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Introduction 
The aim of this paper is not to offer any definite proposal 
for the scheduling competition, but to discuss some of the 
key issues to be considered in such an endeavour. The 
discussion will refer to three types of scheduling problems: 
production scheduling, employee scheduling (the 
discussion will be focused on nurse rostering being a very 
complex and highly constrained scheduling problem) and 
university timetabling. The reasons for choosing these 
types of scheduling problems are twofold: they are widely 
studied in the scheduling community and have led to a 
wealth of the scheduling models and algorithms, and the 
author has experience in solving these problems. However, 
the competition could include other types of scheduling 
problems, such as project scheduling, etc. First, a brief 
description of each of these types of problems will be 
given, together with available benchmark problems. After 
that, the following issues will be addressed: (a) is there a 
need for a common formal representation of different 
scheduling problems, (b) how to perform the evaluation of 
the scheduling algorithms, (c) is there a need for both 
randomly generated problem instances and real-world 
ones, and (d) what conclusions could we draw after the 
competition.  
The paper will also draw upon the experiences gained in 
the International Timetabling Competition organized by 
the Metaheuristic Network and sponsored by Patat (a series 
of conferences on Practice and Theory of Automated 
Timetabling) that was held in 2003. More information 
about this competition can be found on the Web page 
http://www.idsia.ch/Files/ttcomp2002/. The 2nd 
International Timetabling Competition will be organised in 
the near future. 

Types of Scheduling Problems 
Three types of scheduling problems will be considered: 
production scheduling, employee scheduling, and 
university timetabling.  
A production scheduling problem concerns the allocation 
of resources (e.g., equipment, materials, labour) to tasks 
over time under some constraints (Pinedo, 2002). A variety 
of machine configurations were studied, including single 
machine, parallel machines, flow shops, job shops, etc. 

Different criteria such as makespan (i.e. the completion 
time of the last job), the number of tardy (early) jobs, the 
average tardiness (earliness) of jobs, and the total flow-
time have been typically considered as performance 
measures.  
The employee scheduling is defined as a problem of 
placing resources into slots in a pattern, subject to given 
constraints, where the pattern denotes a set of legal shifts 
defined in terms of work to be done (Wren, 1996). Nurse 
rostering is a particularly complex and constrained type of 
employee scheduling problem, which takes into 
consideration different, usually conflicting staff 
qualifications, and a large number of legal, management 
and staff requirements (Burke et al. 2004). 
University timetabling problems can be classified into two 
main categories: course and examination timetabling. In 
course (examination) timetabling problems a number of 
courses (exams) are allocated into a number of available 
classrooms and a number of timeslots, subject to given 
constraints (Burke and Petrovic, 2002). 
One of the main differences between these three types of 
scheduling problems is that nurse rostering and university 
timetabling are in general treated as static problems in the 
sense that the size of the problem is not changing over 
time, while production scheduling problems can be both 
static and dynamic. In the dynamic scheduling problems 
the size of the problem changes dynamically; for example, 
the number of machines can change due to unavailability 
of a machine, new jobs enter the shop floor over time, etc. 
The further discussion will focus on the static problems. 
The literature on scheduling models and algorithms is very 
rich indeed. In general, the algorithms can be classified 
into two broad classes: constructive and improvement 
algorithms (Pinedo, 2002). The constructive algorithms 
start with an empty schedule and gradually construct a 
schedule by adding one element (for example, an 
exam/course, a job, etc) into a schedule at each step. The 
improvement algorithms start from a complete schedule 
and then try to improve it with respect to the objective 
function by manipulating the elements of the schedule. 
For each of these three types of problems there exist a 
number of benchmark problems that can be downloadable 
from the Internet. 
There is a number of production scheduling benchmark 
problems. Two of them that are of particular interest are as 
follows:  



(a) Generated by Demirkol et al., presented in (Demirkol et 
al. 1996) and downloadable from the Web page 
http://cobweb.ecn.purdue.edu/~uzsoy/ResearchGroup/Inde
x.html. It contains a wide variety of scheduling problems 
including single and parallel machine environments, job 
shop with different routing configurations, problems with 
dynamic arrivals of jobs, etc. In total, there are almost 
10,000 data sets. 
(b) Generated by Taillard, presented in (Taillard, 1993) and 
downloadable from the Web page 
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/jobshopinfo.ht
ml. It contains 260 randomly generated, rather simple 
scheduling problems. However, the size of these problem 
instances correspond to real dimensions of industrial 
problems (starting from 20 jobs 5 machines up to 500 jobs 
20 machines).  
For a long time, there were no benchmark data sets 
available for nurse rostering. Recently, an excellent Web 
page was formed that contained benchmark data sets based 
on real world data, see http://www.cs.nott.ac.uk/~tec/NRP/. 
It currently has 13 data sets.  
The university timetabling community very often uses a set 
of benchmark data sets for examination timetabling. They 
are collected by a number of researchers and can be 
downloaded from the Web page 
http://www.cs.nott.ac.uk/~yxb/TTdata/. They are based on 
real world data but use mostly rather simplified set of 
constraints and a simple objective function to evaluate the 
quality of the schedule. 

Common Representation of Different 
Scheduling Problems 

The first question that arises in the context of different 
types of scheduling problems mentioned in Section 1 is 
what do they have in common? They are characterised by 
the existence of two sets of constraints, usually referred to 
as hard and soft constraints. Hard constraints must not be 
violated and they determine the feasibility of solutions. 
Very often, in practice, it is not possible to generate a 
solution that satisfies all the soft constraints (also called 
preference constraints). The extent of violation of soft 
constraints determines the quality of solutions.  
In these three types of scheduling problems, constraints 
differ very much in their nature. Typical constraints are as 
follows: 
1. Production scheduling: Precedence constraints that are 
imposed on jobs which define their order of processing on 
the machines; release and due dates which define the time 
when a job can start and should finish its processing, 
machine availability, etc. 
2. Nurse rostering: Cover constraints which determine the 
minimum number of nurses that must be assigned to a 
particular shift, the maximum and minimum number of 
days that a nurse may work in a row, the number of 

weekends that a nurse may work over a period of time, the 
preferred working shifts expressed by nurses, etc.  
3. University timetabling: There are some common 
constraints imposed on both university examination and 
course timetabling, such as: no person can be allocated to 
be in more than one place at a time, and the total resources 
required in each time period must not be greater than the 
resources that are available in that period. However, there 
is a large number of constraints that differ between the 
university examination and course timetabling. Typical 
soft constraints set in the examination timetabling 
problems are: the exams of each student should be equally 
spread over the examination period, precedence constraints 
are imposed on some exams, etc. Typical soft constraints 
set in the course timetable problems are: students should 
not have a single class on a day, students should not have 
more than two classes consecutively, etc. 
Considering different types of scheduling problems a 
question arises whether it would make sense to include all 
of them in the scheduling competition. There are pros and 
cons of having different types of scheduling problems in 
benchmark datasets. Over decades, the scheduling 
community has been focused on developing algorithms 
that work well on a particular problem. Very often, they 
use some domain knowledge in order to generate a high 
quality solution. Therefore, it is very likely that those types 
of algorithms could not run on different types of 
scheduling problems. However, recent years have seen an 
increase in research towards generating algorithms that 
work well over a range of scheduling problems, by 
choosing an appropriate heuristic(s) for a given problem. 
Such algorithms are usually referred to as “hyper-
heuristics” (Burke et al. 2003). Should the competition be 
open to both types of algorithms? In that case, we could 
rank separately algorithms for each type of scheduling 
problems, and also rank algorithms that are developed for 
solving all different types of scheduling problems. 
In order to consider different types of scheduling problems 
together, there must exist a unique formalism for their 
representation that will be able to capture a variety of 
existing domain-specific constraints. In the 
optimisation/scheduling community there have been some 
attempts to develop a language for constraint 
representation, but they addressed only a single type of 
problem. For example, Kingston (2001), and Reis and 
Oliveira (2001) designed languages for the formal 
representation of the constraints in university timetabling 
problems. Le Pape (1994) presented the software Schedule 
that was developed by ILOG, which implements a 
constraint language that is powerful enough to represent a 
variety of resource and temporal constraints. However, 
such a representation is more appropriate for a certain type 
of algorithms, such as constraint programming, which can 
work directly on this representation. Some other type of 
algorithms, such as meta-heuristics, may need to map the 
given representation of the problem into a representation 
suitable for their running before starting to construct a 
schedule. Therefore, the time required for mapping should 



not be taken into account when measuring the CPU time of 
algorithm running.   

Evaluation of Algorithms 
In general, the comparison of algorithms is a multi criteria 
problem. There are many criteria that have to be taken into 
account in the evaluation of an algorithm, such as the 
algorithmic power of the algorithm (i.e. its efficiency and 
effectiveness), the flexibility and extensibility (for 
example, how easy is to handle new constraints), learning 
capabilities (for example, whether the algorithm learns 
during the search of the solution space and consequently 
can choose an appropriate heuristic, or whether the 
algorithm learns from solving previous problems), etc. 
However, it would be difficult to rank the algorithms with 
respect to all of these criteria. It is well known that 
different multi criteria methods can offer different ranking 
result. Therefore, in order to have a unique rank of 
algorithms, the evaluation should be restricted to a single 
criterion. The two straightforward criteria that are of high 
importance and that are relatively easy to measure are the 
quality of generated solution(s) and the computation 
requirements. Although, in some scheduling environments, 
such as university examination and course timetabling, 
time does not play an important role because a timetable 
does not need to be generated quickly, in order to enable a 
fair comparison the same amount of time (CPU) should be 
given to all the algorithms. However, participants will run 
their algorithms on computers of different characteristics 
and this has to be taken into consideration. In the course 
timetabling competition mention in Introduction, a 
program was developed that tested roughly how long the 
participant was allowed to run his/her algorithm on a 
particular computer. Therefore, each participant would be 
given a certain CPU time to run his/her algorithm(s), while 
the quality of the generated solution would determine the 
“success” of the algorithm.  
In order to have a reliable indicator of the quality of the 
generated solutions the competition organiser should 
provide software for calculating the value of the objective 
function. This implies that a common output format for the 
solutions must be defined that would be used in this 
calculation. 
Apart from checking the quality of the solutions to the 
generated benchmark problems the submitted algorithms 
should run on a number of new problem instances unseen 
by the competitors. This was the practice in the 
international course timetabling competition in which three 
more timetabling problems were defined and used for 
evaluating the performance of the algorithms. The rationale 
behind this is to check whether the algorithm is designed to 
cope well just with the given problem instances or can 
successfully solve new ones.  

Randomly Generated Problems  
Versus Real-world Problems 

The competition should consider both randomly generated 
benchmark problems and real-world problems. Randomly 
generated problems enable us to control the properties of 
the problems. The size of a problem is a general property 
of all the types of scheduling problems. For example, we 
can define small, medium and large problems with respect 
to the number of events to be scheduled in an university 
timetabling problem (this classification was used in the 
course timetabling competition). In addition, some more 
“sophisticated” properties determine the difficulty of a 
problem. For example, some research work has been 
carried out into the measuring of difficulty of production 
scheduling problems (Mattfield et al., 1999, Watson et al., 
2003, Streeter and Smith, 2006). This research work could 
serve as useful guidelines on what properties to consider 
when generating benchmarks problems. Therefore, 
randomly generated problems would enable us to test 
whether an algorithm works well on a wide variety of 
problems of different properties. 
On the other hand, solving real-world problems is (often) 
our ultimate goal. However, there are some inherent 
problems with using real-world benchmarks. First, they are 
often confidential and industrial collaborators do not want 
to make them publicly available for a variety of reasons. 
Second, real-world problems are often very complex and 
require a synergy of algorithms. For example, if the shop 
floor is overloaded a decision can be taken to include a 
night shift to complete jobs that have to be delivered 
urgently, which is an extra task on top of the scheduling 
decisions. Third, underlying almost every real-world 
scheduling problems are activities fraught with 
uncertainties (for example, a machine can breakdown, a 
job can take longer time to process, a required material for 
job processing is not available, etc). In such uncertain 
environments, rescheduling plays an important role. 
However, rescheduling raises a variety of additional 
research issues and in author’s opinion it should be left out 
of this competition. In spite of all the problems with real-
world data they are certainly of high value for the 
competition. Some real-world problems have structures 
that are difficult to obtain by randomly generated data, and 
consequently algorithms may exhibit different performance 
on them. 

Conclusions after the Competition 
This competition should serve as an excellent test bed for a 
wide range of algorithms for scheduling that have been 
developed or are under development. However, no definite 
conclusion about the superiority of a single algorithm 
should be drawn. No matter how carefully designed, our 
benchmark problems cannot cover a wide variety of 
scheduling problems that exist in the real-world. Although, 
one algorithm can have excellent performance on our 



benchmark problems, for some other benchmark problems 
with properties different from the ones that we considered, 
some other algorithms might be more suitable. Ideally, the 
algorithm developers should use the benchmark data sets to 
analyse which type of problems their algorithms can 
handle well and to compare their results with the results 
obtained by using other algorithms.  
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