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Abstract

Systems competitions play a fundamental role in the ad-
vancement of the state of the art in several automated
reasoning fields. The goal of such events is to answer
the question: “Which system should I buy?”. Usually
the answer comes as the byproduct of a ranking obtained
by considering a pool of problem instances and then ag-
gregating the performances of the systems on each mem-
ber of the pool. Empirical scoring is the most common
ranking method in automated reasoning systems compe-
titions, whereby a tournament-like procedure is used to
assign bonuses and penalties to each system according
to various performance indicators. Statistical testing is
another possible approach, whereby the null hypothesis
of equal performances is tested against the alternative
hypothesis of significant difference in performances us-
ing a precise mathematical formulation. This paper pro-
vides a comparison between the two approaches using
the 2005 comparative evaluation of solvers for quanti-
fied Boolean formulas as a case study.

Introduction
Systems competitions play a fundamental role in the ad-
vancement of the state of the art in several automated rea-
soning fields. A non-exhaustive list of such events includes
the CADE ATP System Competition (CASC) (Sutcliffe &
Suttner 2007) for theorem provers in first order logic, the
SAT Competition (Le Berre & Simon 2007) for proposi-
tional satisfiability solvers, the International Planning Com-
petition (see, e.g., (Long & Fox 2003)) for symbolic plan-
ners, the CP Competition (see, e.g., (van Dongen 2005))
for constraint programming systems, the Satisfiability Mod-
ulo Theories (SMT) Competition (see, e.g., (Barrett, de
Moura, & Stump 2005)) for SMT solvers, and the evalu-
ation of quantified Boolean formulas solvers (QBFEVAL,
see (Berre, Simon, & Tacchella 2003; Berre et al. 2004;
Narizzano, Pulina, & Tacchella 2006b) for previous reports).
The main purpose of the above events is to designate a win-
ner, i.e., to answer the question: “Which system should I
buy?”. Even if such perspective can be limiting, and the
results of automated reasoning systems competitions may
provide less insight than controlled experiments in the spirit
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of (Hooker 1996), there is a general agreement that competi-
tions raise interest in the community and they help to set re-
search challenges for developers and assess the current tech-
nological frontier for users. The usual way to designate a
winner in competitions is to compute a ranking obtained by
considering a pool of problem instances and then aggregating
the performances of the systems on each member of the pool.
While the definition of performances can encompass many
aspects of a system, usually it is the capability of giving a
sound solution to a high number of problems in a relatively
short time that matters most. Therefore, one of the issues
that occurred to us as organizers of QBFEVAL, relates to the
procedures used to compute the final ranking of the solvers,
i.e., we had to answer the question “Which aggregation pro-
cedure is best?”. Indeed, even if the final rankings cannot be
interpreted as absolute measures of merit, they should at least
represent the relative strength of a system with respect to the
other competitors based on the difficulty of the problem in-
stances used in the contest.

In this paper we consider two approaches that can be used
to summarize the results of a competition: empirical scoring
and statistical testing. Empirical scoring is the most com-
mon ranking method, whereby a tournament-like procedure
is used to assign bonuses and penalties to each system ac-
cording to various performance indicators. The main ad-
vantages of such procedures are their simplicity and their
wide applicability, but they offer no direct way of assessing
the quality of the rankings provided. Statistical testing, on
the other hand, is less commonly used (see, e.g., (Long &
Fox 2003)), usually more complicated, and less widely ap-
plicable than empirical scoring. However, statistical testing
provides direct means of assessing the result quality, since
the null hypothesis of equal performances is tested against
the alternative hypothesis of significant difference in per-
formances using a precise mathematical formulation that al-
lows an estimate of the results within some stated confidence
level. Using the data of the 2005 comparative evaluation of
QBF solvers (QBFEVAL’05 (Narizzano, Pulina, & Tacchella
2006b)) as a case study, we summarize the results presented
in (Narizzano, Pulina, & Tacchella 2006c) and (Narizzano,
Pulina, & Tacchella 2006a). Our goal is to assess whether
the ranking obtained with an empirical scoring methods is
compatible with the results obtained by statistical testing, and
whether statistical testing can help us to improve the scien-
tific significance of competitions.



Preliminaries
The results of QBFEVAL’05 can be listed in a table RUNS
comprised of four attributes: SOLVER, INSTANCE, RESULT,
and CPUTIME. The attributes SOLVER and INSTANCE report
which solver is run on which instance. RESULT is a four-
valued attribute: SAT (resp. UNSAT), i.e., the instance was
found satisfiable (resp. unsatisfiable) by the solver, TIME,
i.e., the solver exceeded the time limit (900 seconds), and
FAIL, i.e., the solver aborted for some reason beyond our
control. Finally, CPUTIME reports the CPU time spent by
the solver on the given instance. In the analysis herewith
presented we used a subset of QBFEVAL’05 RUNS table, in-
cluding only the solvers that admitted to the second stage
of the evaluation, namely QUANTOR, QMRES, SEMPROP,
YQUAFFLE, SSOLVE, WALKQSAT, OPENQBF and QBF-
BDD, and the QBFs coming from classes of instances having
fixed structure (see (Narizzano, Pulina, & Tacchella 2006b)
for more details).

The analysis herewith presented rests on the assumption
that a table identical to RUNS is the only input required by
a scoring method. As a consequence, we do not take into
account (i) memory consumption, (ii) correctness of the so-
lution, and (iii) “quality” of the solution. The only measures
of merit at our disposal are the number of problems solved
and the CPU time of the solvers. Notice that the number of
problems solved is correct as long as the CPU time measure
used to enforce the time limit is so. Therefore, to ensure ac-
curacy of the empirical scoring methods it is very important
to tame potential sources of errors in the CPU time measures.
Here we observe that statistical testing naturally obviates to
this issue, since the samples are already assumed to be noisy
observations of the true (unknown) values.

We conclude our preliminaries by briefly describing the
empirical scoring methods used in our analysis. For the
sake of comparison, Table 1 shows the total scores earned
by QBFEVAL’05 participants according to the methods con-
sidered.

Borda’s method (Saari 2001) Suppose that n solvers
(candidates) and m instances (voters) are involved in the con-
test. Consider the sorted list of solvers obtained for each
instance by considering the value of the CPUTIME field in
ascending order. Let ps,i be the position of a solver s (1 ≤
s ≤ n) in the list associated with instance i (1 ≤ i ≤ m).
According to Borda’s method, each voter’s ballot consists of
a vector of individual scores given to candidates, where the
score Ss,i of solver s on instance i is simply Ss,i = n− ps,i.
In cases of time limit attainment or failure, we default Ss,i to
0. The score of a candidate, given the individual preferences,
is just Ss =

∑
i Ss,i, and the winner is the solver with the

highest score.

CASC (Sutcliffe & Suttner 2007) Using CASC method-
ology, the solvers are ranked according to the number of
problems solved, i.e., the number of times RESULT is either
SAT or UNSAT. Under this procedure, solver A is better than
solver B, if and only if A is able to solve at least one prob-
lem more than B within the time limit. In case of a tie, the

solver faring the lowest average on CPUTIME fields over the
problems solved is the one which ranks first.

QBF evaluation (Narizzano, Pulina, & Tacchella 2006b)
QBFEVAL methodology is the same as CASC, except for
the tie-breaking rule, which is based on the sum of CPUTIME
fields over the problems solved.

Range voting Again, suppose that n solvers and m in-
stance are involved in the contest and ps,i is obtained as de-
scribed above for Borda’s method. We let the score Ss,i of
solver s on instance i be the quantity arn−ps,i , i.e., we use
a positional scoring rule following a geometric progression
with a common ratio r = 2 and a scale factor a = 1. We
consider failures and time limit attainments in the same way
(we call this the failure-as-time-limit model in (Narizzano,
Pulina, & Tacchella 2006a)), and thus we assume that all the
voters express an opinion about all the solvers. The overall
score of a candidate is again Ss =

∑
i Ss,i and the candidate

with the highest score wins the election.

SAT competition (Le Berre & Simon 2007) The last SAT
competition uses a purse-based method, i.e., the measure of
effectiveness of a solver on a given instance is obtained by
adding up three purses:
• the solution purse, which is divided equally among all

solvers that solve the problem;
• the speed purse, which is divided unequally among all the

competitors that solve the problem, first by computing the
speed factor Fs,i of a solver s on a problem instance i:

Fs,i =
k

1 + Ts,i
(1)

where k is an arbitrary scaling factor (we set k = 104

according to (Gelder et al. 2006)), and Ts,i is the time
spent by s to solve i; then by computing the speed award
As,i, i.e., the portion of speed purse awarded to the solver
s on the instance i:

As,i =
Pi · Fs,i∑

r Fr,i
(2)

where r ranges over the solvers, and Pi is the total amount
of the speed purse for the instance i.

• the series purse, which is divided equally among all
solvers that solve at least one problem in a given series
(a series is a family of instances that are somehow related,
e.g., different QBF encodings for some problem in a given
domain).

The overall ranking of the solvers under this method is ob-
tained by considering the sum of the purses obtained on each
instance, and the winner of the contest is the solver with the
highest sum.

Schulze’s method We denote as such an extension of the
method described in Appendix 3 of (Schulze 2003). Since
Schulze’s method is meant to compute a single overall win-
ner, we extended the method according to its author’s sug-
gestions in order to make it capable of generating an overall
ranking.



YASMv2 While the aggregation procedures used in CASC
and QBF evaluations are straightforward, they do not take
into account some aspects that are indeed considered by the
purse-based method used in the last SAT competition. On
the other hand, the purse-based method used in SAT requires
some oracle to assign purses to the problem instances, so the
results can be influenced heavily by the oracle. In (Pulina
2006) a first version of YASM was introduced as an attempt
to combine the two approaches: a rich method like the purse-
based one, but using the data obtained from the runs only. As
reported in (Pulina 2006), YASM featured a somewhat com-
plex calculation, yielding unsatisfactory results, particularly
in the comparison with the final ranking produced by vot-
ing systems. In (Narizzano, Pulina, & Tacchella 2006c) we
revised the original version of YASM to make its computa-
tion simpler, and to improve its performance using ideas bor-
rowed from voting systems. From here on, we call YASMv2
the revised version, and YASM the original one presented
in (Pulina 2006). YASMv2 requires a preliminary classifica-
tion whereby a hardness degree Hi is assigned to each prob-
lem instance i using the same equation as in CASC (Sutcliffe
& Suttner 2007) (and YASM):

Hi = 1− Si

St
(3)

where Si is the number of solvers that solved i, and St is
the total number of participants to the contest. Considering
equation (3), we notice that 0 ≤ Hi ≤ 1, where Hi = 0
means that i is relatively easy, while Hi = 1 means that
i is relatively hard. We can then compute the measure of
effectiveness Ss,i of a solver s on a given instance i (this
definition changes with respect to YASM):

Ss,i = ks,i · (1 + Hi) ·
L− Ts,i

L−Mi
(4)

where L is the time limit, Ts,i is the CPU time used up by
s to solve i (Ts,i ≤ L), and Mi = mins{Ts,i}, i.e., Mi

is the time spent on the instance i by the SOTA solver de-
fined in (Narizzano, Pulina, & Tacchella 2006b) to be the
ideal solver that always fares the best time among all the
participants. The hybridization with voting systems comes
into play with the coefficient ks,i which is computed as fol-
lows. Suppose that n solvers are participating to the contest.
Each instance ranks the solvers in ascending order consid-
ering the value of the CPUTIME field. Let ps,i be the posi-
tion of a solver s in the ranking associated with instance i
(1 ≤ ps,i ≤ n), then ks,i = n − ps,i. In case of time limit
attainment and failure, we default ks,i to 0, and thus also Ss,i

is 0. The overall ranking of the solvers is computed by con-
sidering the values Ss =

∑
i Ss,i for all 1 ≤ s ≤ n, and the

solver with the highest sum wins. We can see from equation
(4) that in YASMv2 the effectiveness of a solver on a given
instance is influenced by three factors, namely (i) a Borda-
like positional weight (ks,i), (ii) the relative hardness of the
instance (1 + Hi), and (iii) the relative speed of the solver
with respect to the fastest solver on the instance (L−Ts,i

L−Mi
). In-

tuitively, coefficient (ii) rewards the solvers that are able to
solve hard instances, while (iii) rewards the solvers that are
faster than other competitors. The coefficient ks,i has been

CASC/QBF SAT YASMv2 Borda range voting Schulze
OPENQBF 201 62621.96 482.92 436 1682 421

QBFBDD 106 39250.40 363.74 338 3236 273
QMRES 227 173068.18 1505.03 1085 12050 1007

QUANTOR 318 228854.86 2701.35 2019 32393 1824
SEMPROP 289 148690.91 1787.92 1569 18317 1372
SSOLVE 243 110121.36 1415.36 1286 16038 1135

WALKQSAT 189 87535.25 1090.98 962 11010 791
YQUAFFLE 250 110257.07 1351.92 1200 11864 1023

Table 1: Scores of QBFEVAL’05 solvers according to the
methods considered.

CASC QBF SAT YASM YASMv2 Borda r.v. Schulze
CASC – 1 0.71 0.86 0.79 0.86 0.71 0.86
QBF – 0.71 0.86 0.79 0.86 0.71 0.86
SAT – 0.86 0.86 0.71 0.71 0.71
YASM – 0.86 0.71 0.71 0.71
YASMv2 – 0.86 0.86 0.86
Borda – 0.86 1
r. v. – 0.86
Schulze –

Table 2: Homogeneity of aggregation procedures.

added to stabilize the final ranking and make it less sensi-
tive to an initial bias in the test set. As we show in the next
Section, this combination allows YASMv2 to reach the best
compromise among different effectiveness measures.

Empirical Scoring
In this section we summarize the results obtained considering
the above mentioned scoring methods and some effective-
ness measures introduced in (Pulina 2006) and (Narizzano,
Pulina, & Tacchella 2006c) that are meant to show whether
the aggregation procedures have some desirable properties,
including fidelity and stability with respect to various pertur-
bations that may occur in the test set used for the competition.

Homogeneity
The rationale behind this measure (introduced in (Pulina
2006)) is to verify that, on a given test set, the aggregation
procedures considered (i) do not produce exactly the same
solver rankings, but, at the same time, (ii) do not yield anti-
thetic solver rankings. Thus, homogeneity is not an effective-
ness measure per se, but it is a preliminary assessment that
we are performing an apple-to-apple comparison and that the
apples are not exactly the same.

Homogeneity is computed as in (Pulina 2006) considering
the Kendall rank correlation coefficient τ which is a non-
parametric coefficient best suited to compare rankings. τ
is computed between any two rankings and it is such that
−1 ≤ τ ≤ 1, where τ = −1 means perfect disagreement,
τ = 0 means independence, and τ = 1 means perfect agree-
ment. Table 2 shows the values of τ computed for the aggre-
gation procedures considered, arranged in a symmetric ma-
trix where we omit the elements below the diagonal (r.v. is
a shorthand for range voting). Values of τ close to, but not
exactly equal to 1 are desirable. Table 2 shows that this is in-
deed the case for the aggregation procedures considered us-
ing QBFEVAL’05 data. Only two couples of methods (QBF-
CASC and Schulze-Borda) show perfect agreement, while
all the other couples agree to some extent, but still produce
different rankings.



Method Mean Std Median Min Max IQ Range F
QBF 182 7 183 170 192 13 88.54
CASC 182 7 183 170 192 13 88.54
SAT 87250 12520 83262 78532 119780 4263 65.56
YASM 46 2 46 43 51 2 85.38
YASMv2 1257.29 45.39 1268.73 1198.43 1312.72 95.11 91.29
Borda 984 127 982 752 1176 194 63.95
r. v. 12010 5183 12104 5186 21504 8096 24.12

Table 3: Fidelity of aggregation procedures. As far as SAT
is concerned, the series purse is not assigned.

Fidelity
We introduced this measure in (Narizzano, Pulina, & Tac-
chella 2006c) to check whether the aggregation procedures
under test introduce any distortion with respect to the true
merits of the solvers. Our motivation is that we would like
to extract some scientific insight from the final ranking of
QBFEVAL’06 and not just winners and losers. Of course,
we have no way to know the true merits of the QBF solvers:
this would be like knowing the true statistic of some popu-
lation. Therefore, we measure fidelity by feeding each ag-
gregation procedure with “white noise”, i.e., several samples
of table RUNS filled with random results. In particular, we
assign to RESULT one of SAT/UNSAT, TIME and FAIL val-
ues with equal probability, and a value of CPUTIME chosen
uniformly at random in the interval [0;1]. Given this artifi-
cial setting, we know in advance that the true merit of the
competitors is approximately the same. A high-fidelity ag-
gregation procedure is thus one that computes approximately
the same scores for each solver, and thus produces a final
ranking where scores have a small variance-to-mean ratio.

The results of the fidelity test are presented in Table 3
where each line contains the statistics of a aggregation pro-
cedure. The columns show, from left to right, the mean, the
standard deviation, the median, the minimum, the maximum
and the interquartile range of the scores produced by each
aggregation procedure when fed by white noise. The last
column is our fidelity coefficient F, i.e., the percent ratio be-
tween the lowest score (solver ranked last) and the highest
one (solver ranked first): the higher the value of F, the more
the fidelity of the aggregation procedure. As we can see from
Table 3, the fidelity of YASMv2 is better than that of all the
other methods under test, including QBF and CASC which
are second best, and have higher fidelity than YASM. No-
tice that range voting, and to a lesser extent also SAT and
Borda’s methods, introduce a substantial distortion. In the
case of range voting, this can be explained by the exponen-
tial spread that separates the scores, and thus amplifies even
small differences. Measuring fidelity does not make sense in
the case of Schulze’s method. Indeed, given the characteris-
tics of the ”white noise” data set, Schulze’s method yields a
tie among all the solvers. Thus, checking for fidelity would
essentially mean checking the tie-breaking heuristic, and not
the main method.

RDT-stability and DTL-stability
Stability on a randomized decreasing test set (RDT-stability),
and stability on a decreasing time limit (DTL-stability) have
been introduced in (Pulina 2006) to measure how much an
aggregation procedure is sensitive to perturbations that di-
minish the size of the original test set, and how much an ag-

gregation procedure is sensitive to perturbations that dimin-
ish the maximum amount of CPU time granted to the solvers,
respectively. The conclusion reached in (Narizzano, Pulina,
& Tacchella 2006c) are:

• All the aggregation procedures considered are substan-
tially RDT-stable, i.e., a random sample of 151 instances
is sufficient for all the procedures to reach the same con-
clusions that each one reaches on the heftier set of 551
instances used in QBFEVAL’05.

• Decreasing the time limit substantially, even up to one or-
der of magnitude, is not influencing the stability of the ag-
gregation procedures considered, except for some minor
perturbations for QBF/CASC, SAT and Schulze’s meth-
ods. Moreover, independently from the procedure used
and the amount of CPU time granted, the best solver is
always the same.

Indeed, while the above measures can help us extract general
guidelines about running a competition, in our setting they do
not provide useful insights to discriminate the relative merits
of the procedures.

SBT-stability
Stability on a solver biased test set (SBT-stability) is intro-
duced in (Pulina 2006) to measure how much an aggregation
procedure is sensitive to a test set that is biased in favor of
a given solver. Let Γ be the original test set, and Γs be the
subset of Γ such that the solver s is able to solve exactly the
instances in Γs. Let Rq,s be the ranking obtained by apply-
ing the aggregation procedure q on Γs. If Rq,s is the same as
the original ranking Rq, then the aggregation procedure q is
SBT-stable with respect to the solver s. Notice that, contrar-
ily to what stated in (Pulina 2006), SBT-stability alone is not
a sufficient indicator of the capacity of an aggregation proce-
dure to detect the absolute merit of the participants. Indeed,
it turns out that a very low-fidelity method such as range vot-
ing is remarkably SBT-stable. This because we can raise the
SBT-stability of a ranking by decreasing its fidelity: in the
limit, an aggregation procedure that assigns fixed scores to
each solver, has the best SBT-stability and the worst fidelity.
Therefore, an aggregation procedure showing a high SBT-
stability is relatively immune to bias in the test set, but it
must also feature a high fidelity if we are to conclude that the
method provides a good hint at detecting the absolute merit
of the solvers.

Figure 1 shows the plots with the results of the SBT-
stability measure for each aggregation procedure. The x-axis
reports the name of the solver s used to compute the solver-
biased test set Γs and the y-axis reports the score value. For
each of the Γs’s, we report eight bars showing the scores ob-
tained by the solvers using only the instances in Γs. The
order of the bars (and of the legend) corresponds to the rank-
ing obtained with the given aggregation procedure on the
original test set Γ. As we can see from Figure 1 (top-left),
CASC/QBF aggregation procedures are not SBT-stable: for
each of the Γs, the original ranking is perturbed and the
winner becomes s. Notice that on ΓQUANTOR, CASC/QBF
yield the same ranking that they output on the complete test
set Γ. The SAT competition procedure (Figure 1, top-center)



Figure 1: SBT-stability plots; top-row, from left to right, CASC/QBF, SAT, YASMv2; bottom-row, from left to right, Borda, r.v.
and Schulze.

is not SBT-stable, not even on the test set biased on its alleged
winner QUANTOR. YASMv2 is better than both CASC/QBF
and SAT, since its alleged winner QUANTOR is the winner on
biased test sets as well. Borda’s method (Figure 1, bottom-
left) is not SBT-stable with respect to any solver, but the al-
leged winner (QUANTOR) is always the winner on the biased
test sets. Moreover, the rankings obtained on the test sets bi-
ased on QUANTOR and SEMPROP are not far from the ranking
obtained on the original test set. Also range voting (Figure 1,
bottom-center), is not SBT-stable with respect to any solver,
but the solvers ranking first and last do not change over the
biased test sets and it is true for the Schulze’s method (Fig-
ure 1, bottom-right) too.

Looking at the results presented above, we can see that
YASMv2 performance in terms of SBT stability lies in be-
tween classical automated reasoning contests methods and
methods based on voting systems. This fact is highlighted in
Table 4, where for each procedure we compute the Kendall
coefficient between the ranking obtained on the original test
set Γ and each of the rankings obtained on the Γs test sets,
including the mean coefficient observed. Overall, YASMv2
turns out to be, on average, better than CASC/QBF, SAT,
and YASM, while it is worse, on average, than the methods
based on voting systems. However, if we consider also the
results of Table 3 about fidelity, we can see that YASMv2
offers the best compromise between SBT-stability and fi-
delity. Indeed, while CASC/QBF methods have a relatively
high fidelity, they perform poorly in terms of SBT-stability,
and SAT method is worse than YASMv2 both in terms of
fidelity and in terms of SBT-stability. Methods based on vot-
ing systems are all more SBT-stable that YASMv2, but they
have poor fidelity coefficients. We consider this good perfor-
mance of YASMv2 a result of our choice to hybridize classi-
cal methods used in automated reasoning contests and meth-
ods based on voting systems. This helped us to obtain an
aggregation procedure which is less sensitive to bias, and, at

the same time, a good indicator of the absolute merit of the
competitors.

Statistical Testing
In spite of the results presented insofar, we have no direct
means of assessing the significance of the results obtained
by an empirical scoring method like YASMv2. Indeed, even
if we can do this indirectly using the measures presented in
the previous Section, there is no guarantee that the results
obtained will apply to a different set of solvers and/or prob-
lem instances. On the other hand, if we rephrase the problem
in terms of statistical hypothesis testing, then we can check
for statistically significant differences in the performances of
the solvers and validate our conclusions within some stated
confidence level. Let us start by introducing a null hypothe-
sis and an alternative hypotheses that are appropriate in our
context. Given any two solvers A and B we can state the:

null hypothesis (H0), i.e., there are no significant differ-
ences in the performances of A with respect to the per-
formances of B; and the

alternative hypothesis (H1), i.e., there are significant dif-
ferences in the performances of A with respect to the per-
formance of B.

In the following, let XA and XB be the vectors of run-time
values associated to solver A and solver B, respectively. Be-
fore applying statistical methods to QBFEVAL’05 data, we
must decide (i) how to consider missing values, i.e., TIME-
OUT and FAIL values, and (ii) which assumptions, if any, can
be made about the run-time distributions. The above issues
have an impact over the specific method that we can apply
to test H0, because some methods cannot deal with missing
values in XA and XB seamlessly, and most methods require
binding assumptions about the underlying distribution of XA

and XB .



CASC/QBF SAT YASM YASMv2 Borda r. v. Schulze
OPENQBF 0.43 0.57 0.36 0.64 0.79 0.79 0.79

QBFBDD 0.43 0.43 0.36 0.64 0.79 0.86 0.79
QMRES 0.64 0.86 0.76 0.79 0.71 0.86 0.79

QUANTOR 1 0.86 0.86 0.86 0.93 0.86 0.93
SEMPROP 0.93 0.71 0.71 0.79 0.93 0.86 0.93
SSOLVE 0.71 0.57 0.57 0.79 0.86 0.79 0.86

WALKQSAT 0.57 0.57 0.43 0.71 0.64 0.79 0.79
YQUAFFLE 0.71 0.64 0.57 0.71 0.86 0.86 0.93

Mean 0.68 0.65 0.58 0.74 0.81 0.83 0.85

Table 4: Kendall coefficient between the ranking obtained on the original test set and each of the rankings obtained on the
solver-biased test sets.

Considering QBFEVAL’05 data, after removing the in-
stances where all the solvers either fail or reach the time
limit, there are two possible models to deal with the remain-
ing missing values: failure-as-time-limit (FAT) model, and
time-limit-as-failure (TAF) model. In the FAT model, each
time that a solver fails or exceeds the time limit, we default its
run time to the time limit. This model (used, e.g., in (Hooker
& Vinay 1995)) consistently overestimates the performances
of the solvers, but allows the paired comparison of the values
in XA and in XB . In the TAF model, each time a solver fails
or exceeds the time limit, we simply disregard the data point.
In this way overestimation does not occur, but since the vec-
tors XA and XB may not be equal in length, the paired com-
parison of run-times is not generally possible.

Given FAT and TAF data models, we may ask whether an
underlying normal distribution of run-times can be assumed.
If so, well-known classical techniques like t-tests or Analy-
sis of Variance (ANOVA) (Kanji 1999) could be used to test
for H0. Thus, for each solver A, we check XA under FAT
and TAF models using the Shapiro-Wilk (Kanji 1999) test of
the null hypothesis that the XA’s are obtained from a nor-
mally distributed population. All such tests yield p-values
in the order of 10−27 for the FAT model, and of 10−24 for
the TAF model, indicating that it is highly unlikely that the
run-time distribution of some solver is anywhere close to nor-
mal. Because of this, we must resort to non-parametric tests.
Inspired by (Long & Fox 2003), we consider the Wilcoxon
signed rank (WSR) test, a non-parametric alternative to the
classical paired t-test, whereby the null hypothesis states that
XA and XB do not differ in a significant way (see, e.g., Ch.
12a of (Lowry 2006)). The WSR test is applicable as long
as:

1. the paired values of XA and XB are randomly and inde-
pendently drawn;

2. the dependent variable (i.e., the run-time) is intrinsically
continuous; and

3. it makes sense to compare the values in XA and XB .

Both FAT and TAF models fulfill the above conditions, but
considering the mechanics of the WSR test, we see that it
requires the vector XA − XB to be computed. Therefore, it
can be applied only in the context of the FAT model. In order
to cope with the TAF model, we consider the Wilcoxon rank
sum test, also known as Mann-Whitney test (see, e.g., Ch.
12a of (Lowry 2006)). Such test, that we call hereafter Mann-
Whitney-Wilcoxon (MWW) test, is a non-parametric test of
difference between XA and XB , and it can accommodate
for unequal lengths of XA and XB . In particular, MWW

is applicable as long as conditions 2 and 3 above hold, and
it requires that the values of XA and XB are independently
drawn: since in our case the data are (positively) dependent,
MWW gives approximate, although conservative, solutions.
In the following, all the data and the results extrapolated from
the WSR and MWW tests are implicitly referred to the FAT
and TAF models, respectively.

The results of the pairwise WSR and MWW tests on
QBFEVAL’05 data are shown in Table 5. In the Table, for
each pair of solvers A (row) and B (column) we report the p-
value adjusted for multiple comparisons of the pairwise WSR
tests and pairwise MWW tests. Before analyzing the re-
sults of Table 5 it is worth mentioning that adjustment of the
p-values is necessary, because performing multiple compar-
isons raises the risk of obtaining positive results just by the
effect of chance (a fact that follows from Bonferroni inequal-
ities). We applied Holm’s adjustment method that should
be more effective than the well known Bonferroni’s method.
Both methods give strong control on the family wise error
rate, i.e., the probability that the number of overall false re-
jections (false positives) is greater or equal to one. In (Long
& Fox 2003) the authors use a different correction, i.e., they
compute the overall α0 using α0 = 1− (1− α)(1/n), where
α is the confidence level of each test and n is the number
of tests performed. However, the latter kind of correction is
less generally valid than Bonferroni’s (and thus also Holm’s)
method. With this proviso, since we wish to extrapolate a
partial order of the solvers in terms of their relative speed per-
formances at a 99% confidence level, we reject H0 only when
the p-value shown in Table 5 is less than 0.01. By looking at
Table 5 we can see that the WSR test finds most pairwise
comparisons significant at an overall 99% confidence level.
On the other hand, the MWW test yields more conservative
results, i.e., 9 comparisons that are significant for the WSR
test fail to be so for the MWW test, and only 1 comparison
that is not significant for the WSR test is indeed significant
for the MWW test. In Table 5, we highlight in boldface the
cases in which the two tests are found disagreeing about the
significance of the difference in terms of performances. No-
tice that WSR and MWW tests are more sensitive to a con-
sistent, albeit small, difference in performances rather than
occasional, albeit large, differences.

In Figure 2, we represent two partial orders of the solvers
in terms of their performances derived from QBFEVAL’05
data and the results of Table 5. The partial order on the left
of Figure 2 is based on the results of the WSR test, while
the one on the right is based on the results of the MWW test.
Both partial orders are obtained by drawing an edge from



OPENQBF QBFBDD QMRES QUANTOR SEMPROP SSOLVE WALKQSAT
WSR MWW WSR MWW WSR MWW WSR MWW WSR MWW WSR MWW WSR MWW

QBFBDD <0.001 <0.001 – – – – – – – – – – – –
QMRES 0.003 <0.001 <0.001 1.000 – – – – – – – – – –
QUANTOR <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 – – – – – – – –
SEMPROP <0.001 <0.001 <0.001 0.982 <0.001 0.020 <0.001 0.003 – – – – – –
SSOLVE <0.001 <0.001 <0.001 0.982 0.059 0.024 <0.001 0.002 0.031 1.000 – – – –
WALKQSAT <0.001 <0.001 <0.001 0.161 0.521 <0.001 <0.001 0.566 <0.001 0.982 <0.001 0.982 – –
YQUAFFLE <0.001 <0.001 <0.001 1.000 0.018 0.057 <0.001 <0.001 <0.001 1.000 0.521 1.000 <0.001 0.646

Table 5: p-values of Wilcoxon signed rank (WSR) and Mann-Whitney-Wilcoxon (MWW) tests.

Figure 2: Partial order of the solvers in terms of their relative speed performances extrapolated from the results of Wilcoxon
signed rank (left) and Mann-Whiteny-Wilcoxon (right) tests.

A to B whenever there is a significant difference in perfor-
mances between A and B, while the direction of the edge is
obtained considering the pairs (xA, xB) such that xA ∈ XA

and xB ∈ XB and computing the ratio R(A,B) between (i)
the number of pairs such that xA < xB and (ii) the num-
ber of pairs such that xB > xA (ties are thus excluded): if
R(A,B) > 1, then A is faster than B. In Figure 2 we label
each directed edge from A to B with the value of R(A,B)
and we omit the links that can be extrapolated by transitive
closure. The calculation of R is inspired by the WSR test
mechanics and, as such, it is meant to reflect consistent dif-
ferences in performances rather than occasional large gaps.
Looking at Figure 2 we can see that the partial order induced
by the results of the WSR test is compatible with the one in-
duced by the results of the MWW test, although the latter is
less constrained than the former.

We can now compare the snapshots of QBFEVAL’05 data
offered by YASMv2 and the other empirical scoring meth-
ods (Table 1) with the ones offered by statistical testing (Fig-
ure 2). The first observation is that all the rankings produced
by the scoring methods are compatible with the partial or-
ders of Figure 2 with the only exception of SAT, which ranks
QMRES above SEMPROP, while there is a consistent and
significant difference in performances detected by the WSR
test that, together with the value of R(SEMPROP, QMRES),
prompts us otherwise. However, notice that according to
the MWW test, such difference is not significant at the 99%
confidence level. The second observation is that, looking
at Figure 2 we can see that QMRES, SSOLVE and YQUAF-
FLE are found essentially “incomparable” by the WSR test,
and, indeed, the ranking of such solvers is essentially the

only part where the scoring methods differ. In particular,
if we consider the relative performance index offered by
R(SEMPROP, B), where B is one of QMRES, SSOLVEand
YQUAFFLE, we can see that only Borda count and Schulze’s
method rank the three solvers according to the reverse or-
der of the corresponding edge labels. On the other hand, ac-
cording to the MWW test (Figure 2, right), also SEMPROP
is incomparable to the above three solvers, but SEMPROP al-
ways ranks second best according to all the scoring methods
(with the above mentioned exception of SAT). Finally, let
us consider the total orders extracted by the partial ones of
Figure 2 by proceeding top-down and breaking the ties con-
sidering the edge labels in reverse order. If we compare the
rankings thereby obtained with those resulting from Table 1
using the Kendall coefficient, then we can observe the fol-
lowing. Comparing WSR- and MWW-based rankings yields
τ = 0.93, an almost perfect agreement tainted only by the
different classification of SEMPROP and SSOLVE. Consider-
ing the empirical scoring methods, it turns out that WSR-
based ranking yields τ = 1 in the case of Borda count and
Schulze’s method, and τ 6= 1 in all the other cases, with
YASMv2 being the closest (together with range voting) at
τ = 0.86. In the case of MWW-based ranking, τ 6= 1 for all
the empirical scoring methods considered: YASMv2, with
τ = 0.79 is closer than both SAT (τ = 0.64) and CASC/QBF
(τ = 0.76), but range voting (τ = 0.79), Schulze’s method
and Borda count (both at τ = 0.93) are even closer.



Discussion, conclusions and future work
In this paper we have considered the problem of obtaining
a fair ranking of the competitors in an automated reasoning
contest. We noticed that the problem is ill-posed, since we
are comparing systems (not algorithms), and we often have
a limited control over the kind of problems that we may use
in a competition. Finally, since most automated reasoning
problems are at-least NP-hard (if at all decidable), it is quite
difficult – if at all possible – to describe the distribution of
the problem instances using some well-behaved analytical
function like, e.g., Gaussian, uniform, or Poisson distribu-
tions. This means that, even under the unlikely hypotheses
that competitors could submit algorithms instead of systems,
and that a high degree of control could be reached on the ex-
perimental setup, we would probably be unable to frame a
competition using classical statistical methods. On the other
hand, the tournament-like aggregation procedures that are
normally used in automated reasoning contests, are usually
adopted without even asking the question of whether the re-
sults they provide are fair, relevant and adequate.

We considered two alternatives to the classic tournament-
like procedures. The first is to use some aggregation pro-
cedure borrowed from the vast (see (Arrow, Sen, & Suzu-
mura 2002)) literature on social choice, i.e., use some kind
of voting system. Voting systems do not require specific as-
sumptions about voters (systems) and solvers (candidates).
On the contrary, they are specifically designed to withstand
attempts to break them, by voters trying to circumvent the
rules. At the same time, a solid mathematical theory has
been developed to study the problems of fairness and ade-
quacy of such systems. The second is to use non-parametric,
i.e., distribution-free, statistical testing. Non-parametric test-
ing is more complex and, in general, less robust than classical
statistical testing, but it can provide with useful results even
when the data are scarce or when assumptions about the dis-
tributions underlying data cannot be made.

Our empirical results show that a tournament like ag-
gregation procedure like YASM (Pulina 2006) can be im-
proved by borrowing ideas from voting systems. The im-
proved YASMv2 has interesting stability and fidelity prop-
erties, and it is also able to “rival” with statistical testing,
insofar it is able to detect differences in the performances
of the solvers that revealed to be almost always statistically
significant under stringent conditions. Indeed, we decided
to use YASMv2 (Narizzano, Pulina, & Tacchella 2006c) for
the first two competitive evaluations of QBF solvers, QBFE-
VAL’06 and QBFEVAL’07 (Giunchiglia, Narizzano, & Tac-
chella 2001). The validity of YASMv2 as an aggregation
procedure, however, rests on few assumptions that may not
be adequate in other competitions, e.g., we do not take into
account the quality of the solution, which is indeed quite im-
portant in a scheduling competition.

Summing up, our results clearly indicate that asking the
question “Which system should I buy?” has no trivial an-
swer, but that both voting systems and non-parametric statis-
tics can be used to improve the quality of the final answer.
One possible development along this line, which we are cur-
rently studying, is to leverage statistical testing by scoring
several bootstrap replicas of the original test set, i.e., test sets

obtained by sampling the original one uniformly at random
with repetition. In this way, a distribution of scores can be
obtained for each solver, and the solvers’ statistics (mean
or variance) can be compared one another using standard
parametric tools. Another possible extension, would be to
combine several scoring methods together, using some meta-
aggregation schema, and to use the combined scores of sev-
eral different procedures to compute the final score of the
solver.
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