
Plan Coordination for Durative Tasks

J. Renze Steenhuisen and Cees Witteveen
Faculty of Electrical Engineering, Mathematics and Computer Science,

Delft University of Technology
P.O. Box 5031, 2600 GA Delft, The Netherlands

Abstract

In multi-agent domains, agents can be given planning
or scheduling autonomy through coordination. However,
plan coordination discards available scheduling information,
while schedule coordination possibly over-constrains the
problem from a planning point of view. In an attempt to attack
this problem, we included more temporal information used in
schedule coordination into the plan-coordination framework.
We discovered that plan coordination can be achieved when
reasoning with qualitative temporal constraints and durative
tasks. Additionally, we defined this new coordination prob-
lem and studied its complexity. The relevance of this work is
that it studies plan coordination in a wider context, such that
the agents can–through coordination–be provided with both
planning and scheduling autonomy.

Introduction
Agents are being introduced in a wide variety of task do-
mains, because they promise to increase agility. These agent
systems are emerging in such diverse domains as multi-
modal transportation (Chiu et al. 2005), firefighting with
unmanned aerial vehicles and air traffic control (Léauté &
Williams 2005), and crisis response (Harrald 2005). In gen-
eral, the tasks that need to be performed in these domains
are interdependent, require more than one agent to execute
them, require a task-planning process for every individual
agent, and need to be completed on time. Obviously, due
to the task interdependencies, some form of coordination
mechanism is needed to ensure that the results of the task-
planning processes are jointly feasible. In general, such
a coordination mechanism (Christodoulou, Koutsoupias, &
Nanavati 2004) should enable individual agents to choose
their preferred way to solve their part of the task, thereby
(minimally) reducing the initial (planning) autonomy of the
agents. Therefore, the quality of a coordination mechanism
depends on both the severeness of the restrictions imposed
and the overall performance quality it allows. In this pa-
per, we propose and analyse the (computational complexity)
properties of such a coordination mechanism for interrelated
tasks with time constraints. Before we introduce the basics
of our coordination framework, we will place it in a more
general perspective.
Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Background First of all, the reader should be aware that
there are several existing approaches to solve this plan-
coordination problem. For example, in (Smith et al. 2007)
the authors propose to manage the coordinated planning and
execution of the tasks by letting the agents keep each other
informed about any changes (e.g., completed, new, or re-
scheduled tasks). It is clear that such an approach requires
the agents to be collaborative, each agent willing to inform
other agents about details of its individual plan and cannot be
used if the agents are competitive or self-interested. More-
over, this mechanism will fail when communication is im-
possible or difficult to establish.

In this paper, we advocate a more principled approach to
the plan-coordination problem. First of all, we distinguish
different phases in a multi-agent planning process each re-
quiring some form of coordination. Second, we distinguish
some specific interrelations between tasks and agents that
determine which form of coordination is required in the
(multi-agent) planning process. Together, these phases and
interrelationships determine which form of coordination is
required in which phase of the planning process (see also
(Zlot & Stentz 2006)).

To start with the four main phases in the planning pro-
cess, in the allocation phase, tasks are assigned to agents
that are capable of completing it. Second, the order in which
the tasks are to be executed is determined in the planning
phase. Third, a time schedule is constructed for the tasks in
the scheduling phase that is compatible with the plan. Last,
we have the execution phase in which the tasks are executed
according to the constructed schedule.

The interrelationship between tasks and agents determine
in which phase plan coordination is needed and which form
of plan coordination should be applied. First, a set of tasks
M is called loosely coupled with respect to a set of agents
A when the tasks occurring in M can be assigned to the
agents A ∈ A such that there exist no dependency rela-
tions between tasks assigned to different agents. Clearly,
if we have a loosely-coupled system, each agent is able to
construct an independent plan for its subset of tasks. There-
fore, coordination is not needed in the planning, scheduling,
and execution phase and reduces to solving a task-allocation
problem. Examples of this category are tasks that are totally
independent of each other, such as searching for casualties
in different parts of a city.

Second, if the set of tasks M is partially ordered by some
dependency relation, and it is impossible to assign the tasks
such that tasks assigned to different agents in A have no de-
pendency relation between them, then M is said to be mod-
erately coupled. For these complex tasks, plan coordination
is required before or during the planning phase in order to
ensure that the induced partially-ordered dependency rela-
tion between agents is preserved by the individual planning
processes. There is, however, no a-priori need to provide
a coordination mechanism in the scheduling or execution
phase if plan coordination can be guaranteed. Typical prob-
lems in this category are monitoring tasks, patient schedul-
ing, and multi-modal transportation tasks.

Finally, if the set of tasks M is moderately coupled and,
moreover, requires the satisfaction of constraints (e.g., time
constraints) when scheduling and executing the tasks, the
set of tasks is said to be tightly coupled. Here, coordina-
tion is required in the planning, scheduling, and execution
phase. Examples of tightly-coupled tasks are (i) extinguish-
ing a large fire that requires simultaneous action of multi-
ple firefighters from different angles, and (ii) simultaneously
lifting a patient onto a bed.

Plan coordination: previous and current work In pre-
vious work (Steenhuisen et al. 2006; Buzing et al. 2006),
we concentrated on the the plan-coordination problem for
moderately-coupled tasks. Basically, in these papers, we
showed that there exists a plan-coordination mechanism
(although difficult to design) that is able to reduce a
moderately-coupled task to a loosely-coupled task. In other
words, such a plan-coordination mechanism is able to guar-
antee the participating agents that they can plan completely
independent from the other agents while still guarantee-
ing the feasibility of the joint plan. This approach is ro-
bust against failing communication, allows individual re-
planning, and additional tasks to be done by the agents while
not violating global constraints. Moreover, this approach is
applicable in many other domains where agents are unwill-
ing or unable to revise their plans.

In more recent work (Steenhuisen & Witteveen 2007), we
have extended this approach to tightly-coupled tasks with
dependency constraints and synchronisation constraints. We
showed that there exist plan-coordination mechanisms that
guarantee independent planning by the individual agents, but
require information exchange after planning to establish the
exact time of scheduling synchronisation tasks.

In this paper, we will extend the planning approach,
showing that we can also provide coordination mechanisms
for durative tasks with time constraints. The coordination
mechanisms developed ensure the participating agents that
whatever feasible plan they provide for their own set of
tasks, there always exists a schedule for the joint plan ob-
tained by assembling the individual plans. However, this
does not mean that all locally feasible schedules are guaran-
teed to form a feasible joint schedule. In this paper, we re-
duce the construction from previously developed coordina-
tion mechanisms to those with durative tasks and time con-
straints, which implies that the latter are at least as hard to
design as the former mechanisms.

Framework
We consider a set of agents A = {A1, . . . , An} that have to
complete a complex task T . Such a complex task consists
of a set M = {m1, . . . ,mk} of methods mi, together with a
set of constraints on the execution of these methods. These
constraints can be partitioned into a set of dependency con-
straints, determining for each method the set of methods it
is dependent upon and a set of synchronisation constraints
determining which methods mj should be executed concur-
rently with a given method m.

For a uniform representation also suitable for temporal
planning aspects, we use a set of time points T and binary
relations between them to represent methods and relations
between them. First of all, each mi ∈ M is represented by
an ordered pair (ti,s, ti,e) where ti,s is the time point indi-
cating the starting time of mi and ti,e its ending time. De-
pendencies and synchronisation relations between methods
can now be represented by relations between time points as
follows. We distinguish a partial order ≺ ⊆ (T × T) rep-
resenting the dependency relation and an equivalence rela-
tion ≡ ⊆ (T × T) for synchronisation. More precisely, if
a method mj depends on method mi, there is a dependency
constraint ti,e ≺ tj,s. Furthermore, for every method mi,
ti,s ≺ ti,e. If mi is synchronised with mj , then ti,s ≡ tj,s
and ti,e ≡ tj,e. Note that since ≡ is an equivalence relation,
each time point t ∈ T is synchronised with itself.

Finally, the composition of ≺ and ≡ satisfies the follow-
ing two natural inclusion properties.

1. (≺ ◦ ≡) ⊆ ≺ and (≡ ◦ ≺) ⊆ ≺, which means that
(t ≺ t′ ∧ t′ ≡ t′′ implies t ≺ t′′) and (t ≡ t′ ∧ t′ ≺ t′′

implies t ≺ t′), and
2. (≺ ∩ ≡) = ∅, meaning that ≺ and ≡ are orthogonal

relations.

Temporal relations and classification of complex tasks
In many planning domains (e.g., airport planning, manufac-
turing, and supply-chain management), we have to account
for temporal constraints that constrain the execution of a
method relative to the execution of other methods. Seven1

of such qualitative temporal constraints have been iden-
tified for (qualitative) time intervals: before, overlaps,
during, meets, starts, finishes, and equals (Allen
1983). In previous work (Steenhuisen & Witteveen 2007),
we showed that all these qualitative temporal constraints can
be represented in a task framework with time points, to-
gether with the above precedence and synchronisation con-
straints.

Also, a clear distinction is emerging on the degree to
which methods can be coupled using these constraints. On
the one hand, we have the constraints that require both
precedence and synchronisation constraints (i.e., meets,
starts, finishes, and equals), while others only
need precedence constraints (i.e., before, overlaps, and
during). We call the complex tasks in which the end points
of methods are constrained by both precedence and synchro-
nisation constraints tightly-coupled tasks, when only prece-

1Neglecting the converse of each of these relations.

1A 2A

1,st 2,st1,et 2,et

4,et 3,et4,st 3,st

(a) Instance

1A 2A

1,st 2,st1,et 2,et

4,et 3,et4,st 3,st

(b) Deadlock

Figure 1: An uncoordinated moderately-coupled task.

dence constraints are used moderately-coupled tasks, and
loosely-coupled tasks when methods are not constrained at
all. This classification corresponds to the distinction made
in the introduction.

Before we discuss an extension of this framework with
time windows and durations, we first give an overview of
the results already obtained for coordinating moderately and
tightly-coupled tasks.

Plan coordination for moderately-coupled tasks
Note that in moderately-coupled tasks, we have a set of time
points T and a partially-ordered precedence relation ≺ be-
tween time points. Each method mi ∈ M is represented
by an ordered pair (ti,s, ti,e) of time points. We assume the
original set M to be partitioned into n disjoint sets Mi, rep-
resenting the subset2 of methods to be executed by agent
Ai. Therefore, the complex task assigned to Ai can be rep-
resented by a partial order 〈Ti,≺i〉, where Ti is the subset
of time points associated with Mi, and ≺i the partial order
≺ restricted to Ti.

The agents are assumed to be independent and self-
interested planners, able to reason with all given informa-
tion. Therefore, every agent Ai is allowed to come up
with an individually chosen plan, ordering the methods it
received, as long as it is compatible with the original con-
straints ≺i. That implies that every plan 〈Ti,≺

∗

i 〉 could be
put forward by an agent Ai as long as ≺∗

i is a partial order
extending ≺i.

It is easy to see that, in many cases, not every combi-
nation of such autonomously chosen plans will result in a
jointly feasible plan. For example, in Figure 1(a), a complex
task is shown where agents A1 and A2 can plan m4 ≺ m1

and m2 ≺ m3 (see Figure 1(b)). But when these plans are
joined, a cycle 〈m1,m2,m3,m4,m1〉 is introduced. Such a
cycle indicates an infeasible joint plan, since it implies m1

to precede m2, but also vice versa. Since such an infeasible
combination of individually feasible plans is possible, we
call this complex task uncoordinated.

Thus, a plan-coordination mechanism should ensure that
whatever feasible plans are chosen by the individual agents
Ai, the joining of these plans constitutes a feasible global
plan for the original set of methods M , satisfying all depen-
dencies. Such a plan-coordination mechanism then should
prevent every potential inter-agent cycle.

2How to find a suitable assignment for a set of agents is a sepa-
rate problem (Zlot & Stentz 2006; Shehory & Kraus 1998), and is
beyond the scope of this paper.

1A 2A

1,st 2,st1,et 2,et

4,et 3,et4,st 3,st

(a) Instance

1A 2A

1,st 2,st1,et 2,et

4,et 3,et4,st 3,st

(b) Deadlock

Figure 2: An uncoordinated tightly-coupled task.

Plan coordination can be achieved by plan decou-
pling (Valk 2005): Adding precedence constraints to the set
of time points of each agent such that every agent Ai is al-
lowed to autonomously construct a plan for its set Mi of
methods, respecting only the set ≺i of local constraints and
the existence of a feasible joint plan is always guaranteed.

The plan-decoupling problem (PDP) is to find a minimum
set of such additional constraints.

PDP FOR MODERATELY-COUPLED TASKS
INSTANCE: A moderately-coupled task 〈{Ti}

n
i=1,≺〉 and a

positive integer K.
QUESTION: Does there exist a coordination set Γ with
|Γ| ≤ K such that 〈{Ti}

n
i=1, (≺ ∪ Γ)+〉 is coordinated?3

This problem, as well as some of its variants, has been
studied quite extensively. It turns out that this problem is Σp

2-
complete in general (Valk 2005), and NP-complete when
the number of agents is bounded by some constant (Steen-
huisen et al. 2006). In addition, it was shown that this
decoupling problem is APX-hard, and that a constant-ratio
approximation algorithm is not likely to exist (Valk 2005).
There exists a simple polynomial-time algorithm that finds
a sufficient—but not necessarily minimum—coordination
set for distributed tasks with precedence constraints. For
some restricted cases of plan coordination, this algorithm
has even been shown to be a constant-ratio approximation
algorithm (ter Mors, Valk, & Witteveen 2006).

Plan coordination for tightly-coupled tasks
Analogous to moderately-coupled tasks, the coordination
problem for a tightly-coupled task 〈{Ti}

n
i=1,≺,≡〉 occurs if

methods in some set M are assigned to agents such that each
agent Ai has to complete a part 〈Ti,≺i,≡i〉 of it. However,
since some methods need to be synchronised, the agents
want to find individually suitable plans that they do not need
to revise when agreeing upon a joint schedule for the set
of methods. The coordination problem for tightly-coupled
tasks then is how to ensure that, whatever individually fea-
sible plan is chosen for an agent’s complex task, there will
always exist a joint schedule for the total set of methods that
satisfies each of the individual plans.

Clearly, in order to complete his part 〈Ti,≺i,≡i〉 each
agent Ai can choose a plan πi = 〈Ti,≺

∗

i ,≡
∗

i 〉 for it, where
≺i⊆≺∗

i and ≡i⊆≡∗

i . Such a plan can simply be conceived
as a refinement of the partially-ordered set 〈Ti,≺i,≡i〉.

3For any relation ρ, the transitive closure is denoted by ρ
+.

The joint plan for a set of agents A on a tightly-coupled
task 〈{Ti}

n
i=1,≺,≡〉 is a plan π = 〈{Ti}

n
i=1,≺

∗,≡∗〉 where
(i) each plan πi = 〈Ti,≺

∗

i ,≡
∗

i 〉 of agent Ai is respected, i.e.,
≺∗

i⊆ (≺∗ ∩ (Ti × Ti)), (ii) ≺ ⊆ ≺∗, and (iii) ≡ ⊆ ≡∗.
An individual schedule si : Ti → Z is said to satisfy the

individual plan π = 〈{Ti}
n
i=1,≺

∗,≡∗〉 of agent Ai if the
following conditions hold:

1. ∀t, t′ ∈ Ti: t ≺ t′ implies si(t) < si(t
′), and

2. ∀t, t′ ∈ Ti: t ≡ t′ implies si(t) = si(t
′)

Finally, a set of individual schedules {si}
n
i=1 of individual

plans πi constitutes a joint schedule if the following holds:
1. ∀t ∈ Ti, t

′ ∈ Tj : t ≺ t′ implies si(t) < sj(t
′), and

2. ∀t ∈ Ti, t
′ ∈ Tj : t ≡ t′ implies si(t) = sj(t

′).
Now, we say that a tightly-coupled task 〈{Ti}

n
i=1,≺,≡〉

assigned to a set of agents A is coordinated if for every com-
bination {πi}

n
i=1 of individually chosen feasible plans there

exist a set of schedules {si}
n
i=1 such that each si satisfies πi

and {si}
n
i=1 constitutes a joint schedule.

Analogous to the moderately-coupled case, coordination
for tightly-coupled tasks can be achieved by plan decou-
pling, that is finding a (minimum) set of additional con-
straints that allow agents to plan autonomously while guar-
anteeing the existence of a joint schedule based on their in-
dividually chosen plans. The associated problem is the fol-
lowing plan-decoupling problem.

PDP FOR TIGHTLY-COUPLED TASKS
INSTANCE: A tightly-coupled task 〈{Ti}

n
i=1,≺,≡〉 and a

positive integer K.
QUESTION: Does there exist a coordination set Γ with
|Γ| ≤ K such that 〈{Ti}

n
i=1, (≺ ∪ Γ)+,≡〉 is coordinated?

Recently, we showed that PDP for tightly-coupled tasks
is Σp

2-complete (Steenhuisen & Witteveen 2007). Fur-
thermore, we showed that, with some minor modifica-
tions, the same approximation algorithm can be used as for
moderately-coupled tasks.

Surprisingly, viewing the problem computationally, coor-
dinating moderately or tightly-coupled tasks does not differ
significantly.

Plan coordination of Durative Task Networks
In the previous section, we described our framework for
studying PDP, and summarised some relevant achieved re-
sults. The most elaborate complex tasks on which PDP was
studied, are the tightly-coupled tasks. Although the qualita-
tive temporal constraints can be used in these tasks already,
it is not possible to use any form of quantitative temporal
constraint. In this section, we make a start at closing this
gap by introducing both time windows on the methods and
durations of methods to the framework.

We formally represent our extended tightly-coupled tasks
as a tuple 〈{Ti}

n
i=1,≺,≡, I, δ〉, and refer to it as a Du-

rative Task Network (DTN). Here, the first three entries
are equal to those used in tightly-coupled tasks. Then,
for each time point t, there is a time window (or tempo-
ral interval) I(t) = (lb(t), ub(t)), with lb(t) < ub(t),

lb(t) ∈ Z ∪ {−∞} and ub(t) ∈ Z ∪ {∞}. The most re-
laxed time window is the universal time window, (−∞,∞),
which bounds are used when no lower or upper bound is
provided. Furthermore, each method mi has a certain fixed
duration δ(mi) ∈ Z

+ that represents the temporal distance
from ti,s to ti,e. Clearly, it must hold for method mi that
ub(ti,e) − lb(ti,s) ≥ δ(mi). Note that a time window [x, y]
can be rewritten to (x − ε, y + ε), where ε is the smallest
temporal distance between two time points.

Without loss of generality, we assume the following intu-
itive properties to hold for each DTN:
• If t ≺ t′ then lb(t′) := max(lb(t)+ε, lb(t′)) and ub(t) :=

min(ub(t), ub(t′) − ε),
• if t ≡ t′ then I(t) := I(t′) :=

[max(lb(t), lb(t′)),min(ub(t), ub(t′))], and
• for each method mi, ub(ti,s) := min(ub(ti,s), ub(ti,e)−

δ(mi)) and lb(ti,e) := max(lb(ti,s) + δ(mi), lb(ti,e)).
A DTN for which these conditions hold, is called nor-

malised. Henceforth, we assume each DTN to be normalised
unless stated otherwise. Note that the time windows of ti,s

and ti,e have the same width, and that this width is the avail-
able slack. We need ε ≤ mini δ(mi), but we can assume,
without loss of generality, that the smallest temporal dis-
tance is ε = 1. Others have already reported on great gains
in practise for scheduling by using these tighter bounds (Sul-
tanik, Modi, & Regli 2006).

A feasible schedule s : T → Z for a DTN 〈{Ti}
n
i=1,≺

,≡, I, δ〉 is defined analogously to a schedule for tightly-
coupled tasks with the additional requirement that for every
t ∈ T , lb(t) < s(t) < ub(t) and for every method mi,
s(ti,e) − s(ti,s) = δ(mi).

A DTN 〈{Ti}
n
i=1,≺,≡, I, δ〉 is called globally consis-

tent if there exists at least one schedule s for it. If the
DTN is a single agent DTN 〈Ti,≺i,≡i, I, δ〉 it is called lo-
cally consistent if there is at least one feasible schedule for
it. A DTN 〈{Ti}

n
i=1,≺,≡, I, δ〉 is called coordinated if it

is globally consistent for every combination of extensions
〈Mi,≺

∗

i ,≡
∗

i 〉 of the agent’s DTNs that are locally consis-
tent.

Reduced DTNs Remember that plan decoupling for
moderately-coupled tasks in fact reduced a coordination
problem for moderately-coupled tasks to loosely-coupled
tasks, by allowing the agents to plan autonomously.

Before we analyse the decoupling problem for DTNs, in
this paragraph, we show that every DTN instance can be re-
duced to a reduced DTN instance without time windows,
obtaining a tightly-coupled task with durations. The idea is
to introduce a new time agent A0 that represents an abso-
lute time line, which is a totally-ordered set of time points.
Although more time points can be mentioned on that time
line, we at least need the upper and lower bounds used in
the time windows. Because we defined our time windows
as (lb(t), ub(t)), precedence constraints can be used to con-
strain the occurrence of any time point t allowed during ex-
ecution by tlb(t) ≺ t ≺ tub(t).

We now give a more formal reduction in which the time
window constraints are replaced by a a set of precedence
constraints using an additional time agent.

Given an instance 〈{Ti}
n
i=1,≺,≡, I, δ〉, we first collect

all the lower and upper bounds of the time windows I(t).
More precisely, for each time point t, the time window
I(t) = (lb(t), ub(t)) is coded into two values s and s′,
where s = tlb(t) and s′ = tub(t). We collect the total set
of all these time values in the set T0 = {s1, . . . , sp} where
s1 < · · · < sp. Now, we construct the following coordina-
tion instance 〈{Ti}

n
i=0,≺

′,≡′, δ〉, where
1. The partitioned set of tasks is extended to {T0}∪{Ti}

n
i=1.

2. The precedence relation ≺′ equals ≺ extended with the
total ordering imposed on T0. Moreover, for each task
t, with associated time window I(t) = (s, s′), two addi-
tional precedence constraints s ≺ t and t ≺ s′ are con-
structed. The result then is ≺′=≺ ∪{si ≺ sj | 1 ≤ i <
j ≤ p} ∪ {s ≺ t, t ≺ s′ | t ∈

⋃n

i=1 Ti, s = lb(t), s′ =
ub(t)}.

3. The synchronisation relation ≡′ equals the relation ≡ ex-
tended with the tuples t ≡ si, for each time point t with
I(t) = (si − ε, sj + ε) and si = sj .

1A

25

10

40

50

3,et

3,st

2,st

2,et

1,st

1,et

4,st

4,et 2A

15

0A
45

35

30

20

Figure 3: Reducing a DTN with time windows to a DTN
tightly-coupled task.

Example 1 As an illustration, consider the tightly-coupled
task depicted in Figure 3. In fact, this complex task is the
result of applying the above reduction to a DTN. Clearly, all
time windows have been replaced by precedence constraints
to the totally-ordered time line of agent A0.

Although the complex task in this example is already coor-
dinated, it is not hard to come up with examples that are un-
coordinated. For instance, such an uncoordinated task can
be constructed by extending the moderately-coupled task
given in Figure 1(a) as follows. Let all methods mi have
a duration of δ(mi) = 3, and constrain each time point with
time windows (17, 43). Clearly, this task is uncoordinated
because it contains the possible deadlock that is shown in
Figure 1(b). However, by adding the constraint m4 ≺ m2,
all potential inter-agent cycles are prevented.

In general, a coordination set Γ for a reduced DTN also is
a coordination set for the original task with time windows.

This can easily be seen by noting that a coordination set only
contains precedence intra-agent precedence constraints, the
time agent A0 is totally ordered, and no time points are
added to the set of agents A.

It almost suffices to only use time points with precedence
and synchronisation constraints. However, for each method
assigned to an agent, we need an ordered pair of time points
and its associated duration.4 Unfortunately, this cannot be
represented by using relations among time points alone, and
need to label the durative arcs.

As an example, reconsider the moderately-coupled task
in Figure 1(a), where all time points are constrained to
time window (17, 43). The possible coordination sets Γ
are {t1,e ≺ t4,s}, {t3,e ≺ t2,s}, and {t1,e ≺ t4,s, t3,e ≺
t2,s}. For example, if we have δ(m1) = 19, δ(m2) = 1,
δ(m3) = 2, and δ(m4) = 3, then {t1,e ≺ t4,s} does not
coordinate the task, because agent A2 can plan m2 ≺ m3.
Here, the task is inconsistent and, therefore, not coordinated,
because task m4 must not be scheduled to start earlier than
lb(t1,s) + ε + δ(m1) + ε + δ(m2) + ε + δ(m3) + ε =
17+1+19+1+1+1+2+1 = 43 (based on the durations
and lb(m1)), and be completed before 43. Obviously, there
is no schedule in which m4 meets these constraints.

The key problem with DTNs is the interaction of time
windows and durations of the methods. As we have already
seen, it is not possible to discard the method durations when
solving the coordination problem. A partial solution to this
problem might be to discover all implied constraints first,
or otherwise to adapt the problem to prevent these incorrect
coordination sets.

So, instead of discarding the duration information, we
need to use it for temporal constraint propagation and elic-
itation. This can tighten time windows which can, in turn,
result in new precedence constraints because time windows
become non overlapping. As an example, we consider the
normalisation of a DTN for an agent A1, that is assigned
methods m2,m5 that are constrained by time windows. In
Figure 4, the result is shown after propagating the avail-
able temporal information. Here, the constraint t5,s ≺ t2,e

emerges through non-overlapping time windows (20, 25)
and (28, 65).

Note that these constraints are implied without making
any assumptions on the degree of parallelism available to
that agent. In terms of qualitative temporal constraints,
this additional constraint means that m2 before m5 is ex-
cluded. Now, the agent can reason whether other constraints
hold due to, for instance, the degree of parallelism avail-
able. If an agent is strictly sequential, than it also discards
all constraints with (partially) overlapping execution, such
that only m5 before m2 remains. Adding such precedence
constraints requires time windows to be tightened again, and
possibly resulting in new local precedence constraints.

Plan coordination with durative tasks Using DTNs, we
can represent methods as (durative) intervals, makes it pos-
sible to use qualitative temporal constraints on methods, and
allows time windows to constrain the time points to absolute

4This is also possible for our newly introduced time agent.

18

20

25

45

50

55

65

28

2,et

2,st

5,st

5,et

0A
1A

Figure 4: Retrieving implied precedence constraints explicit.

time. Note that DTNs have much in common with Simple
Temporal Networks (STNs) (Dechter, Meiri, & Pearl 1991).
Before continuing, we briefly describe STNs and show that
DTNs are in fact a restriction of STNs.

Formally, an STN S is written as a tuple 〈T,C〉, where T
is the set of time points {z, t1, . . . , tm}, and C is a finite set
of binary constraints on those time points. The time point z
represents an arbitrary fixed reference point on the time line,
commonly referred to as the zero time point. Each constraint
c ∈ C has the form δlb ≤ tj − ti ≤ δub for some δlb ∈
R ∪ {−∞}, δub ∈ R ∪ {∞}, and commonly is represented
as δ(ti, tj) = [δlb , δub].

We show that DTNs are in fact restrictions of STNs, by
giving a transformation of a DTN 〈{Ti}

n
i=1,≺,≡, I, δ〉 to

its representation as an STN 〈T,C〉. First, the time points
in an STN consist of the time points from the DTN together
with the zero time point z: T = {z}∪

⋃n

i=1 Ti. Second, it is
assumed that all pairs of time points are constrained by the
universal temporal constraint δ(t, t′) = (−∞,∞), but can
be tightened in the following way.

1. ∀i, j ∀t ∈ Ti, t
′ ∈ Tj : (t, t′) ∈ ≺ implies δ(t, t′) =

[1,∞) ∈ C,
2. ∀i, j ∀t ∈ Ti, t

′ ∈ Tj : (t, t′) ∈ ≡ implies δ(t, t′) =
[0, 0] ∈ C,

3. ∀i∀t ∈ Ti : I(t) = (lb(t), ub(t)) implies δ(z, t) =
(lb(t), ub(t)) ∈ C, and

4. ∀m ∈ M : δ(ts, te) = [δ(m), δ(m)] ∈ C.
In the previous paragraph, we showed that a DTN with

time windows can be reduced to a tightly-coupled task with
durations, without any new difficulties being introduced. In
this paragraph, we analyse the consequences of the added
duration to the reasoning framework.

We start by verifying whether such DTNs can be coordi-
nated at all in a similar way as the PDP for moderately- and
tightly-coupled tasks. Thereafter, we study the complexity
of actually determining a coordination set, and look at the
issues that need to be taken into account.
Proposition 1 For any globally consistent DTN D =
〈{Ti}

n
i=1,≺,≡, I, δ〉, there exists a coordination set Γ =

(Γ≺ ∪ Γ≡) such that the resulting DTN is coordinated.

Proof Since D is globally consistent, there exists at least
one feasible schedule s for it. Define the set Γ≺ as follows:
∀i: if t, t′ ∈ Ti, s(t) < s(t′) iff (t, t′) ∈ Γ≺, and define Γ≡

as follows: ∀i: if t, t′ ∈ Ti, s(t) = s(t′) iff (t, t′) ∈ Γ≡. It
is not difficult to see that D′ = 〈{Ti}

n
i=1, (≺ ∪ Γ≺)+, (≡

∪ Γ≡)+, I, δ〉 is a globally consistent DTN (since s satisfies
all constraints). Moreover, it is not difficult to see that every
agent’s DTN D′

i = 〈Ti, (≺i ∪ Γ≺,i)
+, (≡i ∪ Γ≡,i)

+, I, δ〉
derived from D′ has itself as its unique extension. Hence,
D′ is coordinated. 2

In order to minimise the loss of freedom for the individual
agents, we again have to identify a smallest set of additional
constraints. We call this the PDP for DTNs, for which we
define the recognition problem as follows.

DTN-COORDINATION RECOGNITION (DTN-CR)
INSTANCE: Globally consistent DTN D partitioned into n
agent’s DTNs.
QUESTION: Does it hold that the DTN is globally consis-
tent for every set of locally-consistent extensions of individ-
ual DTNs Di?

Lemma 1 DTN-CR is CONP-complete.

Proof Membership is shown by noting that a no-certificate
is verified in polynomial time. A no-certificate contains a set
of precedence and synchronisation constraints that are added
to the DTN in polynomial time. As shown above, a DTN can
be transformed into an equivalent STN in polynomial time,
whose consistency can be checked in polynomial time.

Hardness is proven by a reduction from the PDP-
Coordination Recognition problem for tightly-coupled
tasks. Here, the idea is to associate time windows with time
points that are wide enough such that every partial order is
consistent (e.g., set all time windows to (0,∞)). Addition-
ally, we fix all durations to δ(mi) = 1. 2

As a corollary, we can say that the more general coordi-
nation variant of DTN-CR (i.e., minimally change the DTN
such that it is a yes-instance for DTN-CR) is Σp

2-complete.
Intuitively, guessing a yes-certificate can be verified in poly-
nomial time using a DTN-CR-oracle, which proofs mem-
bership. Hardness, on the other hand, can be proven using
the same reduction as used in the lemma.

Checking a DTN’s consistency is an important issue in
these problem instances. For this paper, STNs are sufficient
to express the temporal constraints, because the agent’s de-
grees of parallelism are not bounded. In the following ex-
ample, we show a complex task where unions of time win-
dows are needed when this parallelism is bounded. How-
ever, consistency checking for such temporal networks is
intractable (Dechter, Meiri, & Pearl 1991), and its conse-
quences are part of future research.

Consider the DTN depicted in Figure 5. Here, we have
three methods that each have a duration δ(mi) = 3, meth-
ods m1,m2 need to be scheduled within the time window
(10, 19) and m3 in (0, 30). When the agent has unbounded
parallelism, no problems occur when adding precedence
constraints. However, when the agent is a unit-capacity re-
source, the temporal network basically becomes a disjunc-
tive temporal network due to m3 becoming constrained to
(0, 11) ∪ (18, 30).

0A1A

2,st

2,et

30

0

20

1,st

1,et

3,st

3,et

27

17

14

11

3

Figure 5: A union of available time windows can be implied
when agent’s parallelism is bounded.

Relation to Simple Temporal Networks
In the previous sections, we have taken a plan-decoupling
approach to solving the plan-coordination problem. How-
ever, instead of decoupling agent’s plans, we could as well
decouple agent’s schedules. This approach gives rise to the
Temporal-Decoupling Problem (TDP) (Hunsberger 2002),
which is defined on STNs.

Basically, an STN is a set of time points and a set of binary
constraints between those time points. Commonly, such an
STN is represented as a directed graph with numerical val-
ues on its arcs. Here, the vertices represent the time points,
while the arcs are upper and lower bounds on the temporal
distance between two time points.

An STN can be viewed as the set of schedules for the task
it represents. Therefore, a solution to an STN is a schedule
for completing the methods (i.e., assignment of values to the
time point variables such that all constraints are satisfied).
An STN is consistent when at least one solution exists.

In Figure 6(a), we have two agents A1, A2 each hav-
ing one method (i.e., two time points) that takes exactly 4
time units to complete, where m1 needs to be scheduled in
[19, 64], and m2 in [19, 69]. Moreover, the methods are con-
strained by m1 before m2, which translates to t1,e ≺ t2,s.
The constraints between the time points are given as tempo-
ral distance intervals [δlb , δub] on the arcs.

Note that tightening of temporal distances works in a sim-
ilar way as the tightening of time windows in DTNs. Clearly,
in this example, the agents cannot schedule independently
due to the precedence constraint 1 ≤ t2,s − t1,e < ∞. In
order to allow independent scheduling, we need to tempo-
rally decouple the agents. This is achieved when the con-
straint between t1,e and t2,s is implied by the constraints
between z and t1,e, and z and t2,s, respectively. A typical
solution for TDP on the STN of Figure 6(a) is depicted in
Figure 6(b). Here, the inter-agent constraint has become im-
plicit, because 23 ≤ t1,e − z ≤ 48 < 49 ≤ t2,s − z ≤ 65
results in 1 = 49 − 48 ≤ t2,s − t1,e ≤ 65 − 23 = 42 < ∞.

Basically, the difference between PDP and TDP is the fol-
lowing. In TDP, the problem is to tighten the time windows
of the time points in such a way that the inter-agent tem-
poral differences are guaranteed to hold (e.g., by making
them implicit) and the joint schedule to be feasible, what-
ever schedules is constructed by the individual agents. In
PDP, the problem is to reduce the local planning freedom

t 1,s t 1,e

t 2,e t 2,s

z

[4,4]

[4,4]

[19,60] [23,64]

[28,69] [24,65]

1A

2A

[1,inf)

(a) Partitioned

t 1,s t 1,e

t 2,e t 2,s

z

[4,4]

[4,4]

[19,44] [23,48]

[53,69] [49,65]

1A

2A

[1,inf)

(b) Decoupled

Figure 6: Example of temporally decoupling an STN with
two agents.

such that the joint plan is guaranteed to be feasible and to be
consistent, whatever plans is constructed by the individual
agents.

Clearly, there is a close resemblance between STNs and
DTNs. For instance, both frameworks use time points and
binary constraints between them as basic constructs, and
time windows on time points in DTNs are represented as
constraints between z and that time point in STNs. The
major difference between the two representations is that in
STNs every pair of time points can be constrained by a tem-
poral distance interval, where in DTNs only fixed temporal
distances are allowed between time points within an agent.

Although the frameworks in which these problems are
studied show much likeness, the problems themselves
largely differ. Even the basic approach, as in a decoupling,
is very similar, although one plan-decouples the agents by
guaranteeing the existence of at least one schedule, while
in temporal-decoupling each agent is left with its decoupled
part of the STN which represents the set of schedules. From
a complexity point of view, there is a big difference, because
PDP is Σp

2-complete while solving a TDP is in P. In fact, we
believe that TDP over-constrains complex tasks in order to
coordinate them, in the sense that it reduces the number of
possible plans more than needed.

Conclusions and Future Work
Plan coordination is needed to guarantee that using local
planning autonomy does not cause conflicts to the global
goal. Here, a distinction can be made between pre, inter-
leaved, and post-planning coordination. Both interleaved
and post-planning coordination assume communication to
be available during and after planning and thus during ex-
ecution. In many domains, however, communication can
be lost or difficult to establish or maintain, or agents are
unwilling to revise their plans. Therefore, interleaved and
post-planning coordination are not always applicable, and
we chose to take a pre-planning approach to coordination.

In this paper, we presented a framework for modelling
complex tasks. Using precedence and synchronisation con-
straints to constrain the relative execution of time points,
all qualitative temporal constraints can be used to constrain
two methods. This framework was further extended to al-
low methods to have a certain fixed duration, and to be exe-
cuted within a certain time window. We discovered that plan
coordination can be achieved when reasoning with qualita-
tive temporal constraints and durative tasks, and defined and

studied the complexity of this new coordination problem.
With respect to the use of temporal constraints, existing

work on plan coordination has been rather limited. Although
the described temporal-decoupling problem is a good start
at coordinating problems with quantitative temporal infor-
mation, its use is rather limited. First, it is a schedule-
coordination approach that reduces the planning freedom to
a greater extend than necessary. Second, the used STNs
are a small subset of instances that can be defined in tem-
poral constraint networks as used in general temporal net-
works (Dechter, Meiri, & Pearl 1991), where it is possible to
represent arbitrary intervals of temporal distances between
time points. In the future, it would be interesting to com-
bine the pre-planning and pre-scheduling coordination ap-
proaches using an even more expressive framework includ-
ing both quantitative and qualitative temporal information.

In future research, some additional steps are needed to
make our approach applicable to real-life problems in real-
time. First, in many domains, uncertainties (e.g., on dura-
tion) need to be taken into account, for which an extension
of STNs has been developed, called STNUs (Vidal & Fargier
1999). Second, until now, we have only been concerned with
static problem instances. Reality, however, is much more
dynamic than these situations, and a technique is needed to
deal with this additional dynamism online. In (Hunsberger
2003), STNs are adapted to Augmented STNs (ASTNs) to
cope with the passing of time, in which new methods and
constraints can be inserted into an existing ASTN.

Finally, the plan-coordination problems should be formu-
lated as optimisation problems, because this corresponds
more closely to reality. In order to do this, we need to look
at different criteria for the optimal coordination set. It is
not hard to come up with examples where one coordination
set tightens time windows, while another coordination set
does not tighten any time window. Clearly, the latter solu-
tion reduces the scheduling freedom less than the first, in an
absolute sense, and is likely to be preferred.

Acknowledgements
J. Renze Steenhuisen is supported by the Dutch Ministry of
Economic Affairs, grant nr: BSIK03024. The ICIS project
is hosted by the DECIS Lab, the open research partnership
of Thales Nederland, the Delft University of Technology, the
University of Amsterdam, and the Netherlands Foundation
of Applied Scientific Research (TNO).

References
Allen, J. F. 1983. Maintaining knowledge about temporal
intervals. Communications of the ACM 26(11):832–843.
Buzing, P. C.; ter Mors, A. W.; Valk, J. M.; and Witteveen,
C. 2006. Coordinating self-interested planning agents. Au-
tonomous Agents and Multi-Agent Systems 12(2):199–218.
Chiu, D. K. W.; Lee, O. K. F.; Leung, H.-F.; Au, E. W. K.;
and Wong, M. C. W. 2005. A multi-modal agent based
mobile route advisory system for public transport network.
In Proc. of the 38th Annual Hawaii Int. Conf. on System
Sciences, volume 3, 92.2.

Christodoulou, G.; Koutsoupias, E.; and Nanavati, A.
2004. Coordination mechanisms. In Proc. of the 31st Int.
Coll. on Automata, Languages and Programming, 345–
357.
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal con-
straint networks. Artificial Intelligence 49(1-3):61–95.
Harrald, J. R. 2005. Supporting agility and discipline when
preparing for and responding to extreme events. In Proc.
of the 2nd Int. Conf. on Information Systems for Crisis Re-
sponse and Management.
Hunsberger, L. 2002. Group Decision Making and Tem-
poral Reasoning. PhD thesis, Harvard University, Cam-
bridge, MA, USA.
Hunsberger, L. 2003. Distributing the control of a tem-
poral network among multiple agents. In Proc. of the 2nd
Int. Joint Conf. on Autonomous Agents and Multiagent Sys-
tems, 899–906.
Léauté, T., and Williams, B. 2005. Coordinating agile
systems through the model-based execution of temporal
plans. In Proc. of the Workshop on Multiagent Planning
and Scheduling, 22–28.
Shehory, O., and Kraus, S. 1998. Methods for task allo-
cation via agent coalition formation. Artificial Intelligence
101(1–2):165–200.
Smith, S. F.; Gallagher, A.; Zimmerman, T.; Barbulescu,
L.; and Rubinstein, Z. 2007. Distributed management of
flexible times schedules. In Proc. of the 6th Int. Joint Conf.
on Autonomous Agents and Multi-Agent Systems, 472–479.
Steenhuisen, J. R., and Witteveen, C. 2007. Coordinating
planning agents for moderately and tightly-coupled tasks.
In Proc. of the Int. Conf. on Foundation of Comp. Sci.
Steenhuisen, J. R.; Witteveen, C.; ter Mors, A. W.; and
Valk, J. M. 2006. Framework and complexity results for
coordinating non-cooperative planning agents. In Proc. of
the 4th German Conf. on Multi-Agent System Technologies,
volume 4196 of Lecture Notes in Art. Intel., 98–109.
Sultanik, E. A.; Modi, P. J.; and Regli, W. C. 2006. Con-
straint propagation for domain bounding in distributed task
scheduling. In Proc. of Principles and Practice of Con-
straint Programming, volume 4204 of Lecture Notes in
Comp. Sci., 756–760.
ter Mors, A. W.; Valk, J. M.; and Witteveen, C. 2006.
Task coordination and decomposition in multi-actor plan-
ning systems. In Proc. of the Workshop on Software-Agents
in Information Systems and Industrial Applications, 83–94.
Valk, J. M. 2005. Coordination among Autonomous Plan-
ners. PhD thesis, Delft University of Technology, Delft,
The Netherlands.
Vidal, T., and Fargier, H. 1999. Handling contingency in
temporal constraint networks: from consistency to control-
labilities. Journal of Experimental and Theoretical Artifi-
cial Intelligence 11:23–45.
Zlot, R. M., and Stentz, A. 2006. Market-based multirobot
coordination for complex tasks. International Journal of
Robotics Research, Special Issue on the 4th International
Conference on Field and Service Robotics 25(1):73–101.

