
each state set already has the g- and the h-value attached
to it, and such that arithmetics to compute f -values for the
set of successors are not needed. To ensure completeness of
the algorithm, we subtract previous buckets from the search.
In order to save RAM, all buckets Open[g, h] can be main-
tained on disk (Edelkamp 2005).

Algorithm 3 Shortest-Path-A*.
Input: State space planning problem P = (S,A, I,G) in symbolic form

with I(x), G(x), and Transa(x, x′), shortest-path locality L

Output: Optimal solution path

for all h = 0, . . . , hmax

Open[0, h](x)← Evaluate(I, h)

for all f = 0, . . . , fmax

for all g = 0, . . . , f

h← f − g

for all l = 1, . . . , L with g − l ≥ 0

Open[g, h](x)← Open[g, h](x) \ Open[g − l, h](x)

Min(x)← Open[g, h](x)

if (Min(x) ∧ G(x) 6= ⊥)

return Construct(Min(x) ∧ G(x))

for all i = 1, . . . , C

Succi(x
′)← ∃x

∨
a∈A,c(a)=i(Min(x) ∧ Transa(x, x′))

Succi(x)← ∃x(Succi(x
′) ∧ x = x′)

for each h ∈ {0, . . . , hmax}
Open[g + d, h](x)← Open[g + d, h](x) ∨ Evaluate(Succi, h)

return false

In the extension of BDDA* to weighted graphs shown in
Algorithm , we determine all successors of the set of states
with minimum f -value, current cost total g and action cost
i. It remains to determine their h-values by a lookup in a
multiple pattern database. The main problem is to merge the
individual pattern database distributions into one. Inferring
a joint distribution prior to the search is involved; it may
easily exceed the time and space needed for searching the
problem.

Therefore, we have decided to perform the lookup and
the combination of multiple pattern databases entries on-the-
fly for each encountered successor set Succi. Algorithm
shows a possible implementation for additive costs. An al-
gorithm for maximizing pattern database costs simply sub-
stitutes i1 + . . . + ik = h with max{i1, . . . , ik} = h.

Theorem 5 (Optimality and Complexity of Algorithm) For

Algorithm 4 Evaluate
Input: State set States(x), value h

Global: Disjoint pattern databases PDB1, . . . , PDBk

Output: Result(x) representing subset of States(x) with
h = PDB1(x) + . . . + PDBk(x)

Result(x)← ⊥
for each i1, . . . , ik with i1 + . . . + ik = h

Result(x)← Result(x) ∨ (States(x) ∧ PDB1[i1](x) ∧ . . . ∧ PDBk[ik](x))

return Result(x)

transition weights w ∈ {1, . . . , C}, the symbolic version of
algorithm A* on a two-level bucket priority queue operates
finds the optimal solution with at most O(C · (f∗)2) full and
O(C ·|A|·(f∗)2) partitioned images, where f∗ is the optimal
solution cost.
Proof: Optimality and completeness of BDDA* are inher-
ited from explicit-state A*. As the g- and the h-value are
both bounded by f∗ it computes at most O(C · (f∗)2) full
and O(C · |A| · (f∗)2) partitioned images.

To reconstruct the solution with the same algorithm sug-
gested for Dijkstra’s search we may unify the all (g, i)-
buckets, 0 ≤ i ≤ h into one g-layer. If memory be-
comes sparse, similar to breadth-first heuristic search (Zhou
& Hansen 2004), a recursive reconstruction based based on
relay layers can be preferable, and as said, relay layers can
be avoided by using disk space.

So far we have extended the symbolic versions of Dijk-
stra’s algorithm and A* to deal with actions a of cost zero.
In the concrete state space zero-cost operators are a natu-
ral concept, as actions can be transparent to the optimiza-
tion criterion (e.g. boarding and debarking passengers while
minimizing the total fuel-consumption of a plane). For the
construction of disjoint pattern databases zero-cost operators
are introduced when an action has effects in more than one
abstractions. To avoid multiple counting of the costs of an
action the cost of the abstract action is set to zero in all but
one abstraction before constructing the pattern databases.
This way the sum of the abstraction remains admissible.

Dijkstra’s shortest path algorithm remains correct for
problem graphs with edge cost zero, but the introduction of
zero-cost actions in the one-level bucket-based implementa-
tion has to be dealt with care. In essence, the algorithm stay
in a bucket for some time, which requires to separate the
search frontier in a bucket from the set of expanded nodes.

For the construction of symbolic pattern databases the fol-
lowing solution introducing zero-cost actions turns out to be
sufficient. It performs BFS to compute the closure for each
bucket: once a zero-cost image is encountered for a bucket
to be expanded, a fixpoint is computed. This results in the
representation all states that are reachable by applying one
non-zero cost action followed by a sequence of zero-cost
actions. As a result the constructed pattern databases are ad-
missible even if the partition into patterns does not perfectly
separate the set of actions.

Results
As benchmarks for shortest path planning we casted tem-
poral planning problems from the 2002 and 2006 interna-

tional planning competitions (IPC-3 and IPC-5) as cost-
optimization optimization problems, minimizing sequential
total time, interpreted as the sum of the individual durations
over all actions in the plan6

Unfortunately, none of the step-optimal planners yet in-
cludes action costs7. Therefore – despite the difference in
the plan objective – we decided to cross-compare the perfor-
mance of our BDD planning approach with the state-of-the-
art temporal planner CPT by Vidal & Geffner.

CPT computes the makespan, i.e., the optimal duration
of a parallel plan. As in propositional planning, the best
parallel plan does not imply the best sequential plan, or vice
versa. As the search depth and variation of states increase,
it is likely that finding the optimal duration of a sequential
plan is the harder optimization problem8 9 10.

Problem Mincost MIPS-BDD CPT TP4 Makespan
1 173 0.96 0.02 0.07 173
2 642 1.15 0.07 0.28 592
3 300 1.23 0.09 0.43 280
4 719 9.29 1.09 >3,600 522
5 500 2.77 0.44 30.54 400
6 550 13.19 0.35 4.87 323
7 1,111 178 3.07 >3,600 665
8 942 1,345 17.52 >3,600 522
9 ≥ 1,286 >3,600 90.64 >3,600 522

Table 1: Results in ZenoTravel, SimpleTime (IPC-3).

Table 1 shows the results in ZenoTravel11. The symbolic
implementation of Dijkstra’s algorithms solved the first 7
problems. Value 1,111 shows that the approach scales to
larger action cost values. For Problem 8 it generated a plan
of quality 949, but (while terminated at cost value 820), it
could not prove optimality within 1 hour. On the other hand,
BDDA* (with bin packing) solved problem 8 (incl. pat-
tern database construction) in about 20min. Sequential costs
raised to over twice the parallel costs but finding plans took
more time, such that larger problems could not be solved. In
such cases we provide lower bounds.

Table 2 shows the results in DriverLog. Here we exper-
imented with Dijkstra’s algorithm only. For this case the

6As we don’t know L for most of the planning domains, for pat-
tern construction we used full duplication detection (subtracting all
previous layers), for Dijkstra search we used no duplicate pruning
at all, while for A* search we imposed a sufficient large number of
L = 10 (not affecting the optimality).

7We are aware of one current implementation efforts for such
planner by Menkes van den Briel. Unfortunately, due to the unfin-
ished status of the planner, we were not able to cross-compare.

8For relaxed plans it is known that finding the sequential op-
timal plan is NP-hard, while finding the parallel optimal plan is
polynomial (Hoffmann & Nebel 2001).

9For these experiments we imposed a time limit of 1 hour and
a memory limit of 2 GB. The reference computer for CPT is has a
2.8GHz CPU equipped with 1 GB RAM (Vidal & Geffner 2006).

10We interpreted total-time as total-cost and avoid en-
forcing sequential plans as such comparison would likely be unfor-
tunate for CPT.

11CPT also solved instance 10 and 11

Problem Mincost MIPS-BDD CPT TP4 Makespan
1 92 0.92 0.02 4.18 91
2 166 1.92 0.02 365.89 92
3 83 2.42 0.03 0.18 40
4 134 36.40 >3,600 >3,600 -
5 109 8.07 40.67 >3,600 51
6 107 100.57 >3,600 >3,600 -
7 84 60.23 0.43 45.52 40
8 153 3,256 >3,600 >3,600 -
9 120 3,284 >3,600 >3,600 -
10 72 1,596 6.16 >3,600 38
11 84 799 >3,600 >3,600 -
12 ≥ 115 >3,600 >3,600 >3,600 -

Table 2: Results in DriverLog, SimpleTime (IPC-3).

comparison with CPT/TP4 shows that, even though slower
in simple instances, the weighted BDD approach solves
more benchmarks. We experimented in the Time (instead
of SimpleTime) domains, too. The costs for the first 7 prob-
lems are 303 (1.01s), 407 (7.63s), 215 (1.93s), 503 (59.71s),
182 (18.44s), 336 (129s), and 380 (1,715s).

Problem Mincost MIPS-BDD CPT TP4 Makespan
1 38 0.98 0.02 0.08 28
2 57 2.91 0.50 19.73 36
3 84 419 >3,600 >3,600 -
4 82 3,889 >3,600 >3,600 -

Table 3: Results in Depots (IPC-3).

Table 3 shows the results in Depots. Problem 3 and 4
are a challenge for cost-optimal plan finding and could not
be solved with Dijkstra’s algorithm in one hour. BDDA*,
however, finds the optimal solutions in time12.

Problem Mincost MIPS-BDD CPT TP4 Makespan
1 48 1.09 0.01 0.01 46
2 72 4.90 1.19 466.63 70
3 60 4.28 0.06 1.17 34
4 96 5.41 0.82 >3,600 58
5 84 97.72 1.55 >3,600 36
6 108 88.11 0.28 >3,600 46
7 ≥113 >3,600 1.10 >3,600 34

Table 4: Results in Sattelite, SimpleTime (IPC-3).

Table 4 shows the results for Sattelite. Problem 5 and 6
are a challenge and could not be solved with Dijkstra’s al-
gorithm in one hour. While problem 3 is solved in 30.28s,
problem 4 already required 1,425s. BDDA*, however, suc-
cessfully finds cost optimal plans for the the two harder.
CPT can solve more problems (it also solves problems 9 –
11) with a makespan that shrinks to less than a third of the
optimal cost value. We successfully ran some experiments
on Time formulations generating plans of costs of 10,000
and more.

12The search time for problem 4 lies within an hour if we sub-
tract the construction time of the pattern database, about 6 min

Problem Length Mincost MIPS-BDD Makespan CPT2
4 8 12 0.91 12 0.02
5 8 12 0.97 8 0.02
6 8 12 0.97 8 0.04
7 14 20 1.17 20 0.64
8 13 19 1.17 12 0.34
9 11 17 5.57 11 1.61
10 18 26 6.61 26 917
11 17 25 30.98 17 502
12 17 25 107 - >3,600
13 18 28 83.20 28 1,159
14 19 29 576 17 52.99
15 18 30 266 18 24.76
16 22 34 1,685 - >3,600
17 - ≥ 39 >3,600 - >3,600

Table 5: Results in Storage, Time (IPC-5).

Table 5 shows the results in the IPC-5 domain Storage.
The planner we compare with is CPT213. The symbolic
implementation of Dijkstra’s algorithms solved the first 15
problems cost-optimal, but problem 16 could not be solved
in the allocated time slot. As additional orientation we pro-
vide the solution length (number of actions). On the other
hand, BDDA* (with bin packing) could solve problem 16 in
less than 30min with about 12min used for pattern database
construction. Problem 17 exceeded our run-time limit, but
provides a valuable lower bound.

Conclusion and Discussion
We extended BDD-based planning to include action costs.
Symbolic weighted pattern databases were constructed
based on a bucket implementations of Dijkstra’s single-
source shortest-paths algorithm and applied to help finding
solutions to the concrete problems with symbolic A* search.
The theoretical result on the duplicate detection scope for
best-first search graphs additionally extends existing theory
for breadth-first search graphs.

Partitioning along the action and cost is a compromise be-
tween the number and the hardness of computing images. If
all costs were multiplied by a factor, then the only change
would be that more intermediate empty buckets have to be
scanned. Finding the next non-empty bucket, however, is
fast compared to computing images of non-empty ones. On
very sparse graph or very large action costs more advanced
bucket implementations (e.g. radix-heaps) may apply. For
cost model C3, costs are provided by a state formula, an ex-
pression over the action and the state’s fluents (correspond-
ing to PDDL 2, Level 2) or indicator variables (e.g. 1 for
true and 0 for false for PDDL 3 propositions). One way of
encoding such action cost model with BDDs are weighted
transition relations. For each action a the weighted transi-
tion relation Transa(i, x′, x) evaluates to 1 if and only if the
step from x′ to x has cost i ∈ {1, . . . , C}.

The advantage of BDD-based compared to SAT- and
CSP-based planning is that the description complexity is in-
dependent wrt. to previous levels, while the complexities of
the other two approaches raises with the search depth.

13Extension of CPT for IPC-5, operating on a 3 GHz CPU with
1 GB RAM limit and 30 minutes time bound.

References
Ahuja, R. K.; Mehlhorn, K.; Orlin, J. B.; and Tarjan, R. E. 1990.
Faster algorithms for the shortest path problem. Journal of the
ACM 37(2):213–223.
Bacchus, F. 2001. The AIPS’00 planning competition. aim
22(3):47–56.
Biere, A.; Cimatti, A.; Clarke, E.; and Zhu, Y. 1999. Symbolic
model checking without BDDs. In Tools and Algorithms for the
Construction and Analysis of Systems.
Blum, A., and Furst, M. L. 1995. Fast planning through planning
graph analysis. In IJCAI, 1636–1642.
Borowski, B., and Edelkamp, S. 2007. Optimal infinite-state
planning with presburger automata. In Planning and Configura-
tion (PUK).
Botea, A.; Müller, M.; and Schaeffer, J. 2005. Learning partial-
order macros from solutions. In ICAPS, 231–240.
Bryant, R. E. 1985. Symbolic manipulation of boolean functions
using a graphical representation. In DAC, 688–694.
Cimatti, A.; Roveri, M.; and Traverso, P. 1998. Automatic
OBDD-based generation of universal plans in non-deterministic
domains. In AAAI, 875–881.
Culberson, J. C., and Schaeffer, J. 1998. Pattern databases. Com-
putational Intelligence 14(4):318–334.
Dial, R. B. 1969. Shortest-path forest with topological ordering.
Communications of the ACM 12(11):632–633.
Dijkstra, E. W. 1959. A note on two problems in connection with
graphs. Numerische Mathematik 1:269–271.
Edelkamp, S., and Helmert, M. 1999. Exhibiting knowledge in
planning problems to minimize state encoding length. In ECP,
135–147.
Edelkamp, S., and Helmert, M. 2001. MIPS: the model-checking
integrated planning system. AI Magazine 22(3):67–72.
Edelkamp, S., and Reffel, F. 1998. OBDDs in heuristic search.
In KI, 81–92.
Edelkamp, S. 2001. Planning with pattern databases. In ECP,
13–24.
Edelkamp, S. 2002. Symbolic pattern databases in heuristic
search planning. In AIPS, 274–293.
Edelkamp, S. 2003. Taming numbers and durations in the model
checking integrated planning system. Journal of Artificial Intelli-
gence Research 20:195–238.
Edelkamp, S. 2005. External symbolic heuristic search with pat-
tern databases. In ICAPS, 51–60.
Edelkamp, S. 2006. Cost-optimal symbolic planning with state
trajectory and preference constraints. In ECAI, 841–842.
Fox, M., and Long, D. 2003. PDDL2.1: An extension to PDDL
for expressing temporal planning domains. Journal of Artificial
Intelligence Research 20:61–124.
Gerevini, A., and Long, D. 2005. Plan constraints and prefer-
ences in PDDL3. Technical report, Department of Electronics for
Automation, University of Brescia.
Grandcolas, S., and Pain-Barre, C. 2007. Filtering, decompo-
sition and search-space reduction in optimal sequential planning.
In AAAI.
Hansen, E. A.; Zhou, R.; and Feng, Z. 2002. Symbolic heuristic
search using decision diagrams. In SARA, 83–98.
Haslum, P.; Botea, A.; Helmert, M.; Bonet, B.; and Koenig,
S. 2007. Domain-independent construction of pattern database
heuristics for cost-optimal planning. In AAAI, 1007–1012.

Haslum, P.; Bonet, B.; and Geffner, H. 2005. New admissi-
ble heuristics for domain-independent planning. In AAAI, 1163–
1168.
Helmert, M., and Röger, G. 2007. How good is almost perfect?
In ICAPS-Workshop on Heuristics for Domain-Independent Plan-
ning.
Helmert, M.; Haslum, P.; and Hoffmann, J. 2007. Flexible ab-
straction heuristics for optimal sequential planning. In ICAPS.
Helmert, M. 2004. A planning heuristic based on causal graph
analysis. In ICAPS, 161–170.
Hickmott, S.; Rintanen, J.; Thiebaux, S.; and White, L. 2006.
Planning via petri net unfolding. In ECAI-Workshop on Model
Checking and Artificial Intelligence.
Hoffmann, J., and Nebel, B. 2001. Fast plan generation
through heuristic search. Journal of Artificial Intelligence Re-
search 14:253–302.
Hoffmann, J.; Sabharwal, A.; and Domshlak, C. 2006. Friends or
foes? An AI planning perspective on abstraction and search. In
ICAPS, 294–304.
Jensen, R.; Hansen, E.; Richards, S.; and Zhou, R. 2006.
Memory-efficient symbolic heuristic search. In ICAPS, 304–313.
Jensen, R. M.; Bryant, R. E.; and Veloso, M. M. 2002. SetA*: An
efficient BDD-based heuristic search algorithm. In AAAI, 668–
673.
Jensen, R. 2003. Efficient BDD-based planning for non-
deterministic, fault-tolerant, and adversarial domains. Ph.D. Dis-
sertation, Carnegie-Mellon University.
Kautz, H., and Selman, B. 1996. Pushing the envelope: Planning
propositional logic, and stochastic search. In ECAI, 1194–1201.
Kautz, H.; Selman, B.; and Hoffmann, J. 2006. Satplan: Planning
as satisfiability. In Proceedings of the 5thInternational Planning
Competition.
Korf, R. E., and Felner, A. 2002. Chips Challenging Champions:
Games, Computers and Artificial Intelligence. Elsevier. chapter
Disjoint Pattern Database Heuristics, 13–26.
Korf, R. E.; Zhang, W.; Thayer, I.; and Hohwald, H. 2005. Fron-
tier search. Journal of the ACM 52(5):715–748.
Korf, R. E. 1985. Macro-operators: A weak method for learning.
Artificial Intelligence 26:35–77.
Qian, K., and Nymeyer, A. 2003. Heuristic search algorithms
based on symbolic data structures. In ACAI, 966–979.
Qian, K. 2006. Formal Verification using heursitic search and
abstraction techniques. Ph.D. Dissertation, University of New
South Wales.
Vidal, V., and Geffner, H. 2006. Branching and pruning: An
optimal temporal pocl planner based on constraint programming.
Artificial Intelligence 170(3):298–335.
Xing, Z.; Chen, Y.; and Zhang, W. 2006. Maxplan: Optimal
planning by decomposed satisfiability and backward reduction.
In Proceedings of the 5thInternational Planning Competition.
Zhou, R., and Hansen, E. 2004. Breadth-first heuristic search. In
ICAPS, 92–100.

