
Towards the Benchmarks for Scheduling Problems

Sanja Petrovic

Automated Scheduling, Optimisation and Planning (ASAP) Research Group
School of Computer Science, University of Nottingham

Jubilee Campus, Nottingham NG8 1BB, UK

Introduction
The aim of this paper is not to offer any definite proposal
for the scheduling competition, but to discuss some of the
key issues to be considered in such an endeavour. The
discussion will refer to three types of scheduling problems:
production scheduling, employee scheduling (the
discussion will be focused on nurse rostering being a very
complex and highly constrained scheduling problem) and
university timetabling. The reasons for choosing these
types of scheduling problems are twofold: they are widely
studied in the scheduling community and have led to a
wealth of the scheduling models and algorithms, and the
author has experience in solving these problems. However,
the competition could include other types of scheduling
problems, such as project scheduling, etc. First, a brief
description of each of these types of problems will be
given, together with available benchmark problems. After
that, the following issues will be addressed: (a) is there a
need for a common formal representation of different
scheduling problems, (b) how to perform the evaluation of
the scheduling algorithms, (c) is there a need for both
randomly generated problem instances and real-world
ones, and (d) what conclusions could we draw after the
competition.
The paper will also draw upon the experiences gained in
the International Timetabling Competition organized by
the Metaheuristic Network and sponsored by Patat (a series
of conferences on Practice and Theory of Automated
Timetabling) that was held in 2003. More information
about this competition can be found on the Web page
http://www.idsia.ch/Files/ttcomp2002/. The 2nd
International Timetabling Competition will be organised in
the near future.

Types of Scheduling Problems
Three types of scheduling problems will be considered:
production scheduling, employee scheduling, and
university timetabling.
A production scheduling problem concerns the allocation
of resources (e.g., equipment, materials, labour) to tasks
over time under some constraints (Pinedo, 2002). A variety
of machine configurations were studied, including single
machine, parallel machines, flow shops, job shops, etc.

Different criteria such as makespan (i.e. the completion
time of the last job), the number of tardy (early) jobs, the
average tardiness (earliness) of jobs, and the total flow-
time have been typically considered as performance
measures.
The employee scheduling is defined as a problem of
placing resources into slots in a pattern, subject to given
constraints, where the pattern denotes a set of legal shifts
defined in terms of work to be done (Wren, 1996). Nurse
rostering is a particularly complex and constrained type of
employee scheduling problem, which takes into
consideration different, usually conflicting staff
qualifications, and a large number of legal, management
and staff requirements (Burke et al. 2004).
University timetabling problems can be classified into two
main categories: course and examination timetabling. In
course (examination) timetabling problems a number of
courses (exams) are allocated into a number of available
classrooms and a number of timeslots, subject to given
constraints (Burke and Petrovic, 2002).
One of the main differences between these three types of
scheduling problems is that nurse rostering and university
timetabling are in general treated as static problems in the
sense that the size of the problem is not changing over
time, while production scheduling problems can be both
static and dynamic. In the dynamic scheduling problems
the size of the problem changes dynamically; for example,
the number of machines can change due to unavailability
of a machine, new jobs enter the shop floor over time, etc.
The further discussion will focus on the static problems.
The literature on scheduling models and algorithms is very
rich indeed. In general, the algorithms can be classified
into two broad classes: constructive and improvement
algorithms (Pinedo, 2002). The constructive algorithms
start with an empty schedule and gradually construct a
schedule by adding one element (for example, an
exam/course, a job, etc) into a schedule at each step. The
improvement algorithms start from a complete schedule
and then try to improve it with respect to the objective
function by manipulating the elements of the schedule.
For each of these three types of problems there exist a
number of benchmark problems that can be downloadable
from the Internet.
There is a number of production scheduling benchmark
problems. Two of them that are of particular interest are as
follows:

(a) Generated by Demirkol et al., presented in (Demirkol et
al. 1996) and downloadable from the Web page
http://cobweb.ecn.purdue.edu/~uzsoy/ResearchGroup/Inde
x.html. It contains a wide variety of scheduling problems
including single and parallel machine environments, job
shop with different routing configurations, problems with
dynamic arrivals of jobs, etc. In total, there are almost
10,000 data sets.
(b) Generated by Taillard, presented in (Taillard, 1993) and
downloadable from the Web page
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/jobshopinfo.ht
ml. It contains 260 randomly generated, rather simple
scheduling problems. However, the size of these problem
instances correspond to real dimensions of industrial
problems (starting from 20 jobs 5 machines up to 500 jobs
20 machines).
For a long time, there were no benchmark data sets
available for nurse rostering. Recently, an excellent Web
page was formed that contained benchmark data sets based
on real world data, see http://www.cs.nott.ac.uk/~tec/NRP/.
It currently has 13 data sets.
The university timetabling community very often uses a set
of benchmark data sets for examination timetabling. They
are collected by a number of researchers and can be
downloaded from the Web page
http://www.cs.nott.ac.uk/~yxb/TTdata/. They are based on
real world data but use mostly rather simplified set of
constraints and a simple objective function to evaluate the
quality of the schedule.

Common Representation of Different
Scheduling Problems

The first question that arises in the context of different
types of scheduling problems mentioned in Section 1 is
what do they have in common? They are characterised by
the existence of two sets of constraints, usually referred to
as hard and soft constraints. Hard constraints must not be
violated and they determine the feasibility of solutions.
Very often, in practice, it is not possible to generate a
solution that satisfies all the soft constraints (also called
preference constraints). The extent of violation of soft
constraints determines the quality of solutions.
In these three types of scheduling problems, constraints
differ very much in their nature. Typical constraints are as
follows:
1. Production scheduling: Precedence constraints that are
imposed on jobs which define their order of processing on
the machines; release and due dates which define the time
when a job can start and should finish its processing,
machine availability, etc.
2. Nurse rostering: Cover constraints which determine the
minimum number of nurses that must be assigned to a
particular shift, the maximum and minimum number of
days that a nurse may work in a row, the number of

weekends that a nurse may work over a period of time, the
preferred working shifts expressed by nurses, etc.
3. University timetabling: There are some common
constraints imposed on both university examination and
course timetabling, such as: no person can be allocated to
be in more than one place at a time, and the total resources
required in each time period must not be greater than the
resources that are available in that period. However, there
is a large number of constraints that differ between the
university examination and course timetabling. Typical
soft constraints set in the examination timetabling
problems are: the exams of each student should be equally
spread over the examination period, precedence constraints
are imposed on some exams, etc. Typical soft constraints
set in the course timetable problems are: students should
not have a single class on a day, students should not have
more than two classes consecutively, etc.
Considering different types of scheduling problems a
question arises whether it would make sense to include all
of them in the scheduling competition. There are pros and
cons of having different types of scheduling problems in
benchmark datasets. Over decades, the scheduling
community has been focused on developing algorithms
that work well on a particular problem. Very often, they
use some domain knowledge in order to generate a high
quality solution. Therefore, it is very likely that those types
of algorithms could not run on different types of
scheduling problems. However, recent years have seen an
increase in research towards generating algorithms that
work well over a range of scheduling problems, by
choosing an appropriate heuristic(s) for a given problem.
Such algorithms are usually referred to as “hyper-
heuristics” (Burke et al. 2003). Should the competition be
open to both types of algorithms? In that case, we could
rank separately algorithms for each type of scheduling
problems, and also rank algorithms that are developed for
solving all different types of scheduling problems.
In order to consider different types of scheduling problems
together, there must exist a unique formalism for their
representation that will be able to capture a variety of
existing domain-specific constraints. In the
optimisation/scheduling community there have been some
attempts to develop a language for constraint
representation, but they addressed only a single type of
problem. For example, Kingston (2001), and Reis and
Oliveira (2001) designed languages for the formal
representation of the constraints in university timetabling
problems. Le Pape (1994) presented the software Schedule
that was developed by ILOG, which implements a
constraint language that is powerful enough to represent a
variety of resource and temporal constraints. However,
such a representation is more appropriate for a certain type
of algorithms, such as constraint programming, which can
work directly on this representation. Some other type of
algorithms, such as meta-heuristics, may need to map the
given representation of the problem into a representation
suitable for their running before starting to construct a
schedule. Therefore, the time required for mapping should

not be taken into account when measuring the CPU time of
algorithm running.

Evaluation of Algorithms
In general, the comparison of algorithms is a multi criteria
problem. There are many criteria that have to be taken into
account in the evaluation of an algorithm, such as the
algorithmic power of the algorithm (i.e. its efficiency and
effectiveness), the flexibility and extensibility (for
example, how easy is to handle new constraints), learning
capabilities (for example, whether the algorithm learns
during the search of the solution space and consequently
can choose an appropriate heuristic, or whether the
algorithm learns from solving previous problems), etc.
However, it would be difficult to rank the algorithms with
respect to all of these criteria. It is well known that
different multi criteria methods can offer different ranking
result. Therefore, in order to have a unique rank of
algorithms, the evaluation should be restricted to a single
criterion. The two straightforward criteria that are of high
importance and that are relatively easy to measure are the
quality of generated solution(s) and the computation
requirements. Although, in some scheduling environments,
such as university examination and course timetabling,
time does not play an important role because a timetable
does not need to be generated quickly, in order to enable a
fair comparison the same amount of time (CPU) should be
given to all the algorithms. However, participants will run
their algorithms on computers of different characteristics
and this has to be taken into consideration. In the course
timetabling competition mention in Introduction, a
program was developed that tested roughly how long the
participant was allowed to run his/her algorithm on a
particular computer. Therefore, each participant would be
given a certain CPU time to run his/her algorithm(s), while
the quality of the generated solution would determine the
“success” of the algorithm.
In order to have a reliable indicator of the quality of the
generated solutions the competition organiser should
provide software for calculating the value of the objective
function. This implies that a common output format for the
solutions must be defined that would be used in this
calculation.
Apart from checking the quality of the solutions to the
generated benchmark problems the submitted algorithms
should run on a number of new problem instances unseen
by the competitors. This was the practice in the
international course timetabling competition in which three
more timetabling problems were defined and used for
evaluating the performance of the algorithms. The rationale
behind this is to check whether the algorithm is designed to
cope well just with the given problem instances or can
successfully solve new ones.

Randomly Generated Problems
Versus Real-world Problems

The competition should consider both randomly generated
benchmark problems and real-world problems. Randomly
generated problems enable us to control the properties of
the problems. The size of a problem is a general property
of all the types of scheduling problems. For example, we
can define small, medium and large problems with respect
to the number of events to be scheduled in an university
timetabling problem (this classification was used in the
course timetabling competition). In addition, some more
“sophisticated” properties determine the difficulty of a
problem. For example, some research work has been
carried out into the measuring of difficulty of production
scheduling problems (Mattfield et al., 1999, Watson et al.,
2003, Streeter and Smith, 2006). This research work could
serve as useful guidelines on what properties to consider
when generating benchmarks problems. Therefore,
randomly generated problems would enable us to test
whether an algorithm works well on a wide variety of
problems of different properties.
On the other hand, solving real-world problems is (often)
our ultimate goal. However, there are some inherent
problems with using real-world benchmarks. First, they are
often confidential and industrial collaborators do not want
to make them publicly available for a variety of reasons.
Second, real-world problems are often very complex and
require a synergy of algorithms. For example, if the shop
floor is overloaded a decision can be taken to include a
night shift to complete jobs that have to be delivered
urgently, which is an extra task on top of the scheduling
decisions. Third, underlying almost every real-world
scheduling problems are activities fraught with
uncertainties (for example, a machine can breakdown, a
job can take longer time to process, a required material for
job processing is not available, etc). In such uncertain
environments, rescheduling plays an important role.
However, rescheduling raises a variety of additional
research issues and in author’s opinion it should be left out
of this competition. In spite of all the problems with real-
world data they are certainly of high value for the
competition. Some real-world problems have structures
that are difficult to obtain by randomly generated data, and
consequently algorithms may exhibit different performance
on them.

Conclusions after the Competition
This competition should serve as an excellent test bed for a
wide range of algorithms for scheduling that have been
developed or are under development. However, no definite
conclusion about the superiority of a single algorithm
should be drawn. No matter how carefully designed, our
benchmark problems cannot cover a wide variety of
scheduling problems that exist in the real-world. Although,
one algorithm can have excellent performance on our

benchmark problems, for some other benchmark problems
with properties different from the ones that we considered,
some other algorithms might be more suitable. Ideally, the
algorithm developers should use the benchmark data sets to
analyse which type of problems their algorithms can
handle well and to compare their results with the results
obtained by using other algorithms.

References
Burke, E. K., De Causmaecker, P., Vanden Berghe, G. and
Van Landeghem, H. 2004. The state of the art of nurse
rostering, Journal of Scheduling 7(6): 441–499.

Burke, E., and Erben, M. eds. 2001. Lecture Notes in
Computer Science, Vol. 2079: Springer.

Burke, E.K., Kendall, G., Newall, J., Hart, E., Ross P., and
Schulenburg S. 2003. Hyper-heuristics: An Emerging
Direction in Modern Search Technology, in Glover F., and
Kochenberger G. (eds) Handbook of Meta-heuristics,
Chapter 16, 457-474: Kluwer.

Burke, E.K., and Petrovic, S. Recent Research Directions
in Automated Timetabling, European Journal of
Operational Research - EJOR 140(2): 266-280.

Demirkol, E., Mehta, S.V., Uzsoy, R. 1998. Benchmarks
for Shop Scheduling Problems, European Journal of
Operational Research – EJOR 109: 137-141.

Le Pape, C. 1994. Implementation of Resource Constraints
in ILOG SCHEDULE: A Library for the Development of
Constraint-Based Scheduling Systems, Intelligent Systems
Engineering 3(2): 55-66.

Kingston, J. 2001. Modelling Timetabling Problems with
STTL, in (Burke and Erben, 2001), 309-321: Springer.

Mattfeld, D.C. Bierwirth, C., and Kopfer, H. 1999. A
search space analysis of the Job Shop Scheduling Problem,
Annals of Operations Research 86: 441–453.

Pinedo M. 2002. Scheduling: Theory, Algorithms, and
Systems, Prentice Hall.

Reis L.P., Oliveira,E. 2001. A Language for Specifying
Complete Timetabling Problems, in (Burke and Erben,
2001), 322-341: Springer.

Streeter, M. J. and Smith, S. F. 2006. How the Landscape
of Random Job Shop Scheduling Instances Depends on the
Ratio of Jobs to Machines, Journal of Artificial Inteligence
Research 26: 247-287

Watson, J-P. Beck, C, Howe, A. Whitley D. 2003. Problem
Difficulty for Tabu Search in Job-Shop Scheduling,
Artificial Intelligence 143(2): 189 – 217.

Wren, A. 1996. Scheduling, timetabling and rostering - a
special relationship? In Burke E. and Ross P. (eds), Lecture
Notes in Computer Science Vol. 1153, 46–75: Springer.

Web Pages:
(International Course Timetabling Competition)
http://www.idsia.ch/Files/ttcomp2002/

(nurse rostering benchmarks)
http://www.cs.nott.ac.uk/~tec/NRP/

(production scheduling benchmarks)
http://cobweb.ecn.purdue.edu/~uzsoy/ResearchGroup/Inde
x.html

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/jobshopinfo.ht
ml

(university timetabling benchmarks)
http://www.cs.nott.ac.uk/~yxb/TTdata/

