
The Causal Graph Heuristic is the Additive Heuristic plus Context

Héctor Geffner
ICREA & Universitat Pompeu Fabra

Passeig de Circumvalació 8
08003 Barcelona Spain

hector.geffner@upf.edu

Introduction
The causal graph heuristic introduced by Helmert in
(Helmert 2004; 2006b) is one of the most interesting recent
developments in the heuristic search approach to domain-
independent planning. Unlike the additive heuristic used
early in the HSP planner (Bonet & Geffner 2001) and the
relaxed planning graph heuristic used in FF (Hoffmann &
Nebel 2001), the causal graph heuristic is not based on the
delete-relaxationbut on a deeper analysis of the problem
structure as captured by its underlyingcausal graph. The
causal graph is a directed graph where the nodes stand for
the variables in the problem and links express the dependen-
cies among them. The causal graph heuristic is defined for
problems withacycliccausal graphs as the sum of the costs
of plans for subproblems that include a variable and its par-
ents in the graph. The local costs are not optimal (else would
be intractable) and are definedprocedurally.

In this note we introduce an alternative, declarative for-
mulation of the causal graph heuristic that we believe is
simpler and more general. The new heuristic reduces to
Helmert’s heuristic when the causal graph is acyclic, but
does not require either acyclicity nor the causal graph it-
self. Like the additive heuristic, the new heuristic is defined
mathematically by means of a functional equation, which
translates into a shortest path-problem over a poly-size graph
that can be solved by standard algorithms. Indeed, the only
difference between this account of the causal graph heuris-
tic and the normal additive heuristic is that the nodes in this
graph, that stand for the atoms in the problem, are labeled
with contextual information. The new formulation of the
causal graph heuristic suggests a number of extensions, all
of which have to do with the exploitation of implicit or ex-
plicit precedences among the actions preconditions in order
to capture side-effects in the computation of the heuristic.

Multivalued Planning Tasks
The causal graph heuristic is defined over a planning lan-
guage with multivalued variables based on the SAS+ lan-
guage (B̈ackstr̈om & Nebel 1995), where the basic atoms
are of the formv = d wherev is a variable andd ∈ Dv is a
value inv’s domainDv.

Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Formally, amultivalued-planning task(MPTs) is a tuple
Π = 〈V, s0, s?, O, 〉 whereV is a set of variablesv with
associated finite discrete domainsDv, s0 is a state overV
characterizing the initial situation,s? is a partial state overV
characterizing the goal situation, andO is a set of operators
that map one state into a possibly different state.

A state is a functions that maps each variablev ∈ V
into a values(v) in Dv. A partial state is one such func-
tion but restricted to a subsetV ′ ⊆ V of variables. As it is
common in the boolean setting, we often represent and treat
such functions as theset of atomsv = d that they make true,
while keeping in mind that the set of atoms that represent
the states/v = d′ obtained froms by changing the value
of variablev from d to d′, contains the atomv = d′ but not
v = d.

An operatora has a preconditionpre(a) that is a partial
state, and a set of effects or rulesz → v = d, written also
asa : z → v = d, where the conditionz is a partial state,
v ∈ V is a variable, andd is a value inDv.

An actiona is executable in a states if pre(a) ⊆ s and
the result is a states′ that is likes except that variablesv are
mapped into valuesd whena : z → v = d is an effect ofa
andz ⊆ s. A plan is a sequence of applicable actions that
maps the initial states0 into a final statesG wheres? holds.

These definitions follow the ones in (Helmert 2006b) with
a few simplifications (e.g., axioms and derived atoms are not
considered). In addition, for simplicity and without loss of
generality, we make two assumptions. First, we will assume
thataction preconditionspre(a) are empty. This is because,
the value of the causal graph heuristic does not change when
preconditionsp ∈ pre(a) are moved into the bodyz of
all effectsz → v = d. Second, we will assume that the
variablev that appears in the head of a rulez → v = d
also appears in the bodyz. Effectsz → v = d for which
this is not true are to be replaced by a collection of effects
v = d′, z → v = d, one for each valued′ ∈ Dv differ-
ent thand; a transformation that preserves the semantics and
complies with the above condition. Effectsz → v = d can
thus all be written as

v = d′, z′ → v = d .

While this language is not the standard in planning, an
automatic translator from PDDL into MPT’s is described in
(Helmert 2006a).

The Causal Graph Heuristic
Thecausal graph heuristichcg(s) provides an estimate of
the number of actions needed to reach the goal from a states
in terms of the estimated costs of changing the value of each
variablev that appears in the goal from its valuevs in s to
its valuev? in the goal:

hcg(s) =
∑
v∈s?

costv(vs, v?) (1)

The costscostv(d, d′) are defined with the help of two
structures: thedomain transition graphsDTG(v), that re-
veal the structure of the domainDv associated with each
variablev, and thecausal graphCG(Π) that reveals the re-
lation among the variablesv in the problemΠ.

The domain transition graph DTG(v) for a variable
v ∈ V , is a labelled directed graph with vertex setDv

and edges(d, d′) labelled with the conditionz for rules
v = d, z → v = d′ in Π.

Thecausal graphCG(Π) for Π = 〈V, s0, s?, O〉, is the
directed graph with vertex setV and arcs(v, v′) for v 6= v′

such thatv appears in the label of some arc inDTG(v′) or
some actiona affects bothv andv′ (i.e., Π contains effects
a : z → v = d anda : z′ → v′ = d′ for an actiona).

The costscostv(d, d′) that determine the heuristichcg(s)
in Equation 1 are defined in terms of the causal graph
CG(Π) and the domains transition graphsDTG(v).

The definition assumes thatCG(Π) is acyclic. When this
is not so, Helmert’s planner ’relaxes’ the causal graph by
deleting some edges, defining the costs and the resulting
heuristic over the resulting acyclic graph.

The measurescostv(d, d′) stand for the cost ofa planπ
that solves the subproblemΠv,d,d′ with initial states/v = d,
goal v = d′, that involves only the variablev and its par-
ent variables in the causal graph. The measurescostv(d, d′)
however do not stand for theoptimal costsof these subprob-
lems which are not tractable (Helmert 2006b), and are de-
finedprocedurallyusing a slightly modified Dikjstra’s algo-
rithm (Cormen, Leiserson, & Rivest 1989; Bertsekas 1991),
in topological order, starting with the variables with no par-
ents (root variables) in the causal graph.1

I will not repeat the exact procedure for computing these
costs, that can be found in Figure 18, (Helmert 2006b), but
rather I will explain the procedure in a way that will make
the relationship between the causal graph and the additive
heuristics more direct.

Let us recall first that inDijkstra’s algorithm , a label
c(i) is associated with all nodesi in the graph, initialized to
c(i) = 0 if i is the source node andc(i) = ∞ otherwise.
In addition, an OPEN list is initialized with all nodes. The
algorithm then picks and removes the nodei from OPEN
with least costc(i) iteratively, updating the valuesc(j) of all
the nodesj still in OPEN toc(j) = min(c(j), c(i)+c(i, j)),
wherec(i, j) is the cost of the edge connecting nodei to j
in the graph. This is called theexpansionof nodei.

1Actually Helmert’s procedure does not compute the costs
costv(d, d′) for all v ∈ V and alld, d′ in Dv but this optimiza-
tion is not relevant here.

The algorithm finishes in a number of iterations bounded
by the number of nodes in the graph when OPEN is empty.
The labelc(i) of a node is optimal when selected for expan-
sion and remains so until termination.

The costc(i, j) of the directed edges(i, j) is assumed to
be non-negative and is used in the computationonly right af-
ter nodei is expanded. Helmert’s procedure takes advantage
of this fact forsetting the cost of such edges dynamically,
right after nodei is selected for expansion.

Actually, whenv is a root variable inCG(Π), Helmert’s
procedure for solving the subproblemΠv,d,d′ , for a given
d ∈ Dv and alld′ ∈ Dv, resulting in the costscostv(d, d′),
is exactly Dikjstra’s: the graph isDTG(v), the source node
is d, the cost of all edges is set to1, and upon completion,
costv(d, d′) is set toc(d′) for all d′ ∈ Dv. For such vari-
ables,costv(d, d′) is indeed optimal forΠv,d,d′ .

For variablesv with a non-empty set of parent variables
vi in the causal graph with costscostvi

(ei, e
′
i) already com-

puted for allei, e
′
i ∈ Dvi

, Helmert’s procedure for solv-
ing the subproblemΠv,d,d′ for a givend and alld′ ∈ Dv,
modifies Dijkstra’s slightly by setting the cost of the edges
(d1, d2) ∈ DTG(v) labelled with conditionz : v1 =
e1, . . . , vn = en to

1 +
∑

i=1,...,n

costvi
(e′i, ei) (2)

right after noded1 has been selected for expansion, where
e′i is the value of variablevi in the statesd1 associated with
noded1. The state associated with a noded is defined as
follows. The statesd associated with the source noded is
s, while if sd is the state associated with the noded just
selected for expansion, and the expansion ofd causesc(d′)
to decrease for somed′ ∈ Dv due to an edge(d, d′) labelled
with z, thensd′ is set tosd/z.

This procedure for solving the subproblemsΠv,d,d′ is not
optimal nor is it complete. Indeed, it is possible for the costs
costv(d, d′) to be infinite while the costs ofΠv,d,d′ are finite.
This is because the procedure achieves the intermediate val-
uesd′′ greedily, carrying theside effectssd′′ but ignoring
their impact in the ’future’ costs to be paid in going fromd′′

to d′.
These limitations of the causal graph heuristic are known,

what we seek here is an understanding of the heuristic in
terms of the simpler and declarative additive heuristic.

Additive Heuristic
For the language of the MPT’sΠ = 〈V, s0, s?, O〉, the ad-
ditive heuristic (Bonet, Loerincs, & Geffner 1997; Bonet &
Geffner 2001) can be expressed as:

ha(s) def=
∑
x∈s?

h(x|s) (3)

wherex stands for the atomsv = d for v ∈ V andd ∈ Dv,
andh(x|s) is an estimate of the cost of achievingx from s
given as:

h(x|s) def=
{

0 if x ∈ s, else
min a:z→x [1 +

∑
xi∈z h(xi|s)] (4)

This functional equation approximates the true cost func-
tion by assuming that the cost of joint conditions (in goals
and effects) is additive. Such sums go away, however, if the
goal is a single atom and no conditionz features more than
one atom. In such a case, the additive heuristicha(s) co-
incides with the max heuristichmax(s) (Bonet & Geffner
2001), and both are optimal provided that all these condi-
tions are mutex.

It follows from this that ifx1, . . . , xn represent the atoms
v = d1, . . . , v = dn for a root variablev in the causal
graph of Π, the valuesh(xi|s) that follow from (4), for
i = 1, . . . , n, are all optimal, and thus in correspondence
with the costscostv(dk, di) computed by Helmert’s proce-
dure whendk is the value ofv in s. For other valuesdj

of v, the costscostv(dj , di) are equivalent to the estimates
h(xi|sj) with sj = s/[v = dj].

This correspondence between the costscostv(d′, d) and
the heuristicsh(x|s′) whenv is a root variable in the causal
graph,x is v = d, ands′ is s/v = d′, raises the question
of whether such costs can be chacterized in the style of the
additive heuristic also whenv is not a root variable.

Notice first that Equation 2 used in Helmert’s procedure,
is additive. At the same time, the procedure keeps track of
side effectsin a way that is not captured by (4) where the
costsh(xi|s) of all conditionsxi in the body of the rulesa :
z → x are evaluated with respect to the same states. This
however suggests to look at variations of (4) where these
conditionsxi are evaluated in different statessi rendering
the general pattern

h(x|s) def=
{

0 if x ∈ s, else
min a:z→x [1 +

∑
xi∈z h(xi|si)]

(5)

where the statessi over which some of the conditionsxi

in a rule are evaluated may be different than the seed state
s where the value of the heuristic needs to be assessed. We
will refer to such statessi that may be different than the seed
state ascontexts.

Additive h with Contexts
The use of (5) in place of (4) for defining the additive heuris-
tic raises two questions:

1. how to choose thecontextssi needed for the evaluating
the conditionsxi in a given rulea : z → x, and

2. how to restrict the number of total contextssi needed for
computing the heuristic value ofs.

We answer these two questions in line with Helmert’s for-
mulation. Later on we will consider some generalizations.

Let us recall first that, without loss of generality, we are
assuming that all the rules have the forma : x, z → x′ where
x andx′ are atoms referring to the same (multi)variablev in
the problem (Section 2). An atomx is av-atom when it has
the formv = d for somed ∈ Dv, and refers to the same
variable as an atomx′ when the two arev-atoms for somev.
We also say thatx′ : v = d′ is thevalueof x in the states′

as an abbreviation for saying thatx′ andx refer to the same
variablev, andd′ is the value ofv in s′. As before,s/s′

whens is a state ands′ is partial state, refers to the state that

is like s except over the variables mentioned ins′ where it is
equal tos′.

The answer to the first question that follows from
Helmert’s formulation is that in the rulesa : x′, z → x the
conditionx′ that refers to the same variable asx, is achieved
first, and the rest of the conditionsxi in z are evaluated in
the states′ that results(Assumption 1).

The answer to the second question is that in the compu-
tation of the heuristic for a states, the costsh(xi|s′) for a
contexts′ are mapped into costsh(xi|s/x′i) wherex′i is the
value ofxi in s′, meaning that information in the states′

about other variables is discarded (Assumption 2). We will
write h(xi|s/x′i) then ash(xi|x′i).

Provided with these two assumptions, the idea underlying
(5) can be formalized as follows:

h(x′′|x′) def=
{

0 if x′′ = x′, else
mina:x,z→x′′ [1 + h(x|x′) +

∑
xi∈z h(xi|x′i)]

(6)
wherex′i is the value ofxi in the state that results from
achievingx from x′, written ass(x|x′) and obtained from

s(x′′|x′) def=
{

s/x′ if x′′ = x′, else
s(x|x′)/z, x′′, y1, . . . , yn

(7)

wherea : x, z → x′′ is the rule that yields the minimum
in (6), anda : x, z → yi, i = 1, . . . , n, are other rules in
the problem with the same action and body (thus when the
former is applied, the latter are applied as well).

In words, whena : x, z → x′′ is the best (min) sup-
port for atomx′′ from x′ according to (6), ands(x|x′)
is the state that is deemed to result for achievingx from
x′ (i.e., the ’side-effect’ of achievingx from x′), then
s(x|x′)/z, x′′, y1, . . . , yn is the state that is deemed to result
for achievingx′′ from x′.

Equations 6 and 7 define an heuristic that is very much
like the additive heuristic except that a) the heuristic values
h(x′′|s) are computed not only for the seed states but for
all the statess′ = s/x′ whenx′ is an atom that refers to
the same variable asx′′, and b) during the computation, the
preconditions other thanx in the rulesa : x, z → x′′ are
evaluated in the states(x|x′) that results from achieving the
’pivot’ condition x. producing then the side effects(x′′|x′)
associated withx′′. This recursion starts withx′′ = x′ when
h(x′′|x′) = 0 ands(x′′|x′) = s/x′ (the seed states updated
with x′).

Thecontext-enhancedadditive heuristichc
a(s) is defined

then as
hc

a(s) def=
∑
x∈s?

h(x|xs) (8)

wherexs is the value ofx in s andh(x|x′) is defined by
(6)–(7).

Example
As an illustration, consider a problem with a boolean vari-
ableY and a multivalued variableX ∈ [0 . . . n], represented
by the booleansy, ¬y, andxi, standing for the assigments

Y = true, Y = false, andX = i for i = 0, . . . n, and
actionsa andbi, i = 0, . . . , n with rules

a : ¬y → y , bi : xi, y → xi+1 ∧ ¬y

wherez → x ∧ y stands fora : z → x anda : z → y.
We want to determine the value ofhc

a(s) whenx0 and¬y
hold in s and the goal isxn. From (8),hc

a(s) = h(xn|x0).
The optimal plan for the problem is the action sequence
a, b0, a, b1, . . . , a, bn−1 for a cost of2n. The plans must in-
crease the value ofX one by one, but before each step the
value ofY that is made false by each increase inX, must be
restored to true.

From (6), it follows that

h(xi+1|x0) = 1 + h(xi|x0) + h(y|y′) (9)

for i = 0, . . . , n − 1, wherey′ represents the value ofY
in the states(xi|x0) that results from achievingxi from x0

characterized as:

s(xi+1|x0) = s(xi|x0)/xi+1,¬y .

The relevant ’border’ conditions areh(x0|x0) = 0 and
s(x0|x0) = s. Clearly y′ above is¬y, as¬y holds in
s(xi|x0) for all i = 0, 1, . . ., so that (9) becomes:

h(xi+1|x0) = 1 + h(xi|x0) + 1

for all i > 0 ash(¬y|y) = 1. Thus,h(xi+1|x0) = 2 +
h(xi|x0) with h(x0|x0) = 0. Soh(xn|x0) = 2n and thus
hc

a(s) is optimal. The plain additive heuristic, on the other
hand, isha(s) = n+1, which is optimal only for the delete-
relaxation.

Causal Graph and Additive Heuristics
The causal graph underlying the problem above involves a
cycle between the two variablesX andY . In the absence of
such cycles the following correspondence can be shown:2

Theorem 1 (Causal and Additive Heuristics) If the
causal graphCG(Π) is acyclic, then the causal graph
heuristic hcg and the context-enhanced additive heuristic
hc

a are equivalent, i.e., for every states, hcg(s) = hc
a(s).

The sketch of the proof proceeds as follows. When
CG(Π) is acyclic, a correspondence can be established be-
tween the costscostv(d, d′) defined by Helmert’s procedure
and the costsh(x′|x) defined by Equations 6–7 forx : v = d
andx′ : v = d′, and between the statessd′ associated with
the noded′ and the statess(x′|x) defined by 6 and 7.

These correspondences must be proved inductively: first
on the root variables of the causal graph, and then on the
execution of the modified Dijkstra’s procedure.

The first part is straightforward and was mentioned above:
if v is a root variable,costv(d, d′) is the optimal cost of the
subproblemΠv,d,d′ which involves no other variables, and

2The correspondence assumes that edges in domain transition
grapahs and rules in the problem are ordered statically in the same
way, so that ties in Helmert’s procedure and in (6-7) are broken in
the same way. Note that there is a direct correspondence between
edges(d, d′) labelled with conditionsz in DTG(v) and rulesv =
d, z → v = d′.

the costsh(x′|x) remain optimal as well, as there is a single
condition in every rule and hence no sums or additivity as-
sumptions, and all these conditions are mutex. At the same
time, the statessd′ ands(x′|x) remain equivalent too.

If v is not a root variable, the correspondence between
costv(d, d′) ands′d on the one hand, andh(x′|x) ands(x′|x)
on the other, must hold as well ford′ = d before any node
is expanded in Helmert’s procedure. Assuming inductively
that the correspondence holds also for all valuesei, e

′
i ∈ Dvi

of all ancestorsvi of v in the causal graph, and for all values
costv(d, d′) and statessd′ after the firsti-nodes have been
expanded, it must be shown that the correspondence holds
after thei + 1-node is expanded as well.

Computing the Heuristic for Cyclic Graphs
The extended additive heuristichc

a reduces to the causal
graph heuristichcg in MPT’s with acyclic causal graphs, but
does not require acyclicity, and indeed, does not use the no-
tion of causal graphs or domain transition graphs. In this
sense, the induction over the causal graph for defining the
costscostv(d, d′), from variables to their descendants, is re-
placed inhc

a by an implicit induction over costs.
Indeed, in the presence of a cyclic graph, the costsh(x|x′)

in (6)–(7) can be computed using a modified Dijkstra’s al-
gorithm, similar to Helmert’s but that works over all domain
transition graphsDTG(v) and possible sourcesd ∈ Dv at
the same time. More precisely, the nodes in the graph would
correspond to the transitionsx|x′, for all atom pairsx and
x′ referring to the same variable. Initially the costsh(x|x)
are zero and all other transition costs are infinite, and in each
step the transition from OPEN with least cost is selected and
its cost and state are propagated as in the modified Dijkstra’s
procedure. The algorithm remains polynomial, and indeed,
Dijkstra’s algorithm can be used for computing thenormal
additive heuristics, whether the causal graph is cyclic or not,
although in practice the Bellman-Ford algorithm is preferred
(Liu, Koenig, & Furcy 2002).

Generalizations
The context-enhanced heuristichc

a is more general than the
causal graph heuristic as it applies to problems with cyclic
causal graphs. The heuristic can be generalized further,
however, while remaing polynomial by relaxing the two as-
sumptions that led us to it from the more general form (5)
where each conditionxi is evaluated in a potentially dif-
ferent contextsi in h(xi|si). The two assumptions were
1) that the contextssi for all the conditionsxi in a rule
a : x′, x1, . . . , xn → x are all the same and correspond
to the states′ resulting from achieving the first conditionx′,
and 2) thath(xi|s′) is reduced toh(xi|s/x′i) wherex′i is the
value ofxi in s′, thus effectively throwing away all the infor-
mation ins′ that does not pertain to the variablev associated
with xi. Both of these assumptions can be relaxed, leading
to potentially more informed heuristics, still expressable in
the style of (5) and computable in polynomial time. Some
possibilities follow.

The formulation that follows from Assumptions 1 and 2
above presumes that in every rulez → x in the problem,

a) there is a condition in the body of the rule that must be
achieved first; call it thepivot condition, b) that this pivot
condition involves the same variable as the head, and c) that
no precedence informationinvolving the rest of the condi-
tions inz is available or usable.

Condition a) is not particularly restrictive as it is always
possible to add a dummy pivot condition. Condition b) on
the other hand, is restrictive, and often, unnecessarily so.
Consider for example the following rule for ’unlocking a
door at a location’

have key(D), at = L → unlocked(D) (10)

and say that the key is at a locationL′ different thanL, while
Ls is the current agent location. The cost of applying such a
rule should include the cost of going fromLs toL′ to pick up
the key, as well as the cost of going fromL′ to L to unlock to
the door. However, this won’t follow from the formulation
above or from the causal graph heuristic, as the variable in
the head of the rule is boolean. We can actually cast this rule
in the format assumed by the formulation as

¬unlocked(D), have key(D), at = L → unlocked(D)

where for boolean variablesv, v is used as an abbreviation
of v = true and ¬v of v = false, yet one can show
that the context-mechanism that the causal graph heuristic
adds to the normal additive heuristic, has no effect on rules
z → v = d with boolean variablesv in the head. This is
because, eitherv = d is true ins for a cost of0, or v = d′

is true ins for d′ 6= d, with no side-effect. For a rule such
as (10), it makes sense to treat the booleanhave key(D) as
thepivot condition, even if it involves a variable that is dif-
ferent than the one mentioned in the rule head. Actually the
generalization of the heuristic for accounting for arbitrary
pivot conditions in rules, as opposed to pivot conditions in-
volving the head variable, is easy to accommodate. In the
example above, the side effect of achieving the pivot con-
dition have key(D) involvesat = L′, so that the second
condition in the ruleat = L should be evaluated in that con-
text, accounting for the cost of getting to the key location,
and from there to the door.

A second generalization can be obtained by making use
of furtherprecedence constraintsamong the rule conditions.
In the extreme case, if we have atotal ordering among all
of the rule conditions, then we should evaluate the second
condition in the context that results from the achievement of
the first, the third condition in the context that results from
the achievement of the second, and so on. Indeed, such an
ordering among conditions orsubtasksis one of the key el-
ements that distinguishesHTN planning(Erol, Hendler, &
Nau 1994) from ’classical’ planning. An heuristic of the
type proposed can be used to provide an estimator capable
of taking such precedence constraints into account.

The two generalizations above follow from relaxing As-
sumption 1 above. Assumption 2, that maps the heuristics
h(xi|s′) for contextss′ into the estimatesh(xi|s/x′i) where
x′i is the value ofxi in s′, throws away information in the
contexts′ that does not pertain directly to the multivalued
variable associated withxi but which may be relevant to it.
In the causal graph heuristic, this assumption translates in

the exclusion of the non-parent variablesv′ from the sub-
problemsΠv,d,d′ . There may be a bounded number of such
variablesv′ however that one may want to keep in all such
subproblems. Such an extension would cause polynomial
complexity growth, and can be accommodated simply by
changing the assumptionh(xi|s′) = h(xi|s/x′i) implicit in
(6), wherex′i is the value ofxi in s, by an explicit assump-
tionh(xi|s′) = h(xi|s/x′i, y

′) wherey′ stands for the values
of such ’core variables’ to be preserved in all contexts.

It must be said that all these generalizations inherit cer-
tain commitments from the additive and causal graph heuris-
tics, in particular, the additivity of the former, and the greedy
(min) rule selection of the latter.

Discussion
Defining heuristics mathematically rather than procedurally
seems to pay off as mathematical definitions are often
clearer and more concise, and force us to express the as-
sumptions explicitly, separatingwhat is to be computed
from howit is computed. Also, the functional equation form
used in definition of the additive heuristic, that is common in
dynamic programming, appears to be quite general and flex-
ible. It has been used to define the max heuristichmax, the
hm heuristics (Haslum & Geffner 2000), and more recently,
the set-additive heuristic (Keyder & Geffner 2007) and the
cost-sharing heuristics (Mirkis & Domshlak 2007).

The resulting formulation of the causal graph heuristic
does not require acyclicity or causal graphs, and admits
some interesting generalizations all of which have to do with
the use of ordering information among action precondition
to capture side-effects in the computation of the heuristic.
There are some interesting connections with HTN planning,
where precedence constraints among preconditions or sub-
tasks are common, that are worth exploring too.

We have not explored the practical ramifications of the
new formulation, e.g., on the performance of domain-
independent planners, but hope that some of these ideas will
turn out to be helpful in domains where the delete-relaxation
heuristics, or relaxations that render a causal graph acyclic,
are not appropriate. Actually, the causal graph heuristic is
weak even in acyclic graphs where multivalued variables
have many children. This happens for example when differ-
ent values of such variables are needed by many other vari-
ables in the graph, as in a problem where many packagespi

must be picked from different locationsli. The causal graph
heuristic will behave in such a case as the normal additive
heuristic, ignoring the side effects on the agent location that
follow from getting the other packages. A refinement of the
additive heuristic that is able to approximate the TSP cost in
such cases is given in (Keyder & Geffner 2007).

Acknowledgements. H.Geffner is partially supported by
Grant TIN2006-15387-C03-03 from MEC, Spain.

References
Bäckstr̈om, C., and Nebel, B. 1995. Complexity results for
SAS+ planning. Computational Intelligence11(4):625–
655.

Bertsekas, D. 1991.Linear Network Optimization: Algo-
rithms and Codes. MIT Press.
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search.Artificial Intelligence129(1–2):5–33.
Bonet, B.; Loerincs, G.; and Geffner, H. 1997. A robust
and fast action selection mechanism for planning. InPro-
ceedings of AAAI-97, 714–719. MIT Press.
Cormen, T. H.; Leiserson, C. E.; and Rivest, R. L. 1989.
Introduction to Algorithms. The MIT Press.
Erol, K.; Hendler, J.; and Nau, D. S. 1994. HTN planning:
Complexity and expressivity. InProc. AAAI-94.
Haslum, P., and Geffner, H. 2000. Admissible heuristics
for optimal planning. InProc. of the Fifth International
Conference on AI Planning Systems (AIPS-2000), 70–82.
Helmert, M. 2004. A planning heuristic based on causal
graph analysis. InProc. ICAPS-04, 161–170.
Helmert, M. 2006a. Solving Planning Tasks in Theory
and Practice. Ph.D. Dissertation, Freiburg University, Ger-
many.
Helmert, M. 2006b. The Fast Downward planning system.
Journal of Artificial Intelligence Research26:191–246.
Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: Fast plan generation through heuristic search.Journal
of Artificial Intelligence Research14:253–302.
Keyder, E., and Geffner, H. 2007. Set-Additive and TSP
Heuristics for planning with action costs and soft goals.
Technical report, Proc. 2007 ICAPS Workshop on Heuris-
tics for Domain-Independent Planning.
Liu, Y.; Koenig, S.; and Furcy, D. 2002. Speeding up
the calculation of heuristics for heuristic search-based plan-
ning. InProc. AAAI-02, 484–491.
Mirkis, V., and Domshlak, C. 2007. Cost-sharing approxi-
mations forh+. In Proc. ICAPS-07.

