
Interaction between reactive and deliberative tasks for on-line decision-making

Michel Lemaître and Gérard Verfaillie
ONERA

2 av. Édouard Belin, BP 74025, F-31055 Toulouse Cédex 4, France
{Michel.Lemaitre,Gerard.Verfaillie}@onera.fr

Abstract

To get actual autonomous engines or systems, it is necessary
to equip them with on-line decision-making mechanisms:
computation of decisions that fit the current situation, per-
formed in parallel with real execution. However, such a com-
putation introduces a contradiction between requirements on
the quality of the decision and on the time at which it will be
delivered. This contradiction is all the stronger as decision-
making may require intensive computing whose duration is
not very well controlled. The solutions that are proposed in
the literature to overcome this contradiction are often unsat-
isfactory, either from the point of view of the quality require-
ments, or from the one of the temporal requirements, most of
the time from the one of the organisation and validation of the
whole decision-making mechanism.
In this paper, we propose a generic schema for the interaction
between reactive and deliberative tasks for on-line decision-
making. The basis of this schema is a control of decision-
making by reactive tasks, which may call for anytime deliber-
ative tasks. We show an implementation of this schema using
the synchronous Esterel language for the programming of the
reactive tasks and the Java language for the programming of
the deliberative ones. The proposed schema is illustrated on
an example of on-line management of observation tasks per-
formed by an Earth detection and observation satellite. We
conclude with a synthesis of the advantages of the proposed
approach.

On-line decision-making problematics
In many fields, but especially in the aeronautics and space
one, one wants to have at one’s disposal more and more
autonomous engines or systems, able to manage their ac-
tivities without any permanent control exercised by human
operators. This is for example the case in the field of Earth
watching and observation where one would like to have at
one’s disposal satellites able to perform systematic detection
of ground phenomena, such as eruptions, fires, floods, pol-
lutions, . . . and to trigger autonomously higher resolution
observations of the areas on which phenomena have been
detected.

Such an autonomy requires that the engine or system be
able to make decisions that fit the current situation: state
of the engine or system, state of its environment, and state
of the objectives it is currently assigned. Roughly speak-
ing, one can say that there exist three main approaches to

decision-making:

1. off-line computation of an optimal policy, associating
with each possible situation an optimal decision in this
situation;

2. off-line learning (possibly carried on on-line) of a policy,
associating with each possible situation a decision in this
situation too;

3. on-line computation of a decision or of a sequence of de-
cisions that fit the current situation.

The first two approaches aim at building a policy, that
is a function which associates a decision with each possi-
ble situation. They differ mainly about the means used to
build this function: model-based reasoning for the first one,
simulation-based learning for the second one. They differ
also about the result they provide: possibly optimal for the
first one, sub-optimal for the second one. However, both
of them come up against the same difficulty: as soon as
one wants to deal with a real application, the space of the
possible situations becomes quickly huge; practical difficul-
ties appear in terms of computation and particularly in terms
of memory; the space that is necessary to memorize a pol-
icy becomes quickly incompatible with the memory that is
available on an engine.

If everything cannot be off-line computed and memo-
rized, on-line computation is necessary. Unfortunately, on-
line computation introduces a contradiction between re-
quirements in terms of decision quality and in terms of deci-
sion delivery time. One wants good quality decisions which
do not jeopardize the engine or system and which satisfy as
well as possible the mission objectives, but one wants also
that these decisions be delivered in time. For example, in the
case of an Earth observation satellite, if the decision-making
software says that the right decision is to perform the obser-
vation of a given ground area z, but if it says that when the
visibility of z is over, then this information has strictly no
value.

This contradiction is all the stronger as decision-making
requires often heavy computation tasks, which consist in
solving complex problems (in the meaning of complexity
theory): sometimes polynomial, but most of the time NP-
hard, indeed Pspace-hard. To face this contradiction, vari-
ous solutions have been proposed. Some of them give prior-
ity to temporal requirements:



1. this is the case when one uses pre-defined decision rules
which fix immediately the decision to make according to
some prominent features of the current situation;

2. this is also the case when one limits the degrees of free-
dom of the system in order to simplify the decision-
making problem and to get a problem, for example poly-
nomial, which can be certainly solved by meeting the tem-
poral requirements;

3. this is finally the case when one uses limited search mech-
anisms, such as greedy search, local search, or limited tree
search.

Their main drawback is a possible loss in terms of quality,
to be sure that the temporal requirements be met. Others give
priority to quality requirements:

1. this is the case when one keeps enough time for decision-
making, even if the engine or system must be maintained
in a waiting state until decision delivery (Muscettola et al.
1998);

2. this is still the case when one allows decision-making and
execution to be interleaved, with a possible execution of
some parts of the plan while others are still in hand (Lemai
& Ingrand 2004).

Their main drawback is a possible loss of opportunities
due to the wait for decision delivery. In addition, the wait-
ing state may not be neutral. For example, it may consume
energy and possibly jeopardize the engine or system.

Between both these extreme approaches, the so-called
anytime algorithms (Zilberstein 1996), which guarantee the
production of a first solution within a limited time and then
its progressive improvement, seem to be at the basis of a
sensible compromise between temporal and quality require-
ments. This is the basis we adopt.

However, most of the works about anytime algorithms fo-
cused on a very ambitious and certainly unrealistic objec-
tive: using the knowledge (assumed to be available) about
the quality profile of the anytime algorithms (the way so-
lution quality improves as a function of the computation
time) and about the utility function (the way decision util-
ity evolves as a function of its quality and of its delivery
time) to control these algorithms in order to get the best
compromise between reasoning and decision-making (Rus-
sel & Wefald 1991; Boddy & Dean 1994; Horvitz 1987;
Hansen & Zilberstein 2001).

We adopt a more realistic point of view which does not as-
sume any knowledge of the quality profiles and of the utility
functions. We consider that temporal constraints are hard
requirements in the form of deadlines and that reasoning
must compulsorily meet these requirements. This does not
imply that reasoning must be systematically instantaneous
because, in many applications, deadlines are not systemat-
ically immediate. When, for example, one triggers a task
with a given duration, one has at one’s disposal this dura-
tion to perform computations allowing one to decide upon
the following task to trigger.

We show how temporal constraints can be met via reac-
tive control tasks, how maximum quality can be sought via
deliberative reasoning tasks and what can be the exchanges

CONTROL

TASK

REACTIVE
information

interrupt/abort

deliberations

changes

commitments

DELIBERATIVE

REASONING

TASK

ENVIRONMENT

trigger/

Figure 1: Global schema of the interactions between the en-
vironment, a reactive task and a deliberative one

between both these kinds of task inside the control software
of an engine or system.

Generic schema of interaction between
reactive and deliberative tasks

The first principle of the proposed interaction schema is that
the reactive tasks are at the interface between the environ-
ment and the deliberative ones. Deliberative tasks do not
interact directly with the environment. They interact with it
via reactive tasks. See Figure 1 for a representation of the
interaction between the environment, a reactive task, and a
deliberative one.

The second principle is that the reactive tasks are in
charge (1) of the interaction with the environment at the
rhythm it dictates and (2) of the control of the deliberative
tasks. Concerning (1) the interaction with the environment,
reactive tasks receive information about the way it evolves
(what is referred to as changes) and emit action commit-
ments following decisions. Concerning (2) the control of
the deliberative tasks, reactive tasks trigger, interrupt, trig-
ger again, or abort them; they provide deliberative tasks with
relevant information about the problem to solve and receive
deliberations resulting from the reasoning the latter perform.
To sum up, reactive tasks can be seen as immersed in an en-
vironment made (1) of the physical environment (the physi-
cal system and the other components of the control system)
and (2) of associated deliberative tasks (a reactive task can
indeed control several deliberative ones).

The third principle is that, to meet the temporal require-
ments on the interaction with their environment (physical
environment and deliberative tasks), the reactive tasks are
designed so as to meet a synchronous behavior assumption:
in case of any event coming from its environment, a syn-
chronous reactive task is able to compute and to execute a
reaction, then to update its internal memory before any other
event arrival; in the abstract, this reaction and this updating
can be seen as instantaneous.

The fourth principle is that the temporal requirements that
are imposed by the reactive tasks on deliberative ones take
the form of deadlines: to produce a deliberation by a given
time. To meet these deadlines, deliberative tasks are de-
signed so as to meet a anytime behavior assumption: when
it is triggered, a deliberative task is able to produce quickly a
first solution and then to improve on it; each time it produces
a better solution, it extracts from this solution the part that is
of interest for the associated reactive task (for example, the
first decision if the deliberative task produces a plan made
of a sequence of decisions) and sends it to the associated



reactive task (what is referred to as a deliberation).
The fifth last principle is that the deliberations that are

successively emitted from deliberative tasks to reactive ones
are only advice and that reactive tasks are the only respon-
sible for the emission of commitments to the environment
when deadlines occur. According to the current state of the
environment, a reactive task may follow the last deliberation
emitted by the associated deliberative task. It may choose
among the deliberations that have been successively emitted
or among the ones that have been emitted by several associ-
ated deliberative tasks. It may also follow none of them and
emit any commitment it chooses. This is especially what
happens when no deliberation is available or when all the
available deliberations are inconsistent with the current state
of the environment. The latter situation may occur when a
deadline and a change from the environment occur at the
same time.

These principles are not all original and many of them
originate from previous studies such as (Adelantado & de
Givry 1995). They have been also widely inspired by pre-
vious application studies about the autonomous control of
Earth detection and observation satellites (Damiani, Verfail-
lie, & Charmeau 2005).

It is important to stress the difference between this archi-
tecture and the classical three-layered control architecture,
widely used in the robot control community (see for ex-
ample (Alami et al. 1998; Muscettola et al. 1998)). In
a few words, deliberative planning is the core of a three-
layered architecture: nothing can be executed if it has not
been planned before. On the contrary, reactive tasks are the
core of the architecture we propose: deliberative tasks can
make proposals, but reactive tasks remain responsible for fi-
nal decisions and can make decisions even when no proposal
is available.

Implementation using Esterel and Java
Programming languages To implement these principles,
we use the synchronous Esterel language for programming
reactive tasks, the Java language for programming the de-
liberative ones and more generally for acting as a host lan-
guage, and the so-called task mechanism offered by Esterel
for connecting reactive and deliberative ones.

We chose the Esterel language (Berry & Gonthier 1992)
for four reasons: (1) it is built on the synchronous assump-
tion, (2) its semantics is clearly defined, (3) there exist as-
sociated validation tools based on model checking, and (4)
it provides the user with a task mechanism which allows
synchronous reactive tasks and external concurrent asyn-
chronous ones, written in any host language such as Java,
to be connected. To be more precise about the synchronous
assumption, two complementary points of view can coexist:

1. from the abstract point of view of Esterel programming
the control flow goes forward by means of a potentially
infinite sequence of reactions, each one involving a finite
sequence of instantaneous actions; so, according to this
point of view, each reaction is instantaneous too; it takes
no time; this abstraction makes reasoning about interac-
tion with the environment and about concurrency much

REASONING

CONTROL

state

deadline
nextDeadline

exec(?state)

deliberation

time

commitment

evolution
ENVIRONMENT

REACTIVE

TASK
DELIBERATIVE

TASK

Figure 2: Main functional schema of the interactions be-
tween the environment, a reactive task and a deliberative one

easier; this is however the responsibility of the Esterel
compiler to check that each reaction entail a finite number
of actions (no infinite loop);

2. of course, from a practical point of view, the processing
of each reaction takes an amount of time which cannot
be null; so, we have to check in some way that, taking
into account the CPU capabilities, each reaction process-
ing time has an upper bound which is lower that the lower
bound on the time between two successive events from the
environment; tools exist for this purpose; if this require-
ment is not met, usual solutions are to use a more power-
ful CPU, to redesign the reactive task to be less CPU con-
suming, to split the reaction work into several successive
reactions, or to transfer some parts of the reactive work to
a deliberative task with lower priority.

The Java host language provides the Esterel code with
support for external types, procedures and functions. More-
over, the Esterel code is compiled into the Java host lan-
guage in the form of a compact function that implements
each possible reaction of the reactive task. It is worth noting
that, although Esterel programming makes heavily use of
concurrency constructs via logical threads, all these threads
are then flattened into a single physical thread by the com-
piler from Esterel to Java.

Main functional schema Figure 2 represents the main
functional schema of the interaction between the environ-
ment, a reactive task, and a deliberative one. It shows the
main events that are exchanged between tasks (those that ap-
pear above arrows) or between modules inside the reactive
one (those that appear in the box associated with the reactive
task). One must stress that, in the Esterel language, events
can be pure signals (present or absent) or valued signals (car-
rying information of any type, when they are present).

Main events The reactive task may receive from the envi-
ronment a time event informing it that time is getting on and
an evolution event informing it of a change in the state of the
environment. It may send to the environment a commitment
event informing it of an action commitment following a de-
cision. It may also trigger the execution of a deliberative task
with information about the current state of the environment
(exec (?state)) and receive from the deliberative task a delib-
eration event informing it of a better solution. The events
exchanged inside the reactive task are state (informing of
the updating of the state of the environment), nextDeadline
(informing of the date of the next deadline), and deadline
(informing of the occurrence of a deadline).



evolution

commitment

time time time

nextDeadline

deadline

nextDeadline

exec(?state)

deliberation 1

deliberation 2

deliberation 3

exec(?state)

ENVIRONMENT DELIBERATIVE TASKREACTIVE TASK

Figure 3: Execution example

Impact of an evolution event At each occurrence of an
evolution event, the reactive task computes the date of the
next deadline, updates the state of the environment, and trig-
gers or triggers again the deliberative task on the basis of
the new state, everything instantaneously, that is before any
other event occurrence.

In many applications, there exist natural deadlines asso-
ciated with the dates available for action triggering, either at
fixed times, or at the end of the current action when actions
are executed in sequence. When such natural deadlines do
not exist, it is always possible to consider artificial deadlines
by any fixed time. One must stress that the deadline may be
immediate. In such a case, no deliberative task is triggered.

Impact of a deadline event At each occurrence of a dead-
line event, the reactive task computes, always instanta-
neously, a decision as a function of the current state of the
environment and of the successive deliberations possibly re-
ceived from the deliberative task. This decision may be
empty, implying no action commitment. If it is not empty,
the associated commitment event is emitted to the environ-
ment.

Setting that the reactive task computes a decision as a
function of the state of the environment and of the successive
deliberations implies that it is able (1) to check consistency
between a deliberation and the environment state (for ex-
ample, the engine or system will be jeopardized neither im-
mediately, nor in the future) and (2) to produce a consistent
decision when no deliberation is available or all the available
deliberations are inconsistent. This requires that the reactive
task have at its disposal not only a model of consistency be-
tween a deliberation and the environment state (model used
in a checking mode), but also some rules able to produce a
consistent default decision whatever the environment state is
(rules which have been automatically or manually produced
off-line).

Execution example Figure 3 shows a typical execution
example. The way time gets on is represented from top to
bottom, as in UML sequence diagrams. An evolution event

1 every evolution do
2 loop
3 exec deliberative(?state)
4 return deliberation ;
5 end loop
6 end every

Figure 4: Excerpt from the Esterel code

triggers the updating of the environment state, the comput-
ing of a deadline, the emission of a nextDeadline event, and
the triggering of the deliberative task. Before the occurrence
of the deadline event, the deliberative task emits three suc-
cessive deliberations. Then, the deadline event triggers the
computing of a decision, which is not empty in this case, the
emission of a commitment event, the updating of the envi-
ronment state, the computing of a new deadline, the emis-
sion of a new nextDeadline event, and again the triggering
of the deliberative task.

An excerpt from the Esterel code Figure 4 shows an ex-
cerpt from the Esterel code responsible for driving a delib-
erative task. The actual code is a bit more involved, but the
one given here is quite representative.

This small excerpt is made of a single every instruction
and its body. Line 1, the program waits for the presence of
an evolution event. If such an event is present, the program
enters the body of the every instruction (lines 2 to 5). Later,
each time an evolution event is present, the current execution
of the body is aborted, including the deliberative task which
is launched inside, and the body is entered again.

Let us examine now the body of the every instruction. The
program enters a loop whose body (lines 3 and 4) consists of
a single exec instruction. This instruction triggers a thread
which will start or continue the deliberative task, with the
state of the environment (?state) as an argument.

If the deliberative task terminates normally, it makes a de-
liberation event present. Then, the deliberative task is trig-
gered again, as the loop commands it, in search for a possi-
bly better deliberation result.

But, if an evolution event is present before the normal ter-
mination of the deliberative task, then the body of the every
instruction is aborted, as explained above. This results in the
abortion of the deliberative task. The body of the every in-
struction is entered again immediately, triggering again the
deliberative task. This way, an evolution event is taken into
account immediately each time it is present.

Open options This generic schema of interaction between
reactive and deliberative tasks has been actually imple-
mented using Esterel and Java, everything being compiled
to produce a Java code. One must stress that it keeps many
options open:

• a reactive task may trigger several deliberative tasks deal-
ing with various problems or with the same problem using
various models or algorithms;



• whereas it is important that the deliberative task be able
to produce successive deliberations, it is not really com-
pulsory that the quality of these deliberations monotoni-
cally increase; it suffices that the reactive task have at its
disposal rules allowing it to choose between several de-
liberations; if, for example, the successive deliberations
result from reasonings performed on temporal horizons
of increasing length, a sensible rule consists in choosing
the deliberation that results from reasoning on the longest
horizon, even if it is known that there is no guarantee that
such a deliberation be the best one (Pearl 1983);

• the deliberative task may be systematically aborted and
triggered again each time an evolution or commitment
event occurs; it may be merely interrupted and trig-
gered again on the basis of the new state; in the latter
case, it may trigger a completely new search, or try and
reuse most of the results produced by previous searches;
see (Verfaillie & Jussien 2005) for a survey of the existing
reuse techniques in a dynamic setting;

• when an evolution event occurs, the reactive task may per-
form a quick analysis of this evolution to decide whether
or not the deliberative task must be aborted or interrupted
according to the potential impact of this evolution, in or-
der to avoid useless abortions or interruptions;

• the deliberative task may ignore the deadline or be in-
formed of it and use this information to choose a model
or an algorithm that fits a priori the deadline; see (Lobjois
& Lemaître 1998; Lemaître & Verfaillie 2001) for exam-
ples of techniques allowing a model or an algorithm to be
selected as a function of the deadline.

Example of management of observation tasks
The implemented generic schema has been experimented on
the problem which inspired it: the management of the ob-
servations performed by an Earth detection and observation
satellite (Damiani, Verfaillie, & Charmeau 2005).

Application The satellite is assumed to be able to detect
ground phenomena such as forest fires or volcanic eruptions
(detection performed in front of the satellite thanks to a wide
swath instrument). In case of detection, it triggers automat-
ically an alarm to the ground and an internal request for a
higher resolution observation of the ground area on which
the phenomenon has been detected (observation performed
thanks a narrow swath instrument when the satellite flies
over the area, about one minute after the detection). The
difficulty is that the satellite has at its disposal only one ob-
servation instrument. This may result in conflicts between
observation requests. In general, it will be impossible to sat-
isfy all of them, at least during one satellite revolution. The
problem is to satisfy as many as possible of them and prefer-
ably the most important ones.

The choice of the observations to perform is assumed to
be made by an observation management module. This is this
module we programmed, with its reactive features as well as
its deliberative ones, using the implemented generic schema.

Optimisation problem For this experiment, we limited
ourselves to the binary conflicts between observation re-
quests (we ignored conflicts resulting from the common use
of on-board energy and mass memory). A fixed execution
window is associated with each candidate observation. Two
observations are incompatible if and only if their execution
windows overlap. Moreover, we assumed that a gain is as-
sociated with each observation request and that the gain as-
sociated with a sequence of observations is merely the sum
of the gains associated with the observations in the sequence
(actually, one will prefer often to reason in terms of priority).

In such conditions, the objective is at any time to build
a sequence of observations of maximum associated gain on
the basis of the pending observation requests over a given
temporal horizon: known, not yet achieved, and still achiev-
able observations.

Optimisation algorithm Still for this experiment, we
chose an iterated stochastic greedy algorithm, inspired from
the Heuristic-Biased Stochastic Sampling (HBSS (Bresina
1996)) and Value-Biased Stochastic Sampling (VBSS (Ci-
cirello & Smith 2005)) algorithms. This algorithm con-
sists in performing a sequence of stochastic greedy searches.
Each greedy search performs itself a sequence of stochastic
choices which are biased by a heuristics. Satisfaction of
the physical constraints is checked before each choice. Dur-
ing a search, choices are never undone. Stochasticity allows
the same choices not to be systematically made search af-
ter search, whereas the heuristic bias prompts each search
to explore the neighborhood of the purely heuristic solution,
resulting globally in a good trade-off between diversification
and intensification of the search.

The main advantages of such an algorithm are that it
is very easy to implement and is naturally anytime: each
greedy search produces a consistent sequence of observa-
tions; a consistent sequence of observations is thus avail-
able from the first search, that is very quickly; improvement
is achieved each time a greedy search produces a sequence
whose associated gain is higher than the best gain produced
so far. It main drawbacks are that it offers no guarantee
of optimality and that its efficiency strongly depends on the
chosen heuristic and bias functions.

The heuristics we used in this experiment is a usual knap-
sack heuristics, which associates with each observation re-
quest a weight equal to its gain divided by its duration. Ob-
servations are inserted one after each other, when insertion
is possible, in a decreasing weight order. To get a stochas-
tic search, these weights are merely modified by multiplying
them by a noise factor.

Events and reactions In this application, an evolution
event is triggered by the detection of one or several ground
phenomena which gives rise to new pending observation re-
quests.

For this experiment, we assumed that observations can be
triggered at the last time (we ignored the movement of the
sight mirror necessary to have the right ground area in view).
This implies that the deadlines are merely the starting dates



20 30 600 10 40 50 70 80 90

A,B C,D,E F,G,H I

A(10) C(10) E(30) F(20) H(20)

time

B(50) D(20)

I(30)

G(40)

Figure 5: Example of scenario

of the observation execution windows. The next deadline
is thus the minimum date among the starting dates of the
execution windows associated with the pending observation
requests.

A deliberation involves only the next observation to per-
form according the optimisation algorithm. A deliberation
event is thus emitted from the first greedy search, contain-
ing the first observation of the produced sequence. Later on,
a deliberation event is emitted each time a greedy search
produces a sequence of observations which improves on the
total gain and modifies the previous deliberation (change in
the first observation of the produced sequence).

When a deadline event occurs, the policy consists in fol-
lowing the last deliberation, if at least one deliberation is
available: if the observation associated with the deadline
and the one associated with the last deliberation coincide,
then the latter is triggered; else it is left; if no deliberation
is available, the observation associated with the deadline is
triggered by default. In every case, the set of pending re-
quests is modified, because the observation associated with
the deadline is now impossible and, if it is triggered, all the
observations that are in conflict with it become impossible
too.

Scenario example Figure 5 shows an example of scenario
involving nine observation requests from A to I . The time
at which each of them arrived following detection appears
below the time line: A and B arrived at time 0; C, D, and E
arrived at time 20 . . . Their execution windows appear above
the time line. All of them have the same duration (10). The
associated gains appear in parenthesis: the gain associated
with A is 10, the one associated with B is 50 . . . One can
observe for example that A and B are incompatible and that
D is incompatible with C and E.

Execution example On this micro-scenario, optimisation
problems are very small and the stochastic greedy search is
able to produce an optimal solution after only some greedy
searches, sometimes from the first one. After the arrival of
observations A and B at time 0, the first deliberation is B (B
is the next observation to perform). Then, after the arrival of
observations C, D, and E at time 20, the first deliberation
is C. After the triggering of C, the first one is E. Then,
after the arrival of observations F , G, and H at time 50, the
first deliberation is G. After the arrival of observation I at
time 60, the first deliberation remains G and some stochas-
tic greedy searches are necessary to find the optimal one I .
Finally, after the triggering of I , the first deliberation is H .

Finally, the sequence of performed observations is
[B, C, E, I, H] resulting in a gain of 140, the optimum on
this scenario. It must be stressed that, if we would have used
a mere greedy search with the same heuristics, the sequence
would have been [B, C,E, G], resulting in a gain of 130, 10
units smaller. With mere decision rules, things would have
been worse: with a rule stating that an observation must be
performed if it is possible, the sequence would have been
[A, C,E, F, H] resulting in a gain of 90, 50 units below the
optimum; with a slightly more intelligent rule stating that an
observation must be performed if it is possible and not in di-
rect conflict with a more important one, the sequence would
have been [B, E,G] resulting in a gain of 120, still 20 units
below the optimum. This shows the potential gain resulting
from the use of on-line optimisation tools.

Conclusion
If we try now a synthesis of the proposed approach, its first
advantage is that it allows actually on-line decision-making
as a function of the current situation: changes from the envi-
ronment, whatever they are, positive or negative, are imme-
diately taken into account by both the reactive and delibera-
tive tasks.

The second advantage is that all the time which is avail-
able between a change and the next deadline is used by the
deliberative task to try and produce the best possible delib-
eration: if the deadline is distant and if the problem to solve
is not too complex, an optimal or quasi-optimal deliberation
will be possibly produced; otherwise, deliberation quality
will possibly suffer on account of lack of time.

The third advantage is that the reactive task offers guar-
antees in terms of decision: deliberations are only advice
whose consistency with the current situation is checked be-
fore commitment; even if no deliberation is available, rules
allow a default decision fitting the current situation to be pro-
duced. In fact, the engine or system can work, maybe worse,
but still correctly, without any deliberative task.

The fourth advantage is a clear distinction between the
respective roles of the reactive and deliberative tasks and
a clear definition of their interactions. This contrasts with
numerous implementations of on-line decision-making sys-
tems where reactive and deliberative activities are mixed up
into a unique code.

The fifth one results from the use of a synchronous lan-
guage like Esterel whose semantics is well-defined. Pro-
vided that is has been checked that the implementation meets
properly the synchronous assumption, we get a program
whose execution is not ambiguous. This contrasts with the
previous implementation of the example of management of
observations by an Earth detection and observation satellite,
which used the JADE multi-agent platform (Java Agent DE-
velopment framework) (Damiani, Verfaillie, & Charmeau
2005) and with which execution anomalies due to time man-
agement were frequent.

The sixth and last one is that still the use of synchronous
languages paves the way to a validation of the control soft-
ware. It is well known that the formal validation of a
control software involving on-line decision-making mech-
anisms sets difficult problems, not satisfactorily solved yet.



With the proposed schema, the reactive tasks could be vali-
dated using formal methods such as model checking (Clarke,
Grumberg, & Peled 1999) and the presence of the delibera-
tive tasks could be taken into account via the models used
by the reactive tasks to check the consistency of the deliber-
ations they receive from deliberative ones.

Acknowledgements
This work has been done thanks to the CNES-ONERA-
LAAS AGATA project (Autonomy Generic Architecture :
Tests and Applications; see http://www.agata.fr), whose aim
is to develop technical tools allowing space system auton-
omy to be improved.

References
[Adelantado & de Givry 1995] Adelantado, M., and
de Givry, S. 1995. Reactive/Anytime Agents: Towards
Intelligent Agents with Real-Time Performance. In IJCAI-
95 Workshop on Anytime Algorithms and Deliberation
Scheduling.

[Alami et al. 1998] Alami, R.; Chatila, R.; Fleury, S.; Ghal-
lab, M.; and Ingrand, F. 1998. An Architecture for Au-
tonomy. The International Journal of Robotics Research
17(4):315–337.

[Berry & Gonthier 1992] Berry, G., and Gonthier, G. 1992.
The Esterel Synchronous Programming Language: Design,
Semantics, Implementation. Science of Computer Pro-
gramming 19(2):87–152.

[Boddy & Dean 1994] Boddy, M., and Dean, T. 1994.
Deliberation Scheduling for Problem Solving in Time-
Constrained Environments. Artificial Intelligence
67(2):245–285.

[Bresina 1996] Bresina, J. 1996. Heuristic-Biased Stochas-
tic Sampling. In Proc. of the 13th National Conference on
Artificial Intelligence (AAAI-96), 271–278.

[Cicirello & Smith 2005] Cicirello, V., and Smith, S. 2005.
Enhancing Stochastic Search Performance by Value-
Biased Randomization of Heuristics. Journal of Heuristics
11(1):5–34.

[Clarke, Grumberg, & Peled 1999] Clarke, E.; Grumberg,
O.; and Peled, D. 1999. Model Checking. MIT Press.

[Damiani, Verfaillie, & Charmeau 2005] Damiani, S.; Ver-
faillie, G.; and Charmeau, M.-C. 2005. Cooperating On-
board and On the ground Decision Modules for the Man-
agement of an Earth Watching Constellation. In Proc. of
the 8th International Symposium on Artificial Intelligence,
Robotics, and Automation for Space (i-SAIRAS-05).

[Hansen & Zilberstein 2001] Hansen, E., and Zilberstein,
S. 2001. Monitoring and Control of Anytime Algorithms:
A Dynamic Programming Approach. Artificial Intelligence
126:139–157.

[Horvitz 1987] Horvitz, E. 1987. Reasoning about Beliefs
and Actions under Computational Resource Constraints. In
Proc. of the 3rd International Conference on Uncertainty in
Artificial Intelligence (UAI-87), 301–324.

[Lemai & Ingrand 2004] Lemai, S., and Ingrand, F. 2004.
Interleaving Temporal Planning and Execution in Robotics
Domains. In Proc. of the 19th National Conference on Ar-
tificial Intelligence (AAAI-04).

[Lemaître & Verfaillie 2001] Lemaître, M., and Verfaillie,
G. 2001. Learning the Temporal Monitoring of an On-line
Constraint Optimization Algorithm. In Proc. of the CP-01
Workshop on "On-line Combinatorial Problem Solving and
Constraint Programming", 15–24.

[Lobjois & Lemaître 1998] Lobjois, L., and Lemaître, M.
1998. Branch and Bound Algorithm Selection by Perfor-
mance Prediction. In Proc. of the 15th National Conference
on Artificial Intelligence (AAAI-98), 353–358.

[Muscettola et al. 1998] Muscettola, N.; Nayak, P.; Pell, B.;
and Williams, B. 1998. Remote Agent: To Boldly Go
Where No AI System Has Gone Before. Artificial Intelli-
gence 103(1-2):5–48.

[Pearl 1983] Pearl, J. 1983. On the Nature of Pathology in
Game Searching. Artificial Intelligence 20:427–453.

[Russel & Wefald 1991] Russel, S., and Wefald, E. 1991.
Do the Right Thing. MIT Press.

[Verfaillie & Jussien 2005] Verfaillie, G., and Jussien, N.
2005. Constraint Solving in Uncertain and Dynamic En-
vironments: A Survey. Constraints 10(3):253–281.

[Zilberstein 1996] Zilberstein, S. 1996. Using Anytime Al-
gorithms in Intelligent Systems. AI Magazine 17(3):73–83.

ftp://ftp.cert.fr/pub/verfaillie/cp01-online.ps
ftp://ftp.cert.fr/pub/verfaillie/cp01-online.ps
ftp://ftp.cert.fr/pub/verfaillie/estim-aaai98.ps
ftp://ftp.cert.fr/pub/verfaillie/estim-aaai98.ps

	On-line decision-making problematics
	Generic schema of interaction between reactive and deliberative tasks
	Implementation using Esterel and Java
	Example of management of observation tasks
	Conclusion
	Acknowledgements

