

Fig 1. An MBARI AUV at sea

T-REX: A Model-Based Architecture for AUV Control

Abstract

 Autonomous Underwater Vehicles (AUVs) are an
increasingly important tool for oceanographic
research demonstrating their capabilities to sample
the water column in depths far beyond what humans
are capable of visiting, and doing so routinely and
cost-effectively. However, control of these
platforms has relied on fixed sequences for
execution of pre-planned actions limiting their
effectiveness for measuring dynamic and episodic
ocean phenomenon. In this paper we present an
agent architecture developed to overcome this
limitation through on-board planning using
Constraint-based Reasoning approaches.
Preliminary versions of the architecture have been
integrated and tested in simulation and at sea.

Introduction
Oceanography has traditionally relied on ship-based
observations. These have recently been augmented
by robotic platforms such as Autonomous
Underwater Vehicles (AUV) [1-4], which are
untethered powered mobile robots able to carry a
range of payloads efficiently over large distances in
the deep ocean. A common design relies on a
modular tube-like structure with propulsion at the
stern and various sensors, computers and batteries
taking up the bulk of the tube (Fig 1). AUVs have
demonstrated their utility in oceanographic research
in gathering time series data by repeated water-
column surveys [5,8], detailed bathymetric maps of
the ocean floor in areas of tectonic activity [6] and
performed hazardous under-ice missions [7].
Typically AUVs do not communicate with the
support ship or shore while submerged and rely on
limited stored battery packs while operating
continuously for tens of hours. In addition to
operating without human intervention, AUV
operations are exacerbated by uncertainty in the
environment, the platform and the mission.
Environmental uncertainty (white noise, bio-fouling
of sensors, lack of visible light beyond the upper
150m of the photic zone, hazards due to uncharted
underwater terrain and ocean currents etc) and
Platform uncertainties (sensor failures, battery
failures, impaired mobility due to entanglement in
fishing lines etc) all add to the difficulty of
operating in this harsh environment. Dealing with
scientific uncertainty (to observe dynamic and

episodic phenomenon) has additionally become
paramount for ocean scientists to enable
understanding large-scale ecological process.
Current AUV control systems [9] are a variant of
the behavior-based Subsumption architecture [23].
A behavior is a modular encapsulation of a specific
control task and includes acquisition of a GPS fix,
descent to a target depth, drive to a given waypoint,
enforcement of a mission depth envelope etc. An
operator defines each plan as a collection of
behaviors, which are scripted a priori using simple
mission planning tools. Behaviors include specific
parameters for start and end times as well as a
maximum duration. In practice, missions
predominantly consist of sequential behaviors with
duration and task specific parameters equivalent to
a linear plan with limited flexibility in task
duration. Such an approach becomes less effective
as mission uncertainty increases. Further, the
architecture offers no support to manage the
potentially complex interactions that may result
amongst behaviors, pushing a greater cognitive
burden on behavior developers and mission
planners. This paper describes initial steps in
demonstrating onboard automated planning to
generate robust mission plans using system state
and desired goals. We expect this approach to
reduce the cognitive burden on AUV operators
since missions will now be specified as high-level
goals and constraints rather than detailed behavior
sequences. Our interest in the near term is to
incorporate a decision-making capability onboard

Conor McGann, Frederic Py, Kanna Rajan, Hans Thomas, Richard Henthorn, Rob McEwen
Monterey Bay Aquarium Research Institute, Moss Landing, California

{cmcgann,fpy,kanna.rajan,hthomas,henthorn,rob}@mbari.org

Fig. 2: A 4-reactor T-REX agent.

AUVs to make this platform more adaptive in the
face of uncertainty.
The remainder of this paper is laid out as follows.
We start with an overview of our agent architecture
followed by preliminary results and related work in
this domain. We close with conclusions and future
work.

The T-REX Architecture
T-REX (Teleo-Reactive EXecutive) is a goal-
oriented system, with embedded automated
planning [24,25] and adaptive execution at its core.
The system encapsulates the long-standing notion
of a sense-deliberate-act cycle at the heart of a
control loop and reflects the goal-oriented nature of
control and provision of response to exogenous
events. In order to make embedded planning
scalable the system enables the scope of
deliberation to be partitioned functionally and
temporally and to ensure the current state of the
agent is kept consistent and complete during
execution. While T-REX was built for a specific
underwater robotics application, the principles
behind its design are applicable in any domain

where deliberation and execution are intertwined.
Fig. 2 shows a conceptual view of a Teleo-Reactive
Agent. An agent is viewed as the coordinator of a
set of concurrent control loops. Each control loop is
embodied in a Teleo-Reactor (or reactor for short)
that encapsulates all details of how to accomplish
its control objectives. Arrows represent a
messaging protocol for exchanging facts and goals
between reactors: thin arrows represent
observations of current state; thick arrows represent
goals to be accomplished.
Reactors are differentiated in 3 ways:
• Functional scope: indicating the state variables of

concern for deliberation and action.
• Temporal scope: indicating the look-ahead

window over which to deliberate.

• Timing requirements: the latency within which
this component must deliberate for goals in its
planning horizon.

Fig. 2 for example, shows four different reactors:
• The Mission Manager provides high-level

directives to satisfy the scientific and operational
goals of the mission: its temporal scope is the
whole mission, taking minutes to deliberate if
necessary.

• The Navigator and Science Operator manage the
execution of sub-goals generated by the Mission
Manager. The temporal scope for both is in the
order of a minute even as they differ in their
functional scope. Each refines high-level
directives into executable commands depending
on current system state. The Science Operator is
able to provide local directives to the Navigator.
For example if it detects an ocean front it can
request the navigation mode to switch from a Yo-
Yo pattern in the vertical plane to a Zig-Zag
pattern in the horizontal plane, to have better
coverage of the area. Deliberation may safely
occur at a latency of 1 second for these reactors.

• The Executive provides an interface to a modified
version of the existing AUV functional layer. It
encapsulates access to commands and vehicle
state variables. The Executive is reasonably
approximated as having zero latency within the
timing model of our application since it will
accomplish a goal received with no measurable
delay, or not at all; in other words it does not
deliberate.

T-REX has a central and explicit notion of time
with all reactors synchronized by an internal clock.
The unit of time is a tick, defined in external units
on a per application basis; tick boundaries signify
when synchronization of all reactors must occur
while between ticks reactors may deliberate. The
agent-state is represented as a set of timelines,
which capture the evolution of a system state-
variable over time. A timeline is a sequence of
tokens that are temporally qualified assertions. An
assertion is expressed as a predicate with start and
end time bounds defining the temporal scope over
which it holds. The minimum duration of a token is
a tick giving a discrete synchronous view of the
state of the world. Token start and end times can be
defined as intervals to express temporal flexibility.
Agent timelines are distributed across reactors
depending on their functional scope. Information
exchange between reactors, where necessary, is
provided through the following mechanisms:
• Explicit timeline ownership: Each timeline is

owned by exactly one reactor. Any reactor may
request a new goal, or replan such requests in the

Fig. 4: The T-REX agent algorithm

handleTick(tick){
 synchronize (tick);
 dispatchGoals(tick);
 done = false;
 while(!done && currentTick() == tick)
 done = stepNextReactor(tick);
}

Fig 3: Flow of information between timelines

event of a change of plan; but only the owner of
the timeline can decide what goal to instantiate.

• Observations: capture the current value of a
timeline. Observations are asserted by the owner
of a timeline.

• Goals: express a desired future timeline value.
They offer a way to delegate a task to a reactor.
Goals are requested for expansion into sub-goals
or commands and can be recalled on plan
changes when replanning is triggered.

• Dispatch and notification rules: define when
information must be shared to ensure consistency
and completeness of agent state at the execution
frontier and to allow sufficient time for
deliberation.

The mapping between reactors and timelines is the
basis for sharing information. If a reactor owns a
timeline it is declared internal to that reactor. If a
reactor uses a timeline to observe values and/or
express requirements it is declared external to that
reactor. Fig. 3 illustrates the flow of information in
a system containing 3 reactors: The Mission
Manager keeps track of science goals to give
directives to the Navigator using the Path external
timeline. The Navigator manages the navigation of
the AUV with one internal timeline and three
external timelines. The navigation route is used to
select the appropriate commands to send to the
Executive as an internal timeline while Position and
Attitude timelines capture AUV navigation data. A
Command timeline captures the command state of
the Executive. These external timelines are internal
to the Executive in turn. The Command timeline
values are the actual commands that are managed
by the AUV functional layer. The content of this
last timeline at the execution frontier corresponds
to the currently active behavior.
To ensure a complete and consistent view of system
state, the T-REX information exchange framework
needs to impose further restrictions on the way
timelines, observations and goals can be used:

• No ’holes’ are allowed at the execution frontier
i.e. all timelines must have a value at the end of
the current tick.

• If no update is provided via an observation, and
in the absence of information to the contrary, a
reactor assumes the previous value(s) on the
timeline is/are still valid. We refer to this as the
Inertial Value Assumption since it conveys some
inherent inertia of current values. Contradictory
information can come from the model or from a
new observation. This has important implications
for reducing the cost of synchronization since
observations need only be published as timeline
values change.

• At the end of the current tick, all observations
must be consistent, by requiring all reactors to
hold the same view at the execution frontier.

• The past is monotonic. All tokens that have
finished (i.e. in the past) or that have started but
have yet to finish (i.e. they span the execution
frontier) can only be restricted in time.

• An observation received at a tick applies to that
tick only. It cannot refer to the past except by
restricting the values of a token that is actually
running (i.e. with an end time in the future). It
cannot refer to the future, as it would then be a
goal, rather than observed reality.

The algorithm at the heart of a T-REX agent in Fig.
4 is called at the start of every clock tick. There are
three key steps in the algorithm; first, all timelines
are synchronized at the current execution frontier.
Second, all goals are dispatched. And finally, the
remaining CPU time can be allocated to reactors for
deliberation in incremental steps. Each of these
component algorithms operates over the entire set
of reactors.

Synchronization
The goal of synchronization is to produce a
consistent and complete view of agent state at the
execution frontier. All reactors synchronize at the
same rate – once per tick. While this may seem
onerous, the actual cost of synchronization is based
on how much information has actually changed.
For example in Fig 3. the Position timeline is

relatively volatile and will likely change on every
tick. However, the Path timeline may hold a single
value for many ticks. In this case, as a result of the
Inertial Value Assumption, if no new observation is
received, the Path timeline will extend its current
value simply by incrementing the lower bound of
the end time of the current value.
The strict rules of timeline ownership enable a clear
policy for conflict resolution: observations
dominate expectations. For example, if the
Navigator expected the vehicle depth to be less
than 0.3m in order in order to obtain a GPS fix but
the actual depth observed by the Executive is 1
meter, then the expected value is discarded. This
may impact plan feasibility and force the Navigator
to find an alternative solution by rejecting the
current plan.
To ensure global consistency the agent undertakes
local synchronization of the reactors until
quiescence. In principle, this operation is equivalent
to solving a planning problem over the set of all
internal timelines for a planning horizon restricted
to a tick. If a reactor has an external timeline, it
depends on its owner for such consistency. In this
way the reactors form a dependency graph which in
practice we require to be acyclic, allowing ordering
of synchronization for purposes of efficiency.

Dispatching Goals
Where observations are the driver for reaction,
goals are the driver for deliberation. The purpose of
dispatching is to task reactors with new goals in a
timely manner. To accomplish this, T-REX
provides explicit parameters and rules to govern
dispatching.
• λ - The latency of the reactor defined as the

worst-case number of ticks to deliberate over a
request.

• π - The planning horizon of the reactor
quantifying the look-ahead for deliberation.

• τ - The execution frontier expresses the current
tick and is a boundary between the past and the
future.

To understand the implications of the above
parameters, consider the example given in Fig. 5.
To satisfy the goal Go(31.73, -121.80, 100) in its
Path timeline the Navigator decides that it needs
the vehicle to descend(100) at tick 10 for a
duration between 50 and 55 ticks and then to
achieve waypoint(31.73,-121.80) on successful
termination of descend. Since the Executive is the
owner of the Command timeline, these two goals
need to be dispatched by the Navigator to the
Executive so that the latter can resolve them. The
importance of λ is to ensure the Executive has

sufficient time to complete deliberation prior to
starting the requested goal. If the start-time for a
goal dispatched to the Executive at τ were
necessarily less than τ+λExec the Executive may be
unable to deliberate to resolve the goal, leading to
a plan failure.
Since the planning window of the Executive is
πExec, the Executive should receive all goals that
can start before τ+λExec+πExec. This will enable the
Executive to leverage as much information as it can
handle in making judicious decisions on how to
accomplish the goals requested. Sending a goal
with a start time strictly greater than τ+λExec+πExec
will not be considered by the Executive. Moreover,
such dispatch incurs a cost for transmission of
information and may over-commit the Mission
Manager unnecessarily.
Therefore the general rule is that the dispatching
window for a timeline is a time window that
depends on the latency and the look ahead of the
reactor owning the timeline. This dispatch
window, HD is defined by the following:

HD = [τ + λ, τ + λ + π]
This implies that as soon as the start time of a goal
on an external timeline intersects HD, it is
dispatched to the owner of the timeline. This rule is
necessary and sufficient to ensure that each reactor
has sufficient time (λ) and information (π) to
deliberate on goals provided by other reactors. In
our implementation, we have an Executive, which is
purely reactive and therefore λExec = πExec = 0
implying that the Executive does not plan beyond
the execution frontier.

Deliberation
The framework presented thus far makes the details
of deliberation an internal concern for each reactor
even if it has to capture different functional and
temporal scope. Our own implementation of T-
REX uses a Constraint-based Temporal Planning
approach based on EUROPA-2 [24,25].
Deliberation employs a declarative model-based
paradigm. The model describes state variables (e.g.

Fig. 5: Illustration of goal dispatching window

Fig. 7: A Deliberative reactor

Fig. 8: A simple plan execution on AUV.

class Path extends AgentTimeline {
 predicate At{Node location;}
 predicate Go{Node from; Node To;}
}
class Position extends AgentTimeline {
 predicate Holds{Node value};
}
Path::At {
 met_by(Go g);
 eq(g.to, location);
 contained_by(Position.Holds p);
 eq(p.value, location);
}
Path::Go {
 met_by(At p);
 eq(p.location, from);}

position, battery level) and actions (e.g. ascend,
descend, getGPS, takeWaterSample) of the system.
Constraints can be specified to enforce
relationships between state variables. For example,
it is convenient to represent the vehicle as being at
the surface, or not, which can be captured with a
boolean state variable (e.g AtSurface). We define a
relationship between this variable and the deph of
the vehicle as follows: if depth <= 0.3 then
AtSurface = true. The model also describes
constraints between states and actions. For
example, the vehicle must be at the surface during
getGPS. A sample domain model is shown in Fig.
6 with the Path timeline having two predicates At
and Go; the example rules in the parameter
specification express the constraint that to be at a
location, the AUV needs to go to that coordinate
and the position must be maintained for a temporal
interval that is consistent with the rest of the model.
A T-REX agent uses a single model for control at
various levels of abstraction and at various speeds
of execution. Different reactors reference subsets of
this model according to their functional scope.
The Deliberative reactor is a specialization of a
Teleo-Reactor utilizing models, plans and planning
to accomplish reactive and goal directed control.
Fig. 7 describes the main components of this

reactor. The inward pointing arrows reflect the
invocations of the agent control loop for
synchronization, dispatch and deliberation. The
Database is a source and sink for observations and
goals based on the semantics of internal and
external timelines and the rules of information
exchange. It is an extension of the EUROPA-2 plan
database, augmented for specialized buffering for
efficient access to timeline data for dispatch and
synchronization and manages state information.
Model rules are applied automatically through a
combination of propositional inference and
constraint propagation [32], to check consistency
and prune infeasible elaborations of the plan
maintained in the database. The Synchronizer is a
specialized configuration of a EUROPA solver
operating over a 1-tick horizon. It accomplishes
local consistency and completeness. The database
propagates the results of synchronization to the
future. The Dispatcher is a simple algorithm that
publishes goals to owner reactors of its external
timelines according to the dispatch semantics
previously defined. Finally, the Planner is yet
another instance of a EUROPA solver used to
deliberate over the specified temporal and
functional scope of the reactor using a heuristic
based chronological backtracking search for partial
plan refinement. These entities together are used
under different configurations for the Mission
Manager, Science Operator and Navigator shown in
the example in Fig 3. Details on EUROPA can be
found in [20,21].

Experimental Results
Our AUV uses two onboard computers: a main
vehicle computer which is a 244 Mhz PC/104 stack
running the QNX real-time operating system, and a
separate 367 MHz EPIC EPX-GX500 AMD Geode
stack running Linux and T-REX. The
communication between the Executive and the
functional level computer is a socket-based
protocol allowing the exchange of command
requests (i.e. goals) and state updates (i.e.
observations). For validation purposes we first ran
experiments on a high-fidelity AUV simulator
based on [23]. This simulator captures vehicle
dynamics that were used to validate our missions
prior to going to sea.
At the time of writing we have completed two sea

Fig. 6: Example domain model in EUROPA

Fig. 9 A navigation mission (top) with its T-REX
plan and CPU profile (bottom)

trials: the first was to validate basic system
performance under real conditions and the second
to work on higher level planning (Mission
Manager) interleaved with the execution control
(Navigator and Executive). These sea trials were in
the northern Monterey Bay using our support ship
the R/V Zephyr. Fixing the tick duration to 1
second is adequate for our application.
Initial runs were to demonstrate nominal
sequencing primitives such as setpoint(v) to get the
vehicle moving, descend(d), waypoint(lat, long) to
go at a given position and ascend(0). The role of T-
REX in these runs was limited to checking
sequence validity and to track execution. Fig. 8
shows a sequence execution for a 400 second run
and a CPU usage around 7%, primarily for

synchronization.
After this initial validation and during the second
trial we tested the interleaving of reactive planning
and execution. Fig. 9 shows a plan given to the
Navigator with the goal to be at the West node at
10m depth and running for a duration of 1000
seconds. The Navigator generated a plan to
dynamically change the AUV’s attitude while
heading towards West node and inserting periodic
check-in windows to allow localization at the
surface using GPS. During execution we observed
an average CPU usage of 8.5% with peaks at end of
actions consistent with synchronization and plan
adaptation. The larger peaks (25% of CPU usage)
correspond to situations implying deliberation at a
higher level. For example these peaks are generally
at the end of the abstract actions such as Go and
Check-in that triggered deliberation in the
Navigator.
Fig.10 shows the execution of a more complex
mission where the Mission Manager was able to
order the visitation by making the AUV to go first
to the West and then to the North node with the
insertion of ordering constraints. This plan was then
executed reactively by the Navigator, which
inserted check-in windows while keeping CPU
usage to 8.8%. With an additional reactor adding to
the deliberation, this experiment showed that T-
REX is capable of managing multiple goals without
impacting system responsiveness.
We are now working on higher-level goals
connected to science objectives such as “do a
transect from A to B in a depth range from 10m to
100m” or “track and characterize an ocean Front”
allowing scientists to specify abstract mission
goals.

Related Work
T-REX's legacy is derived primarily from the
Remote Agent Experiment or RAX [24,25]. Further
T-REX is similar to IDEA [26,27] in its
formulation of a timeline-based representation, and
in its use of planning at the execution frontier and
for deliberation. It is distinct from IDEA primarily
in its formulation for exchanging and synchronizing
state between reactors. The Autonomous
Sciencecraft Experiment [28] conceptually follows
the same path as RAX with CASPER a planner that
is both deliberative and reactive. CASPER is an
adjunct to a separate executive rather than directly
embedded in the execution loop as is the case with
T-REX. Furthermore, temporal flexibility in T-
REX provides greater robustness to temporal
uncertainty in comparision to CASPER’s grounded
representation. The LAAS architecture [29,30]

Fig. 10 A multi-node mission

provides decisional capabilities using a constraint-
based symbolic planner integrated with reactive
components for autonomy. It is a 3-layered
architecture where all the different components
(functional modules, execution controller,
functional executive and planner) are manipulating
different kind of formalisms specified on
heterogeneous modeling languages. Such an
approach tends to make platform design and
integration difficult [31] and prone to errors
especially in model design. In contrast, although T-
REX does result in a factoring of computation into
layers in practice, a hierarchical structure is not
inherent in the design, nor is deliberation required
or prohibited for any layer.
While a number of deliberative control
architectures have been built for AUV control [10-
18] T-REX’s design philosophy is closest to
ITOCA [11], DAMN [16] and ORCA [18]. Both
DAMN and ITOCA are based on a reactive
Subsumption based architecture with no inherent
deliberation. ORCA uses p-schemas in a case-based
planning framework; however the efficacy of
ORCA’s approach is unclear in terms of scalability
in the number of schemas nor does it reason
explicitly about time and resources. The literature
moreover does not indicate whether any field trials
were conducted with ORCA on an AUV for
validation of this approach.

Conclusions and Future Work
In this paper, we have shown a design of an agent
architecture that demonstrates onboard planning
and execution to enable the next phase of scientific
research in the ocean sciences. While results shown
are preliminary, our high-fidelity simulation test-
bed along with first tests in the open ocean has
validated central notions of timing within this
control architecture. Our final end of year
deployment will include a full-day scientific
mission in the Monterey Bay, with the use of the
traditional suite of instruments on our AUV. This
mission will demonstrate goal-oriented
commanding, onboard resource management,
geometric 2D path planning, responsiveness to
opportunistic science events with re-planning in-
situ and graceful recovery from failures injected for
demonstration. Our year-end goals are to
demonstrate a realistic science scenario in
Monterey Bay with the use of an online
opportunistic learning [33] triggered by T-REX.

Acknowledgements
This research was supported by the David and
Lucile Packard Foundation. We wish to thank
NASA Ames Research Center for making the

EUROPA planner available.

References

1. Yuh, J., editor, Underwater Robotic Vehicles: Design
and Control, TSI Press, Albuquerque New Mexico,
1995.

2. Yuh, J., “Design and Control of Autonomous
Underwater Robots: A Survey” Autonomous Robots,
2000 8, 7–24, 2000.

3. Blidberg D.R., “Autonomous Underwater Vehicles: A
Tool for the Ocean,” Unmanned Systems, vol. 9, pp.
10-15, Spring 1991

4. Bellingham J. G., et.al. “A Second Generation Survey
AUV” In IEEE Conference on Autonomous
Underwater Vehicles, Cambridge, MA, USA, 1994.

5. Ryan J.P., et.al “Coastal ocean physics and red tides,
an example from monterey bay, California”.
Oceanography, 18:246–255, 2005.

6. Thomas, H., et.al, “Mapping AUV Survey of Axial
Seamount”, Eos Trans. AGU, 87(52), Fall Meet.
Suppl., Abstract V23B-0615, 2006

7. Bellingham, J. G., et.al 2002 “Field Results for an
Arctic AUV Designed for Characterizing Circulation
and Ice Thickness” AGU, Fall Meeting 2002.

8. Ryan, J.P., et.al “Physical-biological coupling in
Monterey Bay, California: topographic influences on
phytoplankton”, Marine Ecology Progress Series, Vol
287: 28-32 2005.

9. Belingham J. G., J. J. Leonard, “Task configuration
with layered control,” in IARP 2nd Wkshp on Mobile
Robots for Subsea Environments, Monterey, CA May
1994.

10. Barnett, D., et.al “Architecture of the Texas A&M
Autonomous Underwater Vehicle Controller”. in Proc.
of the Symp. on Autonomous Underwater Vehicles
Technology, pp. 231-237, 1996.

11. Ridao, P., et.al “On AUV Control Architecture”, Proc.
International Conference on Robots and Systems,
Nagoya, Japan, 2000.

12. Carreras, M., et.al ”An overview on behavior-based
methods for AUV control”, MCMC2000, 5th IFAC
Conference, Denmark, 2000

13. Batlle, J. et al., “URIS: Underwater Robotic Intelligent
System”, Automation for the Maritime Industries,
Chapter 11, pp: 177-203, November 2004

14. Batlle, J., P. Ridao, M. Carreras, “An Underwater
Autonomous Agent. From Simulation To
Experimentation, in Proc. 9th Mediterranean Conf on
Control and Automation, Dubrovnik, 2001.

15. Zheng, X. “Layered Control of a Practical AUV”. In
Proc. of the IEEE Symp on Autonomous Underwater
Vehicles Technology, Washington D.C., pp. 142-147,
1992.

16. Rosenblatt, J., et.al “A behavior-based architecture for
autonomous underwater exploration” Intnl. J. of Info
Sciences, vol. 145, no. 1-2, 2002,.

17. Williams, S.B., I.J Mahon “Design of an unmanned

underwater vehicle for reef surveying” in Proc IFAC
3rd IFAC Symp. on Mechatronic Systems 2004,
Manly, Australia.

18. Turner, R. M., Stevenson, R. A. G. “ORCA: An
adaptive, context-sensitive reasoner for controlling
AUVs”. in Proc 7th Intnl Symp. On Unmanned
Untethered Submersible Tech. 1991.

19. Brooks, R. A. “A robust layered control system for a
mobile robot” IEEE Journal of Robotics and
Automation, RA-2:14–23, 1986.

20. Jonsson, A., P. Morris, N. Muscettola, K Rajan, B
Smith “Planning in Interplanetary Space: Theory and
Practice" AIPS 2000, Brekenridge, 2000.

21. Frank, J., A. Jonsson, “Constraint-based attributes and
interval planning,” Journal of Constraints, vol. 8, Oct.
2003.

22. Nilsson, N., “Teleo-Reactive Programs for Agent
Control," Journal of Artificial Intelligence Research,
1:139-158, January 1994.

23. Gertler, M., Hagen, G.R. “Standard Equations of
Motion for Submarine Simulation” Naval Ship
Research and Development Center Report 2510, June
1967.

24. Muscettola N., P. P.Nayak, B Pell, B. Williams.
“Remote Agent: To Boldly Go Where No AI System
Has Gone Before” Artificial Intelligence 103(1-2):5-
48, August 1998.

25. Rajan K., et.al, “Remote Agent: An Autonomous
Control System for the New Millennium,” Proc.
Prestigious Applications of Int. Systems, 14th ECAI,
Berlin, 2000

26. Muscettola N., G. A. Dorais, C. Fry, R. Levinson, and
C. Plaunt, “IDEA: Planning at the core of autonomous
reactive agents”, in Proc IWPSS, Houston, October
2002.

27. Finzi, A., F. Ingrand, N. Muscettola, “Model-based
Executive Control through Reactive Planning for
Autonomous Rovers”, IROS 2004, Japan, 2004.

28. Chien, S. et.al, “Using Autonomy Flight Software to
Improve Science Return on Earth Observing One”, J.
of Aerospace Computing, Information
Communication. April 2005

29. Ingrand, F., S. Lacroix, S. Lemai-Chenevier, and F. Py,
“Decisional Autonomy of Planetary Rovers,” to appear
in "Journal on Field Robotics", 2007.

30. Ghallab, M. , F. Ingrand, S. Lemai, and F. Py,
“Architecture and tools for autonomy in space,” in
ISAIRAS, Montreal, 2001.

31. D. Bernard, et.al, “Remote Agent Experiment: Final
Report,” NASA Technical Report, Feb. 2000 available
at: http://ic.arc.nasa.gov/projects/remote-agent/DS1-
Tech-report.pdf

32. Dechter, R., I. Meiri, J. Perl “Temporal constraint
networks”, Artificial Intelligence, Volume 49, Issue 1-
3, pp 61 – 95, 1991

33. Fox. M, D. Long, F. Py, K. Rajan, J. Ryan “In Situ
Analysis for Intelligent Control”, Proc. Oceans 2007,
Aberdeen, June 2007.

