
 
Fig 1.  An MBARI AUV at sea 
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Abstract 

 Autonomous Underwater Vehicles (AUVs) are an 
increasingly important tool for oceanographic 
research demonstrating their capabilities to sample 
the water column in depths far beyond what humans 
are capable of visiting, and doing so routinely and 
cost-effectively. However, control of these 
platforms has relied on fixed sequences for 
execution of pre-planned actions limiting their 
effectiveness for measuring dynamic and episodic 
ocean phenomenon. In this paper we present an 
agent architecture developed to overcome this 
limitation through on-board planning using 
Constraint-based Reasoning approaches. 
Preliminary versions of the architecture have been 
integrated and tested in simulation and at sea. 

Introduction 
Oceanography has traditionally relied on ship-based 
observations. These have recently been augmented 
by robotic platforms such as Autonomous 
Underwater Vehicles (AUV) [1-4], which are 
untethered powered mobile robots able to carry a 
range of payloads efficiently over large distances in 
the deep ocean. A common design relies on a 
modular tube-like structure with propulsion at the 
stern and various sensors, computers and batteries 
taking up the bulk of the tube (Fig 1). AUVs have 
demonstrated their utility in oceanographic research 
in gathering time series data by repeated water-
column surveys [5,8], detailed bathymetric maps of 
the ocean floor in areas of tectonic activity [6] and 
performed hazardous under-ice missions [7]. 
Typically AUVs do not communicate with the 
support ship or shore while submerged and rely on 
limited stored battery packs while operating 
continuously for tens of hours. In addition to 
operating without human intervention, AUV 
operations are exacerbated by uncertainty in the 
environment, the platform and the mission. 
Environmental uncertainty (white noise, bio-fouling 
of sensors, lack of visible light beyond the upper 
150m of the photic zone, hazards due to uncharted 
underwater terrain and ocean currents etc) and 
Platform uncertainties (sensor failures, battery 
failures, impaired mobility due to entanglement in 
fishing lines etc) all add to the difficulty of 
operating in this harsh environment. Dealing with 
scientific uncertainty (to observe dynamic and 

episodic phenomenon) has additionally become 
paramount for ocean scientists to enable 
understanding large-scale ecological process. 
Current AUV control systems [9] are a variant of 
the behavior-based Subsumption architecture [23]. 
A behavior is a modular encapsulation of a specific 
control task and includes acquisition of a GPS fix, 
descent to a target depth, drive to a given waypoint, 
enforcement of a mission depth envelope etc. An 
operator defines each plan as a collection of 
behaviors, which are scripted a priori using simple 
mission planning tools. Behaviors include specific 
parameters for start and end times as well as a 
maximum duration. In practice, missions 
predominantly consist of sequential behaviors with 
duration and task specific parameters equivalent to 
a linear plan with limited flexibility in task 
duration. Such an approach becomes less effective 
as mission uncertainty increases. Further, the 
architecture offers no support to manage the 
potentially complex interactions that may result 
amongst behaviors, pushing a greater cognitive 
burden on behavior developers and mission 
planners. This paper describes initial steps in 
demonstrating onboard automated planning to 
generate robust mission plans using system state 
and desired goals. We expect this approach to 
reduce the cognitive burden on AUV operators 
since missions will now be specified as high-level 
goals and constraints rather than detailed behavior 
sequences. Our interest in the near term is to 
incorporate a decision-making capability onboard 
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Fig. 2:  A 4-reactor T-REX agent. 

 

AUVs to make this platform more adaptive in the 
face of uncertainty.  
The remainder of this paper is laid out as follows. 
We start with an overview of our agent architecture 
followed by preliminary results and related work in 
this domain. We close with conclusions and future 
work. 

The T-REX Architecture 
T-REX (Teleo-Reactive EXecutive) is a goal-
oriented system, with embedded automated 
planning [24,25] and adaptive execution at its core. 
The system encapsulates the long-standing notion 
of a sense-deliberate-act cycle at the heart of a 
control loop and reflects the goal-oriented nature of 
control and provision of response to exogenous 
events. In order to make embedded planning 
scalable the system enables the scope of 
deliberation to be partitioned functionally and 
temporally and to ensure the current state of the 
agent is kept consistent and complete during 
execution. While T-REX was built for a specific 
underwater robotics application, the principles 
behind its design are applicable in any domain 

where deliberation and execution are intertwined. 
Fig. 2 shows a conceptual view of a Teleo-Reactive 
Agent. An agent is viewed as the coordinator of a 
set of concurrent control loops. Each control loop is 
embodied in a Teleo-Reactor (or reactor for short) 
that encapsulates all details of how to accomplish 
its control objectives.  Arrows represent a 
messaging protocol for exchanging facts and goals 
between reactors: thin arrows represent 
observations of current state; thick arrows represent 
goals to be accomplished.  
Reactors are differentiated in 3 ways: 
• Functional scope: indicating the state variables of 

concern for deliberation and action. 
• Temporal scope: indicating the look-ahead 

window over which to deliberate. 

• Timing requirements: the latency within which 
this component must deliberate for goals in its 
planning horizon. 

Fig. 2 for example, shows four different reactors: 
• The Mission Manager provides high-level 

directives to satisfy the scientific and operational 
goals of the mission: its temporal scope is the 
whole mission, taking minutes to deliberate if 
necessary. 

• The Navigator and Science Operator manage the 
execution of sub-goals generated by the Mission 
Manager. The temporal scope for both is in the 
order of a minute even as they differ in their 
functional scope. Each refines high-level 
directives into executable commands depending 
on current system state. The Science Operator is 
able to provide local directives to the Navigator. 
For example if it detects an ocean front it can 
request the navigation mode to switch from a Yo-
Yo pattern in the vertical plane to a Zig-Zag 
pattern in the horizontal plane, to have better 
coverage of the area. Deliberation may safely 
occur at a latency of 1 second for these reactors.  

• The Executive provides an interface to a modified 
version of the existing AUV functional layer. It 
encapsulates access to commands and vehicle 
state variables. The Executive is reasonably 
approximated as having zero latency within the 
timing model of our application since it will 
accomplish a goal received with no measurable 
delay, or not at all; in other words it does not 
deliberate. 

T-REX has a central and explicit notion of time 
with all reactors synchronized by an internal clock. 
The unit of time is a tick, defined in external units 
on a per application basis; tick boundaries signify 
when synchronization of all reactors must occur 
while between ticks reactors may deliberate. The 
agent-state is represented as a set of timelines, 
which capture the evolution of a system state-
variable over time. A timeline is a sequence of 
tokens that are temporally qualified assertions. An 
assertion is expressed as a predicate with start and 
end time bounds defining the temporal scope over 
which it holds. The minimum duration of a token is 
a tick giving a discrete synchronous view of the 
state of the world. Token start and end times can be 
defined as intervals to express temporal flexibility.  
Agent timelines are distributed across reactors 
depending on their functional scope. Information 
exchange between reactors, where necessary, is 
provided through the following mechanisms: 
• Explicit timeline ownership: Each timeline is 

owned by exactly one reactor. Any reactor may 
request a new goal, or replan such requests in the 



Fig. 4: The T-REX agent algorithm 

handleTick(tick){ 
   synchronize (tick); 
   dispatchGoals(tick); 
   done = false; 
   while(!done && currentTick() == tick) 
       done = stepNextReactor(tick); 
} 

Fig 3: Flow of information between timelines 
 

event of a change of plan; but only the owner of 
the timeline can decide what goal to instantiate. 

• Observations: capture the current value of a 
timeline. Observations are asserted by the owner 
of a timeline.  

• Goals: express a desired future timeline value. 
They offer a way to delegate a task to a reactor. 
Goals are requested for expansion into sub-goals 
or commands and can be recalled on plan 
changes when replanning is triggered.  

• Dispatch and notification rules: define when 
information must be shared to ensure consistency 
and completeness of agent state at the execution 
frontier and to allow sufficient time for 
deliberation.  

The mapping between reactors and timelines is the 
basis for sharing information. If a reactor owns a 
timeline it is declared internal to that reactor. If a 
reactor uses a timeline to observe values and/or 
express requirements it is declared external to that 
reactor. Fig. 3 illustrates the flow of information in 
a system containing 3 reactors: The Mission 
Manager keeps track of science goals to give 
directives to the Navigator using the Path external 
timeline. The Navigator manages the navigation of 
the AUV with one internal timeline and three 
external timelines. The navigation route is used to 
select the appropriate commands to send to the 
Executive as an internal timeline while Position and 
Attitude timelines capture AUV navigation data. A 
Command timeline captures the command state of 
the Executive. These external timelines are internal 
to the Executive in turn. The Command timeline 
values are the actual commands that are managed 
by the AUV functional layer. The content of this 
last timeline at the execution frontier  corresponds 
to the currently active behavior. 
To ensure a complete and consistent view of system 
state, the T-REX information exchange framework 
needs to impose further restrictions on the way 
timelines, observations and goals can be used: 

• No ’holes’ are allowed at the execution frontier 
i.e. all timelines must have a value at the end of 
the current tick.  

• If no update is provided via an observation, and 
in the absence of information to the contrary, a 
reactor assumes the previous value(s) on the 
timeline is/are still valid. We refer to this as the 
Inertial Value Assumption since it conveys some 
inherent inertia of current values. Contradictory 
information can come from the model or from a 
new observation. This has important implications 
for reducing the cost of synchronization since 
observations need only be published as timeline 
values change. 

•  At the end of the current tick, all observations 
must be consistent, by requiring all reactors to 
hold the same view at the execution frontier. 

• The past is monotonic. All tokens that have 
finished (i.e. in the past) or that have started but 
have yet to finish (i.e. they span the execution 
frontier) can only be restricted in time. 

• An observation received at a tick applies to that 
tick only. It cannot refer to the past except by 
restricting the values of a token that is actually 
running (i.e. with an end time in the future). It 
cannot refer to the future, as it would then be a 
goal, rather than observed reality. 

The algorithm at the heart of a T-REX agent in Fig. 
4 is called at the start of every clock tick. There are 
three key steps in the algorithm; first, all timelines 
are synchronized at the current execution frontier. 
Second, all goals are dispatched. And finally, the 
remaining CPU time can be allocated to reactors for 
deliberation in incremental steps. Each of these 
component algorithms operates over the entire set 
of reactors. 

Synchronization 
The goal of synchronization is to produce a 
consistent and complete view of agent state at the 
execution frontier. All reactors synchronize at the 
same rate – once per tick. While this may seem 
onerous, the actual cost of synchronization is based 
on how much information has actually changed. 
For example in Fig 3. the Position timeline is 



 

relatively volatile and will likely change on every 
tick. However, the Path timeline may hold a single 
value for many ticks. In this case, as a result  of the 
Inertial Value Assumption, if no new observation is 
received, the Path timeline will extend its current 
value simply by incrementing the lower bound of 
the end time of the current value. 
The strict rules of timeline ownership enable a clear 
policy for conflict resolution: observations 
dominate expectations. For example, if the 
Navigator expected the vehicle depth to be less 
than 0.3m in order in order to obtain a GPS fix but 
the actual depth observed by the Executive is 1 
meter, then the expected value is discarded. This 
may impact plan feasibility and force the Navigator 
to find an alternative solution by rejecting the 
current plan.  
To ensure global consistency the agent undertakes 
local synchronization of the reactors until 
quiescence. In principle, this operation is equivalent 
to solving a planning problem over the set of all 
internal timelines for a planning horizon restricted 
to a tick. If a reactor has an external timeline, it 
depends on its owner for such consistency. In this 
way the reactors form a dependency graph which in 
practice we require to be acyclic, allowing ordering 
of synchronization for purposes of efficiency. 

Dispatching Goals 
Where observations are the driver for reaction, 
goals are the driver for deliberation. The purpose of 
dispatching is to task reactors with new goals in a 
timely manner. To accomplish this, T-REX 
provides explicit parameters and rules to govern 
dispatching.  
• λ - The latency of the reactor defined as the 

worst-case number of ticks to deliberate over a 
request. 

• π - The planning horizon of the reactor 
quantifying the look-ahead for deliberation. 

• τ - The execution frontier expresses the current 
tick and is a boundary between the past and the 
future. 

To understand the implications of the above 
parameters, consider the example given in Fig. 5. 
To satisfy the goal Go(31.73, -121.80, 100) in its 
Path timeline the Navigator decides that it needs 
the vehicle to descend(100) at tick 10 for a 
duration between 50 and 55 ticks and then to 
achieve waypoint(31.73,-121.80) on successful 
termination of descend. Since the Executive is the 
owner of the Command timeline, these two goals 
need to be dispatched by the Navigator to the 
Executive so that the latter can resolve them. The 
importance of λ is to ensure the Executive has 

sufficient time to complete deliberation prior to 
starting the requested goal. If the start-time for a 
goal dispatched to the Executive at τ were 
necessarily less than τ+λExec the Executive may be 
unable to deliberate to resolve the goal, leading to 
a plan failure. 
Since the planning window of the Executive is 
πExec, the Executive should receive all goals that 
can start before τ+λExec+πExec. This will enable the 
Executive to leverage as much information as it can 
handle in making judicious decisions on how to 
accomplish the goals requested. Sending a goal 
with a start time strictly greater than τ+λExec+πExec 
will not be considered by the Executive. Moreover, 
such dispatch incurs a cost for transmission of 
information and may over-commit the Mission 
Manager unnecessarily. 
Therefore the general rule is that the dispatching 
window for a timeline is a time window that 
depends on the latency and the look ahead of the 
reactor owning the timeline. This dispatch 
window, HD is defined by the following: 

HD = [τ + λ, τ + λ + π] 
This implies that as soon as the start time of a goal 
on an external timeline intersects HD, it is 
dispatched to the owner of the timeline. This rule is 
necessary and sufficient to ensure that each reactor 
has sufficient time (λ) and information (π) to 
deliberate on goals provided by other reactors. In 
our implementation, we have an Executive, which is 
purely reactive and therefore λExec = πExec = 0 
implying that the Executive does not plan beyond 
the execution frontier. 

Deliberation 
The framework presented thus far makes the details 
of deliberation an internal concern for each reactor 
even if it has to capture different functional and 
temporal scope. Our own implementation of T-
REX uses a Constraint-based Temporal Planning 
approach based on EUROPA-2 [24,25].  
Deliberation employs a declarative model-based 
paradigm. The model describes state variables (e.g. 

Fig. 5: Illustration of goal dispatching window 



 
Fig. 7: A Deliberative reactor 

 
Fig. 8: A simple plan execution on AUV. 

 

class Path extends AgentTimeline { 
  predicate At{Node location;} 
  predicate Go{Node from; Node To;} 
} 
class Position extends AgentTimeline { 
   predicate Holds{Node value}; 
} 
Path::At { 
   met_by(Go g); 
   eq(g.to, location); 
   contained_by(Position.Holds p); 
   eq(p.value, location); 
} 
Path::Go { 
  met_by(At p); 
  eq(p.location, from);} 

position, battery level) and actions (e.g. ascend, 
descend, getGPS, takeWaterSample) of the system.  
Constraints can be specified to enforce 
relationships between state variables. For example, 
it is convenient to represent the vehicle as being at 
the surface, or not, which can be captured with a 
boolean state variable (e.g AtSurface). We define a 
relationship between this variable and the deph of 
the vehicle as follows: if depth <= 0.3 then 
AtSurface = true. The model also describes 
constraints between states and actions. For 
example, the vehicle must be at the surface during 
getGPS.  A sample domain model is shown in Fig. 
6 with the Path timeline having two predicates At 
and Go; the example rules in the parameter 
specification express the constraint that to be at a 
location, the AUV needs to go to that coordinate 
and the position must be maintained for a temporal 
interval that is consistent with the rest of the model. 
A T-REX agent uses a single model for control at 
various levels of abstraction and at various speeds 
of execution. Different reactors reference subsets of 
this model according to their functional scope. 
The Deliberative reactor is a specialization of a 
Teleo-Reactor utilizing models, plans and planning 
to accomplish reactive and goal directed control. 
Fig. 7 describes the main components of this 

reactor. The inward pointing arrows reflect the 
invocations of the agent control loop for 
synchronization, dispatch and deliberation. The 
Database is a source and sink for observations and 
goals based on the semantics of internal and 
external timelines and the rules of information 
exchange. It is an extension of the EUROPA-2 plan 
database, augmented for specialized buffering for 
efficient access to timeline data for dispatch and 
synchronization and manages state information. 
Model rules are applied automatically through a 
combination of propositional inference and 
constraint propagation [32], to check consistency 
and prune infeasible elaborations of the plan 
maintained in the database. The Synchronizer is a 
specialized configuration of a EUROPA solver 
operating over a 1-tick horizon. It accomplishes 
local consistency and completeness. The database 
propagates the results of synchronization to the 
future. The Dispatcher is a simple algorithm that 
publishes goals to owner reactors of its external 
timelines according to the dispatch semantics 
previously defined. Finally, the Planner is yet 
another instance of a EUROPA solver used to 
deliberate over the specified temporal and 
functional scope of the reactor using a heuristic 
based chronological backtracking search for partial 
plan refinement. These entities together are used 
under different configurations for the Mission 
Manager, Science Operator and Navigator shown in 
the example in Fig 3. Details on EUROPA can be 
found in [20,21]. 

Experimental Results 
Our AUV uses two onboard computers: a main 
vehicle computer which is a 244 Mhz PC/104 stack 
running the QNX real-time operating system, and a 
separate 367 MHz EPIC EPX-GX500 AMD Geode 
stack running Linux and T-REX. The 
communication between the Executive and the 
functional level computer is a socket-based 
protocol allowing the exchange of command 
requests (i.e. goals) and state updates (i.e. 
observations). For validation purposes we first ran 
experiments on a high-fidelity AUV simulator 
based on [23]. This simulator captures vehicle 
dynamics that were used to validate our missions 
prior to going to sea. 
At the time of writing we have completed two sea 

Fig. 6: Example domain model in EUROPA 



Fig. 9 A navigation mission (top) with its T-REX 
plan and CPU profile (bottom) 

 

 

trials: the first was to validate basic system 
performance under real conditions and the second 
to work on higher level planning (Mission 
Manager) interleaved with the execution control 
(Navigator and Executive).  These sea trials were in 
the northern Monterey Bay using our support ship 
the R/V Zephyr. Fixing the tick duration to 1 
second is adequate for our application. 
Initial runs were to demonstrate nominal 
sequencing primitives such as setpoint(v) to get the 
vehicle moving, descend(d), waypoint(lat, long) to 
go at a given position and ascend(0). The role of T-
REX in these runs was limited to checking 
sequence validity and to track execution. Fig. 8 
shows a sequence execution for a 400 second run 
and a CPU usage around 7%, primarily for 

synchronization. 
After this initial validation and during the second 
trial we tested the interleaving of reactive planning 
and execution. Fig. 9 shows a plan given to the 
Navigator with the goal to be at the West node at 
10m depth and running for a duration of 1000 
seconds. The Navigator generated a plan to 
dynamically change the AUV’s attitude while 
heading towards West node and inserting periodic 
check-in windows to allow localization at the 
surface using GPS. During execution we observed 
an average CPU usage of 8.5% with peaks at end of 
actions consistent with synchronization and plan 
adaptation. The larger peaks (25% of CPU usage) 
correspond to situations implying deliberation at a 
higher level. For example these peaks are generally 
at the end of the abstract actions such as Go and 
Check-in that triggered deliberation in the 
Navigator.  
Fig.10 shows the execution of a more complex 
mission where the Mission Manager was able to 
order the visitation by making the AUV to go first 
to the West and then to the North node with the 
insertion of ordering constraints. This plan was then 
executed reactively by the Navigator, which 
inserted check-in windows while keeping CPU 
usage to 8.8%. With an additional reactor adding to 
the deliberation, this experiment showed that T-
REX is capable of managing multiple goals without 
impacting system responsiveness. 
We are now working on higher-level goals 
connected to science objectives such as “do a 
transect from A to B in a depth range from 10m to 
100m” or “track and characterize an ocean Front” 
allowing scientists to specify abstract mission 
goals. 

Related Work 
T-REX's legacy is derived primarily from the 
Remote Agent Experiment or RAX [24,25]. Further 
T-REX is similar to IDEA [26,27] in its 
formulation of a timeline-based representation, and 
in its use of planning at the execution frontier and 
for deliberation. It is distinct from IDEA primarily 
in its formulation for exchanging and synchronizing 
state between reactors. The Autonomous 
Sciencecraft Experiment [28] conceptually follows 
the same path as RAX with CASPER a planner that 
is both deliberative and reactive. CASPER is an 
adjunct to a separate executive rather than directly 
embedded in the execution loop as is the case with 
T-REX. Furthermore, temporal flexibility in T-
REX provides greater robustness to temporal 
uncertainty in comparision to CASPER’s grounded 
representation. The LAAS architecture [29,30] 

 
Fig. 10 A multi-node mission 

 



provides decisional capabilities using a constraint-
based symbolic planner integrated with reactive 
components for autonomy. It is a 3-layered 
architecture where all the different components 
(functional modules, execution controller, 
functional executive and planner) are manipulating 
different kind of formalisms specified on 
heterogeneous modeling languages. Such an 
approach tends to make platform design and 
integration difficult [31] and prone to errors 
especially in model design. In contrast, although T-
REX does result in a factoring of computation into 
layers in practice, a hierarchical structure is not 
inherent in the design, nor is deliberation required 
or prohibited for any layer. 
While a number of deliberative control 
architectures have been built for AUV control [10-
18] T-REX’s design philosophy is closest to 
ITOCA [11], DAMN [16] and ORCA [18]. Both 
DAMN and ITOCA are based on a reactive 
Subsumption based architecture with no inherent 
deliberation. ORCA uses p-schemas in a case-based 
planning framework; however the efficacy of 
ORCA’s approach is unclear in terms of scalability 
in the number of schemas nor does it reason 
explicitly about time and resources. The literature 
moreover does not indicate whether any field trials 
were conducted with ORCA on an AUV for 
validation of this approach.  

Conclusions and Future Work 
In this paper, we have shown a design of an agent 
architecture that demonstrates onboard planning 
and execution to enable the next phase of scientific 
research in the ocean sciences. While results shown 
are preliminary, our high-fidelity simulation test-
bed along with first tests in the open ocean has 
validated central notions of timing within this 
control architecture. Our final end of year 
deployment will include a full-day scientific 
mission in the Monterey Bay, with the use of the 
traditional suite of instruments on our AUV. This 
mission will demonstrate goal-oriented 
commanding, onboard resource management, 
geometric 2D path planning, responsiveness to 
opportunistic science events with re-planning in-
situ and graceful recovery from failures injected for 
demonstration. Our year-end goals are to 
demonstrate a realistic science scenario in 
Monterey Bay with the use of an online 
opportunistic learning [33] triggered by T-REX. 
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