
Accuracy of Admissible Heuristic Functions in Selected Planning Domains

Malte Helmert and Robert Mattmüller
Albert-Ludwigs-Universität Freiburg

{helmert,mattmuel}@informatik.uni-freiburg.de

Abstract

The efficiency of optimal planning algorithms based on
heuristic search crucially depends on the accuracy of the
heuristic function used to guide the search. Often, we are in-
terested in domain-independent heuristics for planning. In as-
sessing the limitations of domain-independent heuristic plan-
ning, it appears interesting to analyse the (in)accuracy of
common domain-independent planning heuristics in the IPC
benchmark domains. For a selection of these domains, we an-
alytically investigate the accuracy of the h

+ heuristic, the h
k

family of heuristics, and certain (additive) pattern database
heuristics, compared to the optimal heuristic h

∗. Whereas h
+

and additive pattern database heuristics usually return cost
estimates proportional to the true cost, non-additive h

k and
non-additive pattern-database heuristics can yield results un-
derestimating the true cost by arbitrarily large factors.

Introduction

Heuristic search with A∗ and similar algorithms remains the
most popular method for optimal sequential planning, with
significant effort spent on perfecting old heuristic estima-
tors (Haslum et al. 2007) or deriving new ones (Helmert,
Haslum, & Hoffmann 2007). While methods not based on
state-space search have achieved remarkable success in ad-
dressing related problems, such as optimal parallel planning
(Kautz & Selman 1996; 1999), the state of the art in opti-
mal sequential planning is still defined by heuristic search
methods almost exclusively, with symbolic state-space ex-
ploration (Edelkamp & Helmert 2001) being the only non-
classical approach that can outperform heuristic search in
some benchmark domains.

Considering the important role of admissible heuristics
for optimal sequential planning, the question arises how to
evaluate the quality of a given heuristic. A popular method is
to run a planning algorithm against a number of benchmark
tasks and count the number of node expansions performed
by a search algorithm. The fewer nodes an algorithm ex-
pands, the better.

While experiments of this kind are certainly useful, there
are some questions they cannot address. In particular, their
results can almost exclusively be interpreted with relative,
i. e., comparative statements: “Heuristic h expands fewer

Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

nodes than heuristic h′ for benchmark suite X”. Unless ex-
periments show polynomial scaling behaviour on a family of
benchmark tasks of growing size, which they very rarely do,
the data usually does not lend itself to absolute statements
of the type “Heuristic h is well-suited for solving problems
from benchmark suite X .”

In this contribution, we address this issue by provid-
ing absolute quality results for certain popular planning
heuristics on some popular benchmark domains taken from
the first four International Planning Competitions (McDer-
mott 2000; Bacchus 2001; Long & Fox 2003; Hoffmann &
Edelkamp 2005), in the form of comparisons to the optimal
heuristic function h∗.

Planning Domains

We consider the planning domains GRIPPER, LOGISTICS,
BLOCKSWORLD, MICONIC-STRIPS, MICONIC-SIMPLE-
ADL, SCHEDULE and SATELLITE. Familiarity with the
domains is assumed. For an overview, see e. g. Helmert’s
Ph. D. thesis (Helmert 2006).

Heuristics

We compare the accuracy of the heuristics h+, hk, and
(additive) pattern database heuristics relative to the optimal
heuristic.

A heuristic h maps states s to estimates of the true goal
cost. Whenever the planning task to which s belongs, in-
cluding the available operators and the goal description, is
clear from the context, we will simply write h(s) without
explicitly mentioning operators or goal.

The h∗ Heuristic The h∗ heuristic assigns to each state s
of a planning task T the length of a shortest plan leading
from s to a goal state of T , i. e., h∗ is the optimal heuristic.

In the language of approximation complexity (Ausiello
et al. 1999), computing the optimal heuristic for the initial
state of a planning task is the evaluation problem counterpart
of the PLANLEN decision problem. It is PSPACE-equivalent
in general (Bylander 1994), but easier for a fixed domain.
For the domains we consider, the problem is mostly NP-
equivalent, with the exception of GRIPPER and SCHEDULE,
where it is polynomial (Helmert 2006).

The h+ Heuristic The h+ heuristic (McDermott 1996;
Bonet & Geffner 2001; Hoffmann 2005) assigns to each
state s of a planning task T the length of a shortest plan
leading from s to a goal state in the relaxed problem T +.

Evaluating h+ is NP-equivalent in general (Bylander
1994), but easier for many of the domains we consider. We
believe that the problem is NP-equivalent for MICONIC-
SIMPLE-ADL and SATELLITE, and polynomial for all oth-
ers.1

The hk Family of Heuristics The hk, k = 1, 2, . . . , fam-
ily of heuristics (Haslum & Geffner 2000) is based on the
relaxation where the cost of reaching a state with n satis-
fied atoms is approximated by the highest cost of reaching a
subset with at most k satisfied atoms. It can be computed in
polynomial time, with the degree of the polynomial depend-
ing on k.

Recently, the hk family has been extended by introduc-
ing additive hk heuristics (Haslum, Bonet, & Geffner 2005).
The results we present for the hk family do not apply to their
additive counterparts; their study is left as future work.

Pattern Database Heuristics Pattern database heuristics
(Culberson & Schaeffer 1996) are computed by projecting
the state space onto a subset of the state variables and com-
puting the shortest plan in the resulting abstract state space.
As these abstractions are solution preserving, abstract so-
lutions are never longer than corresponding concrete ones,
making the heuristic admissible. In the case of pattern
database heuristics, unlike in the other cases, we will argue
about multi-valued state variable representations instead of
binary ones.

Given a task T , possible pattern database heuristics for
T are parametrised by the set of variables retained in the
abstract problem (the pattern). Another parameter more
closely related to the parameter k of the hk family is the
maximum number of state variables to be retained. Keeping
that number K small is important as the number of states in
the abstract problem is exponential in K, and so is the time
to compute and the memory to store a pattern database for
K variables. Pattern database heuristics can be computed in
polynomial time in the task size iff K ∈ O(log ‖T ‖). We
will in the following adhere to this restriction.

Additive Pattern Database Heuristics With a pattern
database consisting of tables for more than one pattern it
is possible to get a more accurate cost estimate by maxi-
mizing over the corresponding entries in the tables. If sum-
ming up these entries is still guaranteed to yield a value not
greater than the true cost, i. e., if the heuristic obtained by
summation is admissible, the set of sets of variables defin-
ing the patterns and the corresponding databases are called
additive (Haslum et al. 2007). Since this admissibility crite-
rion cannot be checked efficiently, it is commonly replaced
by a simple syntactic test that is sufficient but not necessary

1Formal proofs may appear in an extended version of this paper.
In the meantime, they are available on request from the authors.

for additivity: Two patterns are considered additive iff no
operator modifies variables from both patterns. (Note that
this implies that additive patterns are disjoint, unless there
are variables which can never be modified.)

An additive pattern database heuristic assigns to each state
such a sum of additive pattern values. As in the case of reg-
ular pattern databases, we must restrict the size of individual
patterns by Θ(log ‖T ‖) for polynomial-time computability.

Note that it is common to not just consider one sum of in-
dividual pattern heuristics, but maximise over several such
sums. For example, Haslum et al. (2007) define the canon-
ical heuristic function for a set of patterns as a maximum
over all additive sums of pattern heuristics. In this work, we
limit ourselves to additive pattern database heuristics with-
out maximization over several sums, leaving this extension
for future work.

Asymptotic Performance Ratio

By definition, the h∗ heuristic is exact, i. e., it returns the
length of a shortest plan. For the other heuristics, we give
domain-dependent worst-case bounds on the accuracy com-
pared to h∗ and show that these bounds are tight in the sense
that there are families of increasing-size tasks for which the
accuracy tends towards the respective bound.

Formally, given a planning domain D and heuristic h,
we want to find the asymptotic performance ratio of h
in D. More precisely, we want to find a value c ∈ R

such that (a) for all states s in all tasks T of domain D,
h(s) ≥ ch∗(s) + o(h∗(s)), and (b) there is a family of
tasks (Tn)n∈N in D and solvable states (sn)n∈N such that
sn belongs to Tn, h∗(sn) → ∞ for n → ∞ and h(sn) ≤
ch∗(sn) + o(h∗(sn)).

In other words, h is never worse than ch∗ (plus a sublinear
term), and it can become as bad as ch∗ (plus a sublinear
term) for arbitrarily large inputs. These conditions can only
be satisfied for a single value c; moreover, there must be a
value c ∈ [0, 1] which satisfies them for a given heuristic and
domain. We denote this constant by α(h,D). Moreover, by
α(h, s) we denote the ratio h(s)/h∗(s) (we only consider
non-goal states; otherwise α(h, s) is undefined). We simply
write α(s) when the heuristic is clear from the context.

Results

Performance Ratio of h+

First, we investigate the accuracy of the h+ heuristic com-
pared to h∗. As a general observation, h+(s), if not infinite,
is always bounded by a linear term in the number of proposi-
tional state variables of the task. Therefore, for all domains
D where there exists a family of tasks (Tn)n∈N of growing
size where optimal solution lengths grow super-linearly with
task size (formally, h∗(sn) = ω(‖Tn‖) for states sn of Tn),
we must have α(h+,D) = 0. However, none of the bench-
mark domains we study has this property – they can all be
solved by linear-sized plans.

GRIPPER Let sn be a state with n > 0 balls still at their
start location. We assume that the robot is at the balls’
start location, that both grippers are empty and that n is

even. Otherwise, the h∗ and h+ values can increase by
a small constant. The optimal plan consists of n pickup
and drop actions each, n/2 forth moves (holding two balls)
and n/2 − 1 back moves (with empty grippers). Thus,
h∗(sn) = n + n + n/2 + n/2 − 1 = 3n − 1. In the re-
laxed problem, the robot can be at both locations simultane-
ously after having performed its first move action. Together
with the 2n pickup and drop actions still necessary, this gives
an optimal relaxed plan length of h+(sn) = 2n + 1. Thus,
α(sn) = (2n+1)/(3n−1) > 2/3. On the other hand, for the
family (sn)n∈N of tasks described above, limn→∞ α(sn) =
2/3. Thus, α(h+, GRIPPER) = 2/3.

LOGISTICS Consider a LOGISTICS state sn with n cities,
no airports, and for each city ci, two locations ℓi1 and ℓi2,
one truck ti located at ℓi1, and one package with origin ℓi2

and destination ℓi1. An optimal plan consists of 4n actions,
namely two drive, one pick-up and one drop action in each
city. An optimal relaxed plan only needs three actions per
city since the second drive action can be omitted because
the atom at(ti, ℓi1) holding initially is never deleted. Thus,
we get α(h+, LOGISTICS) ≤ 3/4.

We believe that also α(h+, LOGISTICS) ≥ 3/4, and thus
the bound is strict, but do not have a proof for this yet. (We
do have a proof that works under the restriction that no truck
is initially located at an airport, though.) A simple lower
bound for α(h+, LOGISTICS) is 1/2, because an optimal plan
contains as many pickup and drop actions as an optimal re-
laxed plan, and never contains more movements than pickup
or drop actions.

BLOCKSWORLD Let us first consider the family (sn)n∈N

of states where sn consists of one stack B1, . . . , Bn+1 (from
top to bottom) and another singleton stack Bn+2 and the
goal is to produce the stack B1, . . . , Bn, Bn+2, with the po-
sition of Bn+1 not being important. The optimal plan for sn

consists of n − 1 pairs of unstack and put-down actions to
put the blocks B1, . . . , Bn−1 on the table, one unstack and
stack action to move Bn from Bn+1 to Bn+2, and n − 1
pairs of pick-up and stack actions to rebuild the stack on top
of block Bn. Thus, h∗(sn) = 4n − 2. In order to solve
the relaxed problem, we have to unstack blocks B1, . . . , Bn

in order to add the holding(Bn) proposition. We can un-
stack all blocks without emptying the hand as the proposi-
tion handempty is true initially and is never falsified. To
satisfy the goal, we then only need to stack Bn on Bn+2.
The rest of the stack does not need to be rebuilt, as all propo-
sitions on(Bi, Bi+1) for i < n still hold. This means that
limn→∞ α(sn) = limn→∞(n + 1)/(4n − 2) = 1/4.

For the other direction of the proof, we will show that
h+(s) ≥ 1/4h∗(s) + d for a constant d ∈ N in all non-goal
BLOCKSWORLD states. Consider a block B. If B is not
touched in an optimal plan, it is not touched in an optimal
relaxed plan either. If it is touched in an optimal plan, there
are at most four actions moving B around, as it is always
sufficient to pick-up/unstack and put-down/stack B once or
twice. At least one of those up to four actions is also needed
in an optimal relaxed plan. Therefore, h+(s) ≥ 1/4h∗(s),
and thus α(h+, BLOCKSWORLD) = 1/4.

MICONIC-STRIPS Let (sn)n∈N be the following family
of MICONIC-STRIPS states: There are 2n+1 locations, with
location 0 the elevator start location. There are 2n passen-
gers, exactly one waiting at each location i = 1, . . . , 2n. The
destination of the passenger at location i is i + 1 if i is odd
and i−1 if i is even. The optimal solution contains precisely
seven action per passenger pair. Therefore, h∗(sn) = 7n. In
the relaxed task, a shortest plan is essentially the same as
in the original task, the only exception being the fact that
we can save one move action per location pair (the second
move action back to the location visited twice). Therefore,
h+(sn) = 6n and limn→∞ α(sn) = 6/7.

To see that h+(s) ≥ 6/7h∗(s) + d for all MICONIC-
STRIPS states s and a suitable constant d, note that the only
actions that can potentially be saved in a relaxed plan are
move actions when a location has to be visited twice. There
is never a need to visit a location ℓ more than twice. A lo-
cation may only need to be visited twice if it is part of a
cycle in the graph defined by the “passenger edges”. The
shortest such cycle consists of just two locations. This is
exactly the case in the task family described above. In that
case, one in seven actions can be saved in a relaxed plan.
If some passenger origin or destination locations are shared,
the ratio of actions that can be skipped in a relaxed plan only
decreases. The same holds if the length of the “passenger cy-
cles” increases. Therefore, at least 6 out of 7 actions from
an optimal plan are also needed in an optimal relaxed plan.
Consequently, α(h+, MICONIC-STRIPS) = 6/7.

MICONIC-SIMPLE-ADL Assume that there are n floors
and each floor is origin or destination of at least one pas-
senger. Let K∗ be the size of a minimum vertex cover
for the dependency graph given by the passengers’ origin-
destination arcs. Then, in an optimal plan, there are n + K∗

or n + K∗ − 1 move (up or down) and n + K∗ stop ac-
tions. In a corresponding relaxed plan, the n + K∗ stop
actions are still necessary, but n or n − 1 move actions
are sufficient as the lift-at(f) propositions once added are
never removed. This gives a performance ratio bounded
by (2n + K∗ − 1)/(2n + 2K∗) = 1 − (K∗ + 1)/(2n +
2K∗) ≥ 1 − (n + 1)/(2n + 2n) → 3/4. This bound
is reached if the dependency graph is a complete graph,
which can be achieved for tasks of any size introducing pas-
sengers from each floor to each other floor. We thus get
α(h+, MICONIC-SIMPLE-ADL) = 3/4.

SCHEDULE The objective in the SCHEDULE domain is to
change certain attributes of (some of) the parts to work on,
which can include their shape, surface condition and colour.
Parts also have a temperature, but there are no goals de-
fined on that. We consider states (sn)n∈N defined as fol-
lows: All machines and parts are currently available, and
there are n parts which are currently polished, coloured blue,
and have no particular shape. The goal is to have all these
parts polished, blue, and in cylindrical shape. Notice that
in the SCHEDULE domain there are two types of actions:
transformation actions and time-step actions, but in a re-
laxed plan the latter are never necessary. In particular, a
relaxed plan for sn simply applies the do-lathe operator to
each part, so h+(sn) = n. An actual optimal plan must

however apply a sequence of three operators for each part,
including the do-lathe operator, the do-polish operator, and
either do-spray-paint or do-immersion-paint. The latter are
necessary because the do-lathe operator, which is necessary
for obtaining the cylindrical shape, removes the polish and
colour from the part. (There are certain ordering constraints
between these operators, but we do not discuss them in de-
tail.) Moreover, n + 1 time-step actions are necessary: n
time-step actions are needed until all parts have been lathed
and the last lathed part is available again, and then one more
time-step action is needed to polish and paint the last part (a
time-step action is not needed at the end of the plan). Thus,
limn→∞ α(sn) = limn→∞ n/(4n + 1) = 1/4.

We now show that the h+ heuristic is never worse than
1/4h∗ + d. For this, consider a state s where n parts need
to be processed (i. e., have a defined goal that is not already
satisfied). Clearly, h+(s) ≥ n. To obtain an upper bound
on h∗(s), we describe a particular plan for s: First, classify
the parts into different groups according to their current and
goal attributes. The set C of possible classes is constant, i. e.,
fixed for all SCHEDULE tasks. For each class C ∈ C, we
can find a sequence of at most 3 transformation actions that
creates the goal attributes for the parts in C. (This is always
possible.) If there are mC objects in the class, all parts in
C can then be transformed into their goal states by using at
most 3mC transformation actions and at most mC +2 time-
step actions, after which all machines are available again.
Thus, altogether we need no more than

∑
C∈C

(4mC +2) =
4n + 2|C| = 4n + d actions, where d := 2|C|. For our
analysis, the additive constant does not matter, so we get
α(h+, SCHEDULE) = 1/4.

SATELLITE The only propositions appearing in delete
lists are pointing, power-avail, calibrated and power-on
propositions. Consider the family of states (sn)n∈N where
sn is described by one satellite with n cameras, each only
supporting one mode which is different for each camera, all
cameras having the same calibration target (different from
the current pointing direction) and the same image target
(different from the calibration target and the current pointing
direction) in their respective modes. In an optimal plan, six
actions per image are necessary, namely powering the ith
camera on, turning towards the calibration target, calibrat-
ing, turning towards the image target, taking the image, and
switching the ith camera off. (The last step can be omitted
for the last image.) In an optimal relaxed plan, only two turn
actions and no switch-off actions are necessary. Otherwise,
it is identical to the non-relaxed plan. The power-on, cali-
brate, and take-image actions are still necessary. Therefore,
in the limit, optimal relaxed plans are merely half as long as
non-relaxed optimal plans, and limn→∞ α(sn) = 1/2.

For the other direction, i. e. h+(s) ≥ 1/2h∗(s) for all
states s, we first observe that there exists an optimal relaxed
plan that only uses a camera after it has been powered on
and calibrated and before the next camera has been powered
on and calibrated. (For example, first move all take-image
actions to the end of the plan, then group them by the used
camera, then move the power-on and calibrate actions before
each corresponding group of take-image actions.) This opti-

mal relaxed plan can then be transformed into a plan for the
original problem by adding an appropriate power-off action
before each power-on action in order to ensure power avail-
ability, and adding turn-to actions before each calibrate and
take-image action. Thus, optimal plans are at most twice as
long as optimal relaxed plans.

We conclude that α(h+, SATELLITE) = 1/2.

Synopsis In all domains we considered, the h+ heuristic
yields results which are within a constant factor from the
optimal heuristic values. The concrete factors vary from do-
main to domain.

Performance Ratio of hk

For the performance ratio of the hk family of heuristics, we
get the same result for all domains, namely α(hk,D) = 0.
The common reason for this is that we can find families
of states (sn)n∈N such that h∗(sn) is unbounded as n ap-
proaches infinity, whereas there exists a function f such that
hk(sn) ≤ f(k) for all k ∈ N. For any k ∈ N, f(k) is fixed
and h∗(sn) can get arbitrarily large, so the performance ratio
of the hk heuristic tends towards zero.

Note that hk(sn) can always be bounded from above by
the cost of reaching a k-elementary subgoal set from sn,
maximised over all such subgoals. Thus, it suffices to show
that for the states we consider, every k-elementary subgoal
set can be reached in a number of steps that only depends on
k, but not on n. (We are interested in behaviour in the limit,
so we can always safely assume n ≥ k.)

The property that h∗(sn) is unbounded for growing n will
be trivial for the states we present, so we will not mention it
explicitly.

GRIPPER From any GRIPPER state, it is possible to move
k balls to the goal room with at most 4k + 1 actions (drop a
ball to free a gripper if necessary, then move, pick up, move,
drop for each ball).

LOGISTICS Each subgoal set of size k can be reached in
12k steps, 12 for each goal (in the worst case of transporta-
tion between non-airport locations in different cities: move
truck, pick up, move truck, drop; move airplane, pick up,
move airplane, drop; move truck, pick up, move truck, drop).

BLOCKSWORLD Consider a family of states sn with n
blocks on the table to be stacked into a single tower (Haslum,
Bonet, & Geffner 2005). Then each k-elementary subgoal
can be reached in 2k steps.

MICONIC-STRIPS and MICONIC-SIMPLE-ADL Con-
sider states with n passengers to be served with n different
origin floors, different from the current elevator location. All
subgoals of size k, i. e., transporting k passengers to their
goals, can be reached in 4k steps (for each passenger: move
to origin, stop/pick up, move to destination, stop/drop).

SCHEDULE Consider states with n parts to be processed.
Any subset of k parts can be processed in 6k steps (each part
needs up to three transformations as argued earlier, and each
can be followed by a time-step action to guarantee availabil-
ity of the machines).

SATELLITE Consider states sn with n remaining image
goals. Any subset of k goals can be satisfied in 6k steps (for
each objective: power off an instrument if necessary, power
on an instrument, turn to calibration target, calibrate, turn to
objective, take image).

Synopsis In all the domains, there are trivial families of
increasing-size tasks with h∗ values roughly proportional to
n and hk values roughly proportional to k. As h∗ increases
indefinitely for growing n, whereas hk never returns a value
greater than a domain-dependent constant which is a func-
tion of k, the performance ratio of hk tends to zero in all
domains.

Performance Ratio of Pattern Database Heuristics

The accuracy of the hPDB family of heuristics depends
on the choice of the pattern. We assume that the pat-
tern database has a size limit polynomial in the input size
n, say O(nk). Then a pattern may contain no more than
O(log nk) = O(k log n) state variables in order to respect
the limit. (Since k is an arbitrarily chosen constant, we
can simplify this expression to O(log n).) This implies that
hPDB(s) cannot be greater than the cost of reaching the most
expensive subgoal set of cardinality O(log n).

As the proofs in the previous section showed, in all con-
sidered domains there exist families of states (sn)n∈N for
which h∗ grows linearly with n but m-elementary subgoal
costs only grow linearly with m. Since O(log n)/Ω(n) → 0
for n → ∞, we obtain the same results for hPDB as for hk:
for all domains, α(hPDB,D) = 0. Note, however, that while
for hk, the heuristic estimates were always bounded by con-
stants for a fixed value of k, for pattern database heuris-
tics with suitably chosen patterns they are bounded by val-
ues that grow logarithmically with n. In that sense, pattern
database heuristics are more powerful than hk.

Performance Ratio of Additive Pattern Database
Heuristics

As in the previous section, we need to bound the size of in-
dividual patterns by O(log n) for tasks of size n. However,
for additive pattern database heuristics, multiple such pat-
terns are considered, and their values summed. We remark
that since patterns in these domains need to be disjoint to be
additive, there cannot be more than n pairwise additive pat-
terns for a task with n state variables, so there is no need to
impose a bound on the number of patterns to ensure polyno-
mial time and space requirements.

GRIPPER We can restrict attention to states sn with n
balls in the initial room and no balls currently carried. Balls
currently carried can be ignored because they only con-
tribute a constant to the overall cost (as there are only two
grippers).

Using an additive pattern database with singleton patterns
for each ball location variable, hPDB

add (sn) = 2n, whereas
the optimal cost is 3n − 1 if n is even and 3n if n is odd. In
either case, the performance ratio tends towards 2/3, so we
get α(hPDB

add , GRIPPER) = 2/3.

LOGISTICS Again, by using singleton patterns for each
goal variable, we obtain a heuristic which accurately cap-
tures all pick-up and drop actions needed to reach the goal.
An optimal solution to a LOGISTICS task never requires
more movements than pick-up and drop actions combined,
so the accuracy is at least 1/2.

To prove a lower bound, consider the family (sn)n∈N of
tasks defined as follows. There is a single truck in a city
with 2n + 1 locations. There are n packages, all to be
moved within this city. All initial and goal locations of
the packages are different from each other and from the ini-
tial truck location. The optimal cost for this task is clearly
h∗(sn) = 4n. The multi-valued encoding of the task con-
sists of n + 1 state variables; one for the truck, and one
for each package. Forming non-singleton patterns that do
not include the truck variable is not useful, since this does
not improve performance over the sum of singleton patterns
of the involved package variables. Thus, an optimal addi-
tive pattern database heuristic for this task includes one pat-
tern including the truck variable and as many package vari-
ables as possible (say, K), and singleton patterns for all re-
maining packages. This results in a heuristic estimate of
hPDB

add (sn) = 4K +2(n−K) = 2n+2K. As argued above,
K ∈ O(log n), so limn→∞ α(sn) = (2n+O(log n))/4n =
1/2. We thus get α(hPDB

add , LOGISTICS) = 1/2.

BLOCKSWORLD In the BLOCKSWORLD domain, con-
sider the state sn consisting of a stack B1, . . . , Bn, Bn+1

to be transformed into the stack B1, . . . , Bn+1, Bn. In other
words, the two bottommost blocks must be swapped. The
true cost is 4n.

There are only two variables whose current values differ
between sn and the goal, and hence all but two patterns in
the additive pattern database heuristic must assign heuristic
values of 0 (since, relative to these patterns, the goal has
already been reached). Thus, there are at most two patterns
contributing to hPDB

add , and again their magnitude is bounded
by O(log n) since they can only incorporate O(log n) many
variables and BLOCKSWORLD problems (or subproblems)
of size k can be solved with O(k) steps.

Therefore, the additive pattern database heuristics for
BLOCKSWORLD can get arbitrarily inaccurate with a per-
formance ratio of α(hPDB

add , BLOCKSWORLD) = 0.

MICONIC-STRIPS This domain is a special case of LO-
GISTICS, so from the result for that domain, we can con-
clude α(hPDB

add , MICONIC-STRIPS) ≥ 1/2. On the other
hand, the family of tasks used for showing the LOGIS-
TICS upper bound are also MICONIC-STRIPS tasks, so
α(hPDB

add , MICONIC-STRIPS) = 1/2.

MICONIC-SIMPLE-ADL For the ADL domain variant,
we cannot provide a useful lower or upper bound yet.

SCHEDULE Consider the pattern collection where there
is one pattern for each part, containing all attribute vari-
ables describing that part (i. e., its colour, surface condition,
shape, temperature, and has-hole variables). These patterns
are all additive and only comprise a constant number of vari-
ables each. With this collection, an additive pattern database
heuristic captures the costs of all necessary transformation

Domain h+ hk hPDB hPDB
add

GRIPPER 2/3 0 0 2/3

LOGISTICS 1/2–3/4 0 0 1/2

BLOCKSWORLD 1/4 0 0 0
MICONIC-STRIPS 6/7 0 0 1/2

MICONIC-SIMPLE-ADL 3/4 0 0 open
SCHEDULE 1/4 0 0 1/2

SATELLITE 1/2 0 0 1/6–1/2

Figure 1: Performance ratios of the h+, hk, and (additive)
pattern database heuristics in selected planning domains.

actions correctly, but ignores all time-step actions. In gen-
eral, there are never more time-step than other actions (be-
cause two time-step actions in sequence can be collapsed)
and there never is a time-step action at the end of an optimal
plan, so hPDB

add (s) ≥ 1/2h∗(s) for all states s.
On the other hand, there exist state families (sn)n∈N for

which this bound is tight. In particular, consider states where
n parts need to be polished, the polisher and the parts are
available, and there are no further goals. An optimal solu-
tion requires 2n − 1 actions, whereas hPDB

add (s) = n for the
pattern collection we described. By using a different pat-
tern collection, the result cannot be improved significantly;
similar to the previous proofs, we could only capture the
interaction between the polish and time-step actions for log-
arithmically many parts without exceeding the pattern size
bound. Consequently, α(hPDB

add , SCHEDULE) = 1/2.

SATELLITE As argued in the section on hk, the optimal
solution length from any SATELLITE state with n goals
is at most 6n. On the other hand, an additive pattern
database heuristic which only includes singleton patterns
for the goal variables achieves a heuristic estimate of n, so
α(hPDB

add , SCHEDULE) ≥ 1/6.
Now consider state sn with one satellite with a single

instrument supporting a single mode, initially turned off.
There are n image targets (all of different pointing direc-
tions). The satellite is originally pointed to another direc-
tion, which is the calibration target of its instrument.

Clearly h∗(sn) = 2n + 2: an optimal plan begins with
power-on and calibrate actions, followed by n pairs of turn-
to and take-image actions. An additive pattern database
heuristic can only capture a logarithmic number of turn-to
actions (from the pattern including the variable encoding the
pointing direction), so it is bounded by n + O(log n), and
hence α(hPDB

add , SCHEDULE) ≤ 1/2. (We cannot presently
close the gap between the upper and lower bound.)

Synopsis Except for the case of the BLOCKSWORLD do-
main, where a “reasonable” additive pattern database heuris-
tic performs arbitrarily badly, we could not find families of
tasks for which a “reasonable” choice of patterns would per-
form worse than a constant factor times the optimal heuristic
value.

Conclusion

As far as we are aware, we have presented the first detailed
analysis of domain-specific accuracy results for a number

of popular planning heuristics (summarised in Fig. 1). One
maybe unsurprising, but still interesting observation is that
the hk heuristic family and plain pattern database heuristics
become arbitrarily inaccurate as task size increases.

With the exception of the SCHEDULE domain, we gen-
erally got the best results for the h+ heuristic. However, in
interpreting this result, one should not forget that this heuris-
tic is NP-hard to compute in general, which makes additive
pattern database heuristics attractive.

For these, we remark that the problem of optimizing the
pattern collections – a task we performed by hand in our
analysis – is of critical importance for obtaining good perfor-
mance. On the other hand, some of our results already hold
when using singleton patterns exclusively, and in other cases
(such as SCHEDULE), the result would not be much worse
with singleton patterns. In particular, current techniques for
the automatic selection of pattern collections (Haslum et al.
2007) easily achieve the best-possible performance ratios
from Fig. 1 (in the case of SATELLITE, the lower bound on
this ratio), with the possible exception of the SCHEDULE

domain, where at least a ratio of 1/4 is achieved.
Finally, we again point out some open issues. In addi-

tion to the incomplete entries in Fig. 1, one important omis-
sion is that we did not discuss additive hk heuristics and that
our discussion of additive pattern databases was restricted to
the case of a single sum. Given that the latter heuristics in
particular have been very successful recently (Haslum et al.
2007), this is an interesting and important avenue for future
work.

References

Ausiello, G.; Crescenzi, P.; Gambosi, G.; Kann, V.;
Marchetti-Spaccamela, A.; and Protasi, M. 1999. Com-
plexity and Approximation. Springer-Verlag.

Bacchus, F. 2001. The AIPS’00 planning competition. AI
Magazine 22(3):47–56.

Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129(1–2):5–33.

Bylander, T. 1994. The computational complexity of
propositional STRIPS planning. Artificial Intelligence
69(1–2):165–204.

Culberson, J. C., and Schaeffer, J. 1996. Searching with
pattern databases. In Proc. 11th Canadian Conference on
AI, volume 1081 of Lecture Notes in Computer Science,
402–416.

Edelkamp, S., and Helmert, M. 2001. The model check-
ing integrated planning system (MIPS). AI Magazine
22(3):67–71.

Haslum, P., and Geffner, H. 2000. Admissible heuristics
for optimal planning. In Proceedings of the Fifth Interna-
tional Conference on Artificial Intelligence Planning Sys-
tems (AIPS 2000), 140–149.

Haslum, P.; Botea, A.; Helmert, M.; Bonet, B.; and Koenig,
S. 2007. Domain-independent construction of pattern
database heuristics for cost-optimal planning. In Proceed-
ings of the 22nd AAAI Conference on Artificial Intelligence
(AAAI-2007), 1007–1012.

Haslum, P.; Bonet, B.; and Geffner, H. 2005. New admis-
sible heuristics for domain-independent planning. In Pro-
ceedings of the Twentieth National Conference on Artificial
Intelligence (AAAI 2005), 1163–1168.

Helmert, M.; Haslum, P.; and Hoffmann, J. 2007. Flexible
abstraction heuristics for optimal sequential planning. In
Proceedings of the Seventeenth International Conference
on Automated Planning and Scheduling (ICAPS 2007).

Helmert, M. 2006. Solving Planning Tasks in Theory and
Practice. Ph.D. Dissertation, Albert-Ludwigs University,
Freiburg.

Hoffmann, J., and Edelkamp, S. 2005. The deterministic
part of IPC-4: An overview. Journal of Artificial Intelli-
gence Research 24:519–579.

Hoffmann, J. 2005. Where ‘ignoring delete lists’ works:
Local search topology in planning benchmarks. Journal of
Artificial Intelligence Research 24:685–758.

Kautz, H., and Selman, B. 1996. Pushing the envelope:
Planning, propositional logic, and stochastic search. In
Proceedings of the Thirteenth National Conference on Ar-
tificial Intelligence (AAAI-96), 1194–1201.

Kautz, H., and Selman, B. 1999. Unifying SAT-based
and graph-based planning. In Dean, T., ed., Proceedings of
the Sixteenth International Joint Conference on Artificial
Intelligence (IJCAI’99), 318–325.

Long, D., and Fox, M. 2003. The 3rd International Plan-
ning Competition: Results and analysis. Journal of Artifi-
cial Intelligence Research 20:1–59.

McDermott, D. 1996. A heuristic estimator for means-
ends analysis in planning. In Proceedings of the Third In-
ternational Conference on Artificial Intelligence Planning
Systems (AIPS-96), 142–149. AAAI Press.

McDermott, D. 2000. The 1998 AI Planning Systems com-
petition. AI Magazine 21(2):35–55.

