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Abstract

Agile autonomous systems such as Autonomous Under-
water Vehicles (AUVs) have great potential in fields
such as science exploration and surveillance. These
continuous dynamic systems must perform complex,
time-critical missions, while being robust to uncer-
tainty in their operating environment. Discrete and
continuous sources of uncertainty include disturbances,
uncertain localization, modeling uncertainty, and com-
ponent failures.

Previous work used execution of temporal state plans
to achieve control of dynamic systems. This paper ex-
tends this work to robust execution of state plans un-
der stochastic uncertainty. Given a temporal state plan
and dynamic system model our new executive plans a
near-optimal control sequence subject to the probabil-
ity of plan failure being less than a specified threshold.
This threshold permits the user to trade robustness
against performance.

To make the optimal, robust execution problem
tractable, we approximate the system state distribu-
tion using a finite number of probabilistic particles.
We then optimally plan the future distribution of these
particles, with the property that as the number of par-
ticles tends to infinity, the approximation becomes ex-
act. This gives an any-time approach to robust exe-
cution under stochastic uncertainty. We demonstrate
the performance of the algorithm in simulation using
an AUV scenario.

Introduction
Control of autonomous dynamic systems, such as Un-
manned Air Vehicles (UAVs) and Autonomous Under-
water Vehicles (AUVs) has received a great deal of at-
tention in recent years. Such systems have enormous
potential in fields such as ocean science, space explo-
ration. Control of these dynamic systems is challenging
for a number of reasons. First, mission success involves
achieving task plans comprised of goals that constrain
both discrete and continuous state, and are related by
timing constraints. Second, such systems are under-
actuated, meaning that not all state variables are di-
rectly controllable. Third, there is significant uncer-
tainty in the operating environment. Sources of un-
certainty include disturbances, uncertain localization,

modeling error, and component failures. This uncer-
tainty is stochastic, and can cause the true system state
to deviate significantly from the plan.

In this paper we provide a model-based executive that
addresses these challenges. The executive takes as its
input a temporal qualitative state plan, whose activities
constrain the allowed continuous states of the system,
and a mixed discrete-continuous linear model of sys-
tem dynamics. Since states are typically not directly
controllable, the executive issues optimal low-level com-
mands, while taking into account uncertainty, to ensure
robust satisfaction of the state plan.

Building upon prior work on plan dispatchability
(Morris, Muscettola, & Tsamardinos 1998; Tsamardi-
nos, Pollack, & Ramakrishnan 2003), (Vidal & Ghallab
1996) introduced a framework for temporal plan exe-
cution that models uncertainty with simple temporal
networks under uncertainty, and guarantees success for
these modeled disturbances. This research line focuses
on discrete, directly controllable systems.

(Williams et al. 2003) introduced the Titan model-
based executive, which controls discrete-event, under-
actuated systems according to a qualitative state plan
comprised of a sequence of constraints on goal states.
Combining model-based and temporal plan execution,
(Leaute & Williams 2005) introduced the Sulu execu-
tive, which controls continuous, underactuated systems
by executing a state plan that involves continuous goal
states and temporal constraints.

In a similar spirit to prior work in on-board plan-
ning and execution(Ambros-Ingerson & Steel 1988;
Wilkins & Myers 1995; Chien et al. 2000), the Sulu
executive uses a Model Predictive Control (MPC) ap-
proach(Richalet et al. 1976) to plan optimal control se-
quences over a long horizon, while executing a shorter
sequence of control actions. Through continual replan-
ning, the executive is able to adapt to disturbances.
However, Sulu does not model or plan for uncertainty.
In many cases, optimal plans that do not take into
account uncertainty are brittle; a fuel-optimal path
through an obstacle field will only just miss obstacles,
and wind disturbances are likely to cause failure. Ro-
bust execution of temporal state plans, therefore, re-
quires explicit modeling and planning for uncertainty.



This paper extends the work of (Leaute & Williams
2005), producing an executive that is robust to stochas-
tic uncertainty. Previous work(Li, Wendt, & Wozny
2000; Hessem 2004) used a chance-constrained for-
mulation for robustness under stochastic uncertainty.
Chance constraints ensure that the probability of fail-
ure is below a user-specified threshold, denoted δ.
Specifying this threshold enables the user to trade ro-
bustness against performance; a plan with a low δ
typically requires more fuel, or more time, to com-
plete. Execution under stochastic uncertainty is well
known to be challenging because it involves online
planning in the much larger space of future state dis-
tributions rather than future states. Prior work ap-
proximates the optimal, chance-constrained planning
problem using a finite set of samples, or particles,
to approximate the state distribution(Blackmore 2006;
Blackmore et al. 2007). The key idea is to plan the evo-
lution of the particle distribution optimally, while sat-
isfying chance constraints, with the property that the
approximation becomes exact as the number of parti-
cles tends to infinity. This gives an any-time approach
to planning under stochastic uncertainty.

We extend this ‘particle control’ approach to robust
execution of qualitative state plans with temporal con-
straints. The resulting executive enables the user to
impose chance constraints on groups of state activi-
ties within the plan; for example, requiring that the
goal state is reached in time with a certain proba-
bility, while ensuring that collision with obstacles oc-
curs with a different probability. We show that for
a class of hybrid discrete-continuous dynamic systems
known as Jump Markov Linear Systems (JMLS), the
resulting optimization problem can be solved to global
optimality using Mixed Integer Linear Programming
(MILP). JMLS are powerful modeling tools for many
dynamic autonomous systems; uncertainty in the con-
tinuous dynamics is used to model disturbances and
localization uncertainty, for example, while stochas-
tic transitions in the discrete dynamics are used to
model component failures(Costa, Fragoso, & Marques
2005). Our executive uses a receding-horizon approach
to plan near-optimal controls while being robust to all of
these forms of uncertainty. Furthermore, while related
to prior work on conformant and probabilistic plan-
ning(Majercik & Littman 1998; Smith & Weld 1998;
Domshlak & Hoffmann 2006), our approach is different
in being able to plan in continuous decision spaces, as
well planning with temporally flexible goals.

Problem Statement
Given a dynamic system (or plant) described by a Jump
Markov Linear System, and a Chance-Constrained
Qualitative State Plan, specifying the desired evolution
of the plant state along with reliability constraints on
the probability of failure, the Continuous Robust Exe-
cution Problem consists of designing a control sequence
that is consistent with the state plan. In this section
we present a formal definition of this problem.
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Figure 1. a) Autonomous Underwater Vehicle science mission
and b) Qualitative State Plan for the AUV mission

AUV Planning Example We use an AUV depth
planning example to demonstrate the approach. In this
example, the plant is an AUV performing an ocean sci-
ence mission that involves collecting data from within
an algal bloom and performing mapping of the sea floor.
The mission is depicted in Fig. 1. An informal descrip-
tion of the mission’s state plan is:

The AUV must reach the algal bloom and remain
there for between 500s and 600s. Afterwards, the
AUV must go to the mapping depth and remain
there for between 1000s and 1500s. At the end of
the mission the AUV must arrive at the goal region
to rendezvous with the surface vessel. At all times
the AUV must remain at a safe altitude above the
sea floor, and must stay within its operating limits.

Definition of a JMLS A Jump Markov Linear Sys-
tem (JMLS) M = 〈xc,Xc,xd,Xd,u,Ω,D, V 〉 consists
of a vector xc of continuous state variables, taking on
values from the continuous state space Xc ⊂ �n, the
discrete mode xd, taking on values from the discrete
state space Xd, a vector u of input variables, taking
on values from the input space Ω ⊂ �m, a set D of
discrete-time state equations, and a transition distribu-
tion V. The state equations D define the evolution of
the continuous state xc and take the form:

xc,τ+1 = A(xd,τ )xc,τ + B(xd,τ )uτ + ωτ . (1)
The evolution of the discrete state xd is defined by:

p
(
xd,τ+1 = j|xd,τ = i

)
= V (i, j). (2)

The hybrid discrete-continuous state 〈xc,xd〉 is denoted
x. We use the subscript form xc,τ to denote the contin-
uous state xc at time tτ . The sequence 〈xc,0, . . . ,xc,N 〉
is denoted xc,0:N . The sampling interval in (1) is de-
noted Δt. We use xc to denote the random variable
and use Xc to denote its realization.

In our AUV planning example, we consider the mo-
tion of the AUV in the vertical plane. We use the lin-
earized, discrete-time closed-loop longitudinal dynam-
ics derived by (McEwen & Streitlien 2001) to model the
operation of the AUV in mode xd = 1 (‘nominal’); the
mode xd = 2 (‘faulty’) dynamics are identical except
that the elevator actuator has no effect. The control
inputs u are depth waypoints given to the AUV.



Definition of a Chance Constrained Qualitative
State Plan A Chance Constrained Qualitative State
Plan P = 〈E , C,A,Gc,Gm, F 〉 specifies a desired evolu-
tion of the plant state over time, and is defined by a
set E of discrete events, a set A of activities, impos-
ing constraints on the plant state evolution, a set C of
temporal constraints between events, a set Gc of chance
constraints that specify reliability constraints on the
success of activities in the plan, a set Gm of expected
state constraints that guarantee the success of activi-
ties for the most likely system state, and an objective
function F , which must be minimized.

An activity a = 〈eS , eE , cS〉 has an associated real-
valued start event eS and an end event eE . cS is called
a state constraint on the variable x and can take one
of the following forms, where RS , RE , R∀ and R∃ are
regions of the state space S, and T is a schedule for P :

1. Start in state region RS : xτ ∈ RS tτ = T (eS);

2. End in state region RE : xτ ∈ RE tτ = T (eE);

3. Remain in state region R∀: xτ ∈ R∀ ∀tτ ∈
[T (eS), T (eE)];

4. Go through state region R∃: xτ ∈ R∃ ∃tτ ∈
[T (eS), T (eE)].

Since start in and go through activities are easily deriv-
able from the primitives remain in and end in, we con-
sider only remain in and end in activities from here.

A temporal constraint 〈eS , eE ,ΔTmin
eS→eE

,ΔTmax
eS→eE

〉
is a constraint, specifying that the duration from a start
event eS to an end event eE be in the real-valued inter-
val [ΔTmin

eS→eE
,ΔTmax

eS→eE
] ⊆ [0,+∞].

For a stochastic system, the predicted state is a ran-
dom variable. The success of a set of activities A is
hence a random event. A chance constraint denoted cc

specifies that the set of activities A(cc) must fail with
probability at most δ(cc). An expected state constraint,
denoted cm, requires the set of activities A(cm) to suc-
ceed for the expected system state E[x] and schedule
T . We define the indicator function s(·) as follows:

s(A(cc),X1:N , T ) =
{

1 any activity in A(cc) fails
0 otherwise.

(3)

We illustrate a Qualitative State Plan diagrammati-
cally by an acyclic directed graph in which events are
represented by nodes, temporal constraints by arcs, la-
beled by their corresponding time bounds, and activi-
ties by arcs labeled with associated state constraints.
The Qualitative State Plan for the AUV mission is
shown in Fig. 1b). This plan has two chance con-
straints:

1. The probability that either Remain in [safe
region] or End in [goal region] (the safety ac-
tivities) fails is at most 10−6.

2. The probability that any of the other activities (the
science activities) fails is at most 0.02.

Note that the plan requires a lower probability of failure
for activities that are essential for safety of the AUV
than for activities upon which the science return of the
mission depends.

Definition of Robust Execution Problem A
Chance Constrained Qualitative State Plan P =
〈E , C,A,Gc,Gm, F 〉 is satisfied by a random state se-
quence x0:f , an input sequence u0:f and a schedule T if
and only if the schedule T is temporally consistent, that
is T satisfies all of the constraints in C, all of the chance
constraints in Gc are satisfied, and all of the expected
state constraints in Gm are satisfied. u0:f is optimal
if it satisfies P while minimizing the objective function
F (u0:f ,x0:f , T ). A common objective is to minimize
the scheduled time T (eE) for the end event eE of P .

Given an initial state distribution p(x0), a plant
model M and a state plan P , the robust execution prob-
lem consists of incrementally generating, for every time
step tτ , a control action uτ given a sequence of obser-
vations y0:τ . The final resulting control sequence u0:f ,
the resulting state trajectory xc,0:f and schedule T must
satisfy the JMLS M and the Qualitative State Plan P .

Summary of Approach

The robust execution problem is intractable for two key
reasons. First, in the case of long-duration missions, a
full plan is too long to be generated in a single step. Sec-
ond, finding an optimal control sequence that satisfies
the Qualitative State plan exactly is intractable; con-
straints on the probability of activity failure are partic-
ularly problematic, since this value cannot be evaluated
in closed form in the general case. In order to make the
robust execution problem tractable we introduce two
approximations. First, we solve a receding horizon ap-
proximation to the problem. Second, we solve a particle
control approximation to the robust execution problem;
this uses a finite set of particles to approximate the
planned state distribution. We show that this approx-
imation enables the planning problem to be solved to
global optimality using MILP.

Receding Horizon Execution

In a similar manner to (Leaute & Williams 2005) we
use a receding horizon, or MPC approach to make the
robust execution problem tractable. We solve the ro-
bust execution up to a limited planning horizon, and
re-solves it when it reaches a shorter execution hori-
zon. This approaches generates control sequences that
are optimal over the planning horizon, and are globally
near-optimal.

We define the Receding-Horizon Robust Execution
Problem as follows: Given an initial state distribution
x0, a plant model M and a state plan P , the single-
stage, limited horizon robust execution problem con-
sists of generating an optimal control sequence u0:NP

that satisfies P , where NP is the length of the planning



horizon. The receding horizon robust execution prob-
lem consists of iteratively solving single-stage limited
horizon robust execution problems for successive initial
states xi·NE

with i = 0, 1, . . . where NE ≤ NP is the
execution horizon.

Particle Control Approximation
The key technical challenge is to make the single-stage
limited horizon robust execution problem tractable for
online solution. We accomplish this by approximating
the problem using a finite set of samples or particles.
Prior work(Blackmore 2006; Blackmore et al. 2007)
used this approach to perform control of dynamic sys-
tems within temporally-static feasible regions. We now
extend this to execution of temporally-flexible plans.

The key observation behind the new method is that,
by approximating all probabilistic distributions using
particles, an intractable stochastic optimization prob-
lem can be approximated as a tractable deterministic
optimization problem. By solving this deterministic
problem we obtain an approximate solution to the orig-
inal stochastic problem, with the additional property
that as the number of particles used tends to infinity,
the approximation becomes exact.

In outlining the method, note that for the JMLS the
future continuous states xc,τ for τ = 1, . . . , Np are func-
tions of the control inputs u0:Np−1, the initial state x0,
disturbances ν0:Np−1, and the mode sequence xd,0:Np

:

xc,τ = fτ (xc,0,xd,0:τ−1,u0:τ−1, ν0:τ−1). (4)

The initial state, disturbances and mode sequence
are uncertain, but are random variables with known
distributions. Hence the future continuous states are
also random variables, whose distributions depend on
the control inputs.1 The chance constrained parti-
cle control method for Qualitative State Plans is given
in Table 1. The method is illustrated in Fig. 2. This
approach solves an approximation of the single-stage,
limited horizon robust execution problem. Due to the
strong law of large numbers, as the number of parti-
cles converges to infinity, the approximated probability
of activity failure (7) converges to the true probability
of failure. Furthermore the approximated cost function
and expected state converge to the true values, again
due to the strong law of large numbers. We there-
fore have convergence of the approximated optimiza-
tion problem to the exact single-stage robust execution
problem as the number of particles tends to infinity.

The general formulation presented in this section en-
compasses a very general set of dynamic systems, in-
cluding ones with nonlinear dynamics and hybrid state;
the key restriction being that the distributions of the

1Modeling errors can be modeled as an additional
stochastic disturbance process(Ljung 1999). For notational
simplicity we assume for the rest of the development a single
disturbance process; however the method applies equally to
multiple disturbance processes, and hence to modeling er-
rors as well as external disturbances.

1) Generate N samples from the joint distribution of initial

state, disturbances and mode transitions

2) Express the distribution of the future state trajectories

approximately as a set of N particles. Each particle

x1:Np
(i) corresponds to the state trajectory given a par-

ticular set of samples
˘
x0

(i), ν
(i)
0:Np−1, xd,0:Np−1

(i)¯
, and

depends explicitly on the control inputs u0:Np−1, which

are yet to be generated.

x1:Np
(i)

:= 〈x1
(i)

x2
(i)

. . . xNp
(i)〉

xτ
(i)

= fτ (x0
(i)

, u0:τ−1, ν
(i)
0:τ−1), (5)

where x0
(i), ν

(i)
0:τ−1 and xd,0:Np−1

(i) are known values

sampled from random variables, whereas u0:τ−1 are deci-

sion variables over which to optimize.

3) Approximate the chance constraints in terms of the gen-

erated particles. The probability of any activity in the set

A(cc) failing is given by:

p
“
A(cc) fails

”
=

Z
x1:Np

s
“
A(cc), x1:Np , T

”
dx1:Np , (6)

where s(·) is the indicator function defined in (3). Given

the generated particles, this probability can be approxi-

mated as:

p
“
A(cc) fails

”
≈ 1

N

NX
i=1

s
“
A(cc), x1:Np

(i)
, T

”
. (7)

The chance constraint cc is then approximated as follows:

1

N

NX
i=1

s
“
A(cc), x1:Np

(i)
, T

”
≤ δ.

In other words, for no more than δ of the particles can

any activity in A(cc) fail. Note that a particle represents

a state trajectory over the entire planning horizon.

4) Approximate the constraints on the expected state. A

constraint on the expected state can be written:

s
“
A(cm), E[x1:Np ], T

”
= 1. (8)

Using the sample mean approximation to the full expec-

tation we have the approximated constraint:

s

„
A(cm),

1

N

NX
i=1

x1:Np
(i)

, T

«
= 1. (9)

5) Approximate the cost function in terms of particles

F̂ (u0:Np−1, x1:Np
(1)

, · · · , x1:Np
(N)

, T )

≈ F (u0:Np−1, x1:Np , T ) (10)

6) Solve deterministic constrained optimization prob-

lem: Minimize F̂ (u0:Np−1, x1:Np
(1), · · · , x1:Np

(N), T )

over u0:Np−1 and T , subject to:

1

N

NX
i=1

s
“
A(cc), x1:Np

(i)
, T

”
≤ δ(cc), (11)

for all chance constraints cc, and

s

„
A(cm),

1

N

NX
i=1

x1:Np
(i)

, T

«
= 1, (12)

Table 1. Chance Constrained Particle Control Algorithm
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Figure 2. Illustration of new particle control method for robust
limited-horizon execution. The Qualitative State Plan P has
two activities. The first requires the system state to end in the
goal region, and the second requires the state to remain outside
of the obstacles at all time steps. A single chance constraint
requires failure of either activity to occur with probability at
most 10%. The particle control method approximates this so
that at most 10% of the particles fail.

uncertain variables must be independent of the control
inputs and system state. It is not necessarily true, how-
ever, that the optimization problem that results from
this formulation is tractable. We now show that for
Jump Markov Linear Systems, a piecewise linear cost
function and a polygonal feasible region, the optimiza-
tion can be solved using efficient MILP methods.

Mixed Integer Linear Programming
Encoding of Particle Control Problem

We now describe the encoding of the particle control
problem for Qualitative State Plans as a MILP.

Approximate Chance Constraints

The particle control algorithm in Table 1 requires that
we constrain the number of particles for which an ac-
tivity fails (Equation 11). We encode this constraint
by introducing binary variables zi(cc) for each chance
constraint cc that indicate whether a set of activities
fails or succeeds for a given particle, such that:

zi(cc) = 0 =⇒ s
(A(cc),x1:Np

(i), T
)

= 1. (13)

Constraining the sum of these binary variables then en-
codes the constraint (11):

1
N

N∑
i=1

zi(cc) ≤ δ(cc). (14)

The challenge is now to encode the implication (13).
For all remain-in activities in A(cc) we must encode
the implication:

zi(cc) = 0 =⇒ xτ
(i) ∈ R∀(a) ∀τ ∈ [T (eS), T (eE)],

(15)

while for end-in activities we must encode the following
implication:

zi(cc) = 0 =⇒
(

T (eE) ≤ 0 − Δt

2

)

∨
(

T (eE) ≥ tNp
+

Δt

2

)

∨
(
∃τ xτ ∈ RE tτ ∈

[
T (eE) − Δt

2
, T (eE) +

Δt

2

])
,

(16)

where we have performed the same time-discretization
as (Leaute & Williams 2005); either T (eE) is scheduled
within the planning horizon, in which case xτ ∈ RE at
the time step closest to T (eE), or T (eE) is scheduled
outside the planning horizon.

We encode the implications (15) and (16) by intro-
ducing additional binary variables, as we now describe.
For each time step τ , for each remain-in activity a we
define binary variables bafter(τ, eS), bbefore(τ, eE) and
bduring(τ, eS , eE), for all τ ∈ {0, . . . , Np}. Here, eS is
the start event of a and eE is the end event of a. Using
the following encoding for all τ ∈ {0, . . . , Np}, for all
events eS and eE :

tτ − T (eS) < M · bafter(τ, eS)
T (eE) − tτ ≤ M · bbefore(τ, eE)

bduring(τ, eS , eE) ≤ M(2 − bafter − bbefore), (17)

we ensure that:

tτ ∈ [T (eS), T (eE)] =⇒ bduring(τ, eS , eE) = 0. (18)

We define binary variables bat(τ, eE) for each time step
τ ∈ {0, . . . , Np} and each event eE . We also define
binary variables bbefore(eE) and bafter(eE) for each
event eE . We impose the following constraints for all
τ ∈ {0, . . . , Np}, for all events eS and eE :

tτ − Δt

2
− T (eE) ≤ M · bat(τ, eE)

T (eE) − tτ − Δt

2
≤ M · bat(t, eE)

T (eE) ≤ M · bbefore(eE)
Δt

2
+ tNp

− T (eE) ≤ M · bafter(eE)

bbefore(eE) + bafter(eE)+
Np∑
τ=0

bat(τ, eE) = Np + 2.

(19)

These constraints ensure that either some time step τ
occurs within Δt

2 of T (eE), and that bat(τ, eE) = 0 for
that τ , or T (eE) is scheduled outside of the planning
horizon. We now use the binaries bat, bbefore, bafter to
encode (15) and (16) first for convex, then for non-
convex feasible regions.



Convex Feasible Regions We define a convex
polygonal feasible region R(a) associated with activity
a as a conjunction of linear constraints aT

l (a)x ≤ bl(a)
for l = 1, . . . , Na, where al(a) is defined as pointing
outwards from the polygonal region. Then x lies within
R(a) if and only if all of the constraints are satisfied:

x ∈ R(a) ⇐⇒
∧

l=1,··· ,Na

aT
l (a)x ≤ bl(a). (20)

For all remain-in activities a ∈ A∀(cc) we now impose
the following constraint for all τ ∈ {0, . . . , Np}, for all
l and for all a ∈ A∀(cc):

aT
l (a)xτ

(i) − bl(a) ≤ M
(
zi(cc) + bduring(τ, eS , eE)

)
,

(21)
where M is a large positive constant, and eS and eE are
the start and end events for activity a. If zi(cc) = 0 and
bduring(τ, eS , eE) = 0 then every constraint is satisfied
for particle i, otherwise (for large enough M), particle i
is unconstrained. For convex regions R(a), we therefore
have, for all tτ ∈ [T (eS), T (eE)], for all a ∈ A∀(cc):

zi(cc) = 0 =⇒ xτ
(i) ∈ R(a), (22)

as required. For all end-in activities a ∈ AE we impose
the following constraint for all τ ∈ {0, . . . , Np}, for all l,
for all a ∈ AE(cc):

aT
l (a)xτ

(i) − bl(a) ≤ M
(
zi(cc) + bat(τ, eE)

)
, (23)

where M is a large positive constant and eE is the end
event of activity a. If zi(cc) = 0 and bat(τ, eE) = 0
then every constraint is satisfied for particle i, otherwise
particle i is unconstrained. For convex regions RE(a)
we have therefore encoded implication (16) for all a ∈
AE(cc), as required.

Non-convex Feasible Regions A polytopic non-
convex feasible region can be described as the comple-
ment of a number of polytopic infeasible regions, or ob-
stacles. In other words, at time tτ the state xτ is in the
region if and only if all obstacles are avoided for all time
steps. For each activity a with non-convex feasible re-
gion R(a), we define a set O(a) =

〈
O(a)1, . . . , O(a)Ma

〉
of obstacles that collectively form the complement of
R(a). As noted by (Leaute & Williams 2005) avoid-
ance of a polygonal obstacle can be expressed in terms
of a disjunction of linear constraints. That is, the sys-
tem state at time tτ , xτ , avoids the obstacle Oj(a) if
and only if: ∨

l=1,...,Naj

aT
jl(a)xτ ≥ bjl(a). (24)

We now introduce binary variables dijτl(a) ∈ {0, 1}
that indicate whether a given constraint l for a given
obstacle Oj(a) is satisfied by a given particle i at a given

time step τ . We impose the following for all i, j, l, for all
end-in activities a ∈ AE(cc) and for all τ ∈ {0, . . . , Np}:

aT
jl(a)xτ

(i) − bjl(a) + Mdiτjl(a) ≥ 0 (25)

aT
jl(a)xτ

(i) − bjl(a) + Mdiτjl(a) ≥ 0, (26)

and:
Naj∑
l=1

diτjl(a) − (Naj − 1) ≤ Meiτj(a) (27)

Naj∑
l=1

diτjl(a) − (Naj − 1) ≤ Meiτj(a). (28)

These ensure that eiτj(a) = 0 implies that at least one
constraint in obstacle Oj(a) is satisfied by particle i at
time step τ . This in turn implies that obstacle Oj(a) is
avoided by particle i at time step τ . We now impose,
for all remain-in activities, for all τ ∈ {0, . . . , Np}, for
all a ∈ A∀(cc) and for all i:

Ma∑
j=1

eiτj(a) ≤ M ·
(
zi(cc) + bduring(τ, eS , eE)

)
, (29)

which ensures that, for non-convex feasible regions
R∀(a), for all a ∈ A∀(cc) and for all i:

zi(cc) = 0 =⇒ xτ
(i) ∈ R∀(a) ∀τ ∈ [T (eS), T (eE)],

(30)
as required. For all end-in activities a ∈ AE(cc), we
impose the following constraint, for all τ ∈ {0, . . . , Np},
and for all i:

Ma∑
j=1

eiτj(a) ≤ M ·
(
zi(cc) + bat(τ, eS , eE)

)
, (31)

which ensures that the implication (16) holds for non-
convex regions RE(a), for all a ∈ AE(cc) as required.

In this section we encoded the implication (13) us-
ing linear constraints on continuous and binary decision
variables. This means that using the linear constraint
(14), we have expressed the approximated chance con-
straint (11) as a constraint suitable for MILP optimiza-
tion. Furthermore, as the number of particles converges
to infinity, we have convergence of the approximated
constraint to the exact chance constraint.

Approximated Expected State Constraints
In accordance with (12), for each expected state con-
straint cm ∈ Gm we must ensure that for the expected
state, approximated using the sample mean of the par-
ticle set, all activities succeed in the set A(cm). We use
xt

(m) to denote the sample mean:

xτ
(m) �

N∑
i=1

xτ
(i) =

N∑
i=1

(
τ−1∑
j=0

Aτ−j−1B(uj+ν
(i)
j )+Aτx0

(i)

)
.

(32)



Expected state constraints can then be handled in a
similar manner to chance constraints, except that ex-
pected state constraints require the corresponding ac-
tivities to succeed. As the number of particles converges
to infinity, the approximated constraint (32) converges
to the exact expected state constraint.

Temporal Constraints
Temporal constraints have the form c =
〈eS , eE ,ΔTmin

eS→eE
,ΔTmax

eS→eE
〉. These are encoded,

for each temporal constraint c, as follows:

T (eE) − T (eS) ≥ ΔTmin
eS→eE

T (eE) − T (eS) ≤ ΔTmax
eS→eE

. (33)

To ensure determinism, we fix the the time of events
that have occurred in the past.

Cost Function
The cost function F can be a function of the control
inputs u0:Np−1, the schedule T , and the system state
trajectory x1:Np

. Since the system state is uncertain,
however, this cost function will typically be an expecta-
tion over the system state. In this case we approximate
the expectation using the sample mean of the cost func-
tion. This is evaluated using the particle population as
follows. The true expectation is given by:

E[F ] =
∫

F (u0:Np−1,x1:Np
, T )p(x1:Np

)dx1:Np
(34)

Since p(x1:Np
) can be an arbitrary distribution, this

integral is intractable in most cases. The approximated
expectation is given by:

F̂ =
1
N

N∑
i=1

F (u0:Np−1,x1:Np

(i), T ), (35)

and this can be evaluated without integration. As the
number of particles tends to infinity, we have F̂ −→
E[F ]. Furthermore, since we assume that F is a piece-
wise linear function of the state and control inputs, the
expression for F̂ in (35) is also piecewise linear.

Guidance Heuristic
As noted by (Leaute & Williams 2005), end-in activities
scheduled outside of the planning horizon are challeng-
ing for receding horizon approaches to hybrid execution.
Consider the case where an end-in activity with region
RE that is scheduled to start during the planning hori-
zon, i.e. T (eS) ∈ [t0, tNp

], but is scheduled to end after
the end of the planning horizon, i.e. T (eE) > tNp

. In-
tuitively, the system state should be making progress
towards RE during the time period [T (eS), tNp

]. We
therefore use a guidance heuristic to steer the system
state towards RE when T (eS) is outside of the plan-
ning horizon. We use an identical approach to (Leaute
& Williams 2005) except that we minimize the distance

between the expected system state and the end-in region
RE . The objective in the constrained optimization is:

Minimize F̂ + H(xT
(m)), (36)

where H(·) is the cost-to-go estimate. (Leaute &
Williams 2005) discuss in detail the forms of H(·) that
are suitable for MILP optimization.

Analytic Particles
From the definition of JMLS in (1) we use (5) to obtain
the following expression for each particle:

xc,τ
(i) =

τ−1∑
j=0

(τ−j−1∏
l=1

A(xd,l
(i))
)(

B(xd,j
(i))uj + ν

(i)
j

)

+
( τ∏

l=1

A(xd,l
(i))
)
xc,0

(i). (37)

Note that this is a linear function of the control inputs
u0:τ−1, and that xc,0

(i), ν
(i)
j and xd,l

(i) are all known
values. Hence each particle xc,1:Np

(i) is linear in u0:τ−1.

Summary
We have shown that the deterministic optimization
problem posed in Table 1 can be encoded as a MILP.
The program involves continuous decision variables; the
control sequence, the state trajectory of each particle
and the schedule; and binary decision variables; these
indicate success of different sets of activities for in-
dividual particles. Extremely efficient commercially-
available solvers exist that guarantee finding the global
optimum to MILPs in finite time. By restricting the
size of the particle set, we ensure that this optimization
is tractable for real-time computation. Furthermore, as
the number of particles converges to infinity, the ap-
proximated limited-horizon robust execution problem
converges to the exact problem.

Simulation Results
We implemented the receding-horizon particle control
approach on a PC with a 2.80GHz Pentium 4 proces-
sor. We use the AUV example illustrated in Fig. 1 with
Δt = 10s, a planning horizon of 200s, and an execution
horizon of 10s. Fig. 3 shows a typical solution to the
single-stage limited-horizon robust execution at the be-
ginning of the mission using 50 particles. The solution
ensures that the approximated probability of the AUV
missing the bloom region is at most 0.02. The AUV
makes use of its full pitch angle capability (15◦) while
guaranteeing that the approximated probability of vi-
olating its operational limits is less than 10−6. Fig. 4
shows the MILP solution time taken to solve the single-
stage execution problem, averaged over each iteration in
the AUV mission. With 20 particles or fewer, the opti-
mization is fast enough to be solved in real-time (in the
average case) with an execution horizon of 10s. Above
this value, the execution horizon must be increased, or
the optimization must be terminated before a global
optimum has been found.
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Figure 3. Left: Typical solution to single-stage limited-horizon
robust execution problem. Right: Plan ensures that at most
2% of the particles fail to satisfy Remain in [bloom region]
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Figure 4. Average MILP solution time against size of particle
set. Error bars represent one standard deviation.

Conclusion

We have presented a model-based executive for stochas-
tic hybrid discrete-continuous systems that plans ex-
plicitly for uncertainty, ensuring that constraints on the
probability of failure are satisfied. We use a particle ap-
proximation to make the planning problem tractable.
As the number of particles tends to infinity, the ap-
proximation becomes exact. This gives an any-time
approach to planning under stochastic uncertainty.
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