
Iterative Improvement Strategies for Multi-Capacity Scheduling Problems

Angelo Oddi and Amedeo Cesta
ISTC-CNR
Rome, Italy

{name.surname}@istc.cnr.it

Nicola Policella
European Space Agency

Darmstadt, Germany
nicola.policella@esa.int

Stephen F. Smith
The Robotics Institute

Carnegie Mellon University,USA
sfs@cs.cmu.edu

Abstract

Iterative Flattening Search (IFS) is an iterative improvement
heuristic schema for solving scheduling problems with a
makespan minimization objective. Given an initial solu-
tion, IFS iteratively applies two-steps: (1) a subset of solv-
ing decisions are randomly retracted from a current solution
(relaxation-step); (2) a new solution is incrementally recom-
puted (flattening-step). Since its introduction, several varia-
tions of IFS have been proposed over the original strategy.
Such variations involve both different strategies for the relax-
ation step and for the incremental solving procedure. This
paper investigates a missing point in the related literature and
present initial results of a uniform study to evaluate the ef-
fectiveness of the “single component” strategies among those
proposed till now. This paper introduces a framework to
combine and experimentally evaluate different IFS strategies.
Specifically, we examine the utility of: (i) operating with dif-
ferent relaxation strategies; (ii) using different strategies to
built a new solution. We evaluate these extensions on bench-
mark instances of the Multi-Capacity Job-Shop Scheduling
Problem (MCJSSP) also used in previous IFS studies. The
experimental results shed light on the weaknesses and the
strengths of the ideas proposed over the past years and sug-
gest potentials for more effective IFS procedures.

Introduction
Iterative Flattening Search (IFS or IFLAT) (Cesta, Oddi, &
Smith 2000) is an iterative improvement heuristic schema
for solving scheduling problems with a makespan minimiza-
tion objective. Given an initial solution, IFS iteratively ap-
plies two-steps: (1) a subset of solving decisions are ran-
domly retracted from a current solution (relaxation-step);
(2) a new solution is incrementally recomputed (flattening-
step). IFLAT performance was measured on a set of
challenging Multi-Capacity Job-Shop Scheduling Problem
(MCJSSP) instances. Since its original introduction, sev-
eral variations have been proposed. Two works in particular
(Michel & Van Hentenryck 2004; Godard, Laborie, & Nu-
itjen 2005) have extended the performance of the original
paper through refinement of the basic IFLAT search schema.
(Michel & Van Hentenryck 2004) identified an anomaly in
IFLAT search and proposed a simple extension, which dra-
matically improved the quality of its schedules while pre-
serving its computational efficiency. The key idea was to
iterate the relaxation step multiple times, the resulting algo-

rithm found many new upper bounds and produced solutions
within 1% of the best upper bounds on average. Additional
improvements were obtained in (Godard, Laborie, & Nuitjen
2005) with an approach which follows the same schema of
IFLAT but uses different engines for the flattening and relax-
ation steps. Such a procedure was able to find additional op-
timal solutions and furtherly improved known upper-bounds
for MCJSSP benchmarks.

The different IFS proposals involve both different strate-
gies for the relaxation step and for the incremental solving
procedure. However, till now, an uniform study to evalu-
ate the effectiveness of the “single component” strategies
were an open issue. To this purpose this paper proposes an
uniform framework to combine and experimentally evaluate
different IFS strategies. Specifically, we examine the utility
of:
i) operating with different relaxation strategies, one targeted

on removing decisions on the solution critical path and
another one considering the whole solution;

ii) using different strategies to built a new solution, one post-
ing precedence constraints among the activities and an-
other one based on setting the start time of the activities.

We present here some initial experimental results that shed
light on the relative weaknesses and strengths of the previ-
ously proposed strategies and start suggesting more effective
and efficient IFS procedures.

The paper is organized as follows. We first review the
iterative flattening search schema as evolved from previous
work. The central part of the paper introduces the available
relaxation and solving strategies and present a framework
for comparing all of them. Next we recall the MCJSSP prob-
lem domain and benchmark problem sets used in our eval-
uation. Performance results are then given that demonstrate
the leverage provided by the extended search procedures.
We conclude by briefly discussing further opportunities to
extend and enhance the basic iterative flattening search con-
cept.

Problem Representation
Before describing the iterative flattening approach we in-
troduce the modeling perspective on which this schema is
based. According to this a scheduling problem is repre-
sented as a directed graph G(A, E). A is the set of activities

specified in MCJSSP, plus a dummy activity asource tempo-
rally constrained to occur before all others and a dummy
activity asink temporally constrained to occur after all oth-
ers. E is the set of precedence constraints defined between
activities in A.

In the IFS search schema the reference representation of
a solution S is given as an extended graph GS of G, such
that an additional set of precedence constraints is added to
the original problem representation. This means that the set
E is partitioned in two subsets, E = Eprob ∪ Epost, where
Eprob is the set of precedence constraints originating from
the problem definition, and Epost is the set of precedence
constraints posted to resolve resource conflicts. In general
the directed graph GS(A,E) represents a set of temporal
solutions. The set Epost is added in order to guarantee that
at least one of those temporal solutions is also resource fea-
sible.

In searching for a solution different search strategies ap-
ply. Following a Precedence Constraint Posting (PCP) ap-
proach the set of Epost is naturally created reasoning on con-
tention peaks. For example in (Cesta, Oddi, & Smith 1998;
2000; 2002) the precedences are selected by a basic Earliest
Start Time Algorithm (ESTA). ESTA is designed to address
more general, multi-capacity scheduling problems with gen-
eralized precedence relations between activities (i.e., cor-
responding to metric separation constraints with minimum
and maximum time lags) but is used also in (Cesta, Oddi, &
Smith 2000; Michel & Van Hentenryck 2004) to deal with
multi-capacity resource contention peaks in MCJSSPs. Oth-
ers use a different strategy, the decision to Set a Start Time
(SST) of an activity, by imposing a rigid temporal constraint
between the asource and the start-time of the interested ac-
tivity. This strategy is very common in the scheduling liter-
ature, for example it is used in (Godard, Laborie, & Nuitjen
2005) and many others.

The original Iterative Flattening Search procedure (Cesta,
Oddi, & Smith 2000) iterates two steps:

Relaxation step: a feasible schedule is relaxed into a possi-
bly resource infeasible, but precedence feasible, schedule
by removing some search decisions represented as prece-
dence constraints between pair of activities;

Flattening step: a sufficient set of new precedence con-
straints is posted to re-establish a feasible schedule.

This schema integrates naturally with the graph represen-
tation GS for a solution, that is the solution representation
used in a PCP approach.1 To apply the same philosophy with
an SST we need to relax the “solution rigidity” introduced
by the absolute temporal constraints inserted as decisions.
One way of doing it consists in transforming the SST so-
lution in a Partial Order Schedules (POS) (Cesta, Oddi, &
Smith 1998; Policella et al. 2004).

In general a POS can be also obtained from a PCP solution
produced by ESTA. Both GS and POS are graph representa-
tions. The difference is that while ESTA solutions guarantee
that at least one of the temporal solutions they represent is
also resource feasible, a POS guarantees that all delineated

1This representation is sometimes called Flexible Schedule.

temporal solutions are also resource feasible. The use of a
POS in general increases the possibilities for rearranging re-
laxed activities. This is why we dedicate a short paragraph
to POS basics.

Partial Order Schedules
The common thread underlying a POS is the characteris-
tic that activities which require the same resource units are
linked via precedence constraints into precedence chains.
Given this structure, each constraint becomes more than
just a simple precedence. It also represents a producer-
consumer relation, allowing each activity to know the pre-
cise set of predecessors that will supply the units of re-
source it requires for execution. In this way, the result-
ing network of chains can be interpreted as a flow of re-
source units through the schedule; each time an activity ter-
minates its execution, it passes its resource unit(s) on to
its successors. It is clear that this representation is flexi-
ble if and only if there is temporal slack that allows chained
activities to move “back and forth”. Polynomial methods
for producing a POS from an input solution represented
as a precedence graph (or equivalently as a set of start
times) have been introduced in (Cesta, Oddi, & Smith 1998;
Policella et al. 2004). Given an input solution, a transfor-
mation method, named Chaining, is defined that proceeds
to create sets of chains of activities. This operation can be
accomplished over three steps: (1) all the previously posted
leveling constraints are removed from the input partial or-
der; (2) the activities are sorted by increasing activity ear-
liest start times; (3) for each resource and for each activity
ai (according to the increasing order of start times), one or
more predecessors aj are chosen, which supplies the units
of resource required by ai – a precedence constraint (ai, aj)
is posted for each predecessor aj . The last step is iterated
until all the activities are linked by precedence chains.

Having a flexible solution is not the only benefit in consid-
ering the use of partial order schedules. A second property
that appears to be relevant is the reduction in the number of
additional precedence constraints that must be posted to ob-
tain a solution: given a problem with n activities to be sched-
uled, the number of constraints appearing in the solution is
always O(n). This because the chaining procedure creates
POSs with only the “necessary” precedence constraints, and
eliminates all “redundant” constraints. For example apply-
ing POS to a GS result on a PCP version of IFLAT removes
redundant precedence constraints and tends to intensify the
effect of the IFLAT relaxation step in the procedure. More
solutions are accessible at each flattening cycle,because the
removal of redundant constraints increases possibilities for
rearranging relaxed activities. In (Godard, Laborie, & Nu-
itjen 2005) a POS is created from an SST solution to insert
temporal flexibility in the solution before performing a re-
laxation step.

Iterative Flattening Search
Given these preliminaries we introduce a general IF-
SSEARCH procedure in Figure 1. The algorithm basically
alternates Relaxation and Flattening steps until a better so-

IFSSEARCH(S,MaxFail)
begin
1. Sbest ← S
2. counter ← 0
3. while (counter ≤ MaxFail) do
4. RELAX(S)
5. Sol ←FLATTEN(S)
6. if Mk(Sol) < Mk(Sbest) then
7. Sbest ← S
8. counter ← 0
9. else
10. counter ← counter + 1
11. return (Sbest)
end

Figure 1: The IFSSEARCH general schema

lution is found or a maximal number of iterations is exe-
cuted. The procedure takes two parameters as input: (1) a
starting solution S; (2) a positive integer MaxFail which
specifies the maximum number of non-makespan-improving
moves that the algorithm tolerates before termination. After
initialization (Steps 1-2), a solution is repeatedly modified
within the while loop (Steps 3-10) by the application of the
RELAX and FLATTEN procedures. In the case that a bet-
ter makespan solution is found (Step 6), the new solution
is stored in Sbest and the counter is reset to 0. Otherwise, if
no improvement is found in MaxFail moves, the algorithm
terminates and returns the best solution found. Our goal is to
create a uniform implementation framework in which inte-
grate procedures from the various IFS papers mentioned till
now. The idea is to decompose effects of parts of the algo-
rithms and hopefully understand how effectiveness of parts
influences effectiveness of complete algorithm.2 In the rest
of this section different relaxations and the flattening steps
are introduced in more detail.

Relaxation Procedures
In general, a relaxation procedure transforms a feasible
schedule into a possibly resource infeasible, but temporal
feasible, schedule by adopting different strategies for remov-
ing some search decisions. We have reproduced two of these
strategies. The first, introduced in the paper (Cesta, Oddi,
& Smith 2000; Michel & Van Hentenryck 2004), which re-
moves precedence constraints between pair of activities on
the critical path of the solution, hence we call it pc-based
relaxation; the second, introduced in the work (Godard, La-

2Even if we are trying to reproduce different approaches in a
uniform software framework, it is worth underscoring that, in the
present stage we do not have a complete re-production of the al-
gorithm (Godard, Laborie, & Nuitjen 2005) whose engineering as-
pects are well customized within the ILOG framework. For exam-
ple, we do not have any of the resource propagation rules of that
environment. We rather have several components inspired by what
is possible to reconstruct from the (Godard, Laborie, & Nuitjen
2005) paper. In our analysis the common implementation base is
useful to explore approaches and contributions to problem solving
by different components.

PCRELAX(S, pr,MaxRlxs)
begin
1. for 1 to MaxRlxs
2. forall (ai, aj) ∈ CriticalPath(S) ∩Epost

3. if random(0,1) < pr

4. S ← S \ (ai, aj)
end

Figure 2: pc-based relaxation procedure

CHAINRELAX(S, pr)
begin
1. for k = 1 to n
2. if random(0,1) < pr then
3. Remove the edges (ap, ak), ap ∈ pred(ak) ∩ Ech

and (ak, as), as ∈ succ(ak) ∩ Ech

4. Apply the CHAINING procedure
to the subset of unselected activities

end

Figure 3: Chain-based relaxation procedure

borie, & Nuitjen 2005), which starting from a POS-form so-
lution, basically randomly breaks some chains in the input
POS schedule, hence the name chain-based relaxation.
Precedence relaxation. The relaxation step is based on
the concept of critical path. A path in GS(A,E) is a se-
quence of activities a1, a2, . . . , ak, such that, (ai, ai+1) ∈ E
with i = 1, 2, . . . , (k − 1). The length of a path is the
sum of the activities processing times and a critical path is a
path from asource to asink which determines the solution’s
makespan. Any improvement in makespan will necessar-
ily require change to some subset of precedence constraints
situated on the critical path, since these constraints collec-
tively determine the solution’s current makespan. Follow-
ing this observation, the relaxation step introduced in (Cesta,
Oddi, & Smith 2000) is designed to retract some number of
posted precedence constraints on the solution’s critical path.
Figure 2 shows the PCRELAX procedure. Steps 2-4 con-
sider the set of posted precedence constraints (pci ∈ Epost),
which belong to the current critical path. A subset of these
constraints is randomly selected on the basis of the param-
eter pr ∈ (0, 1) and then removed from the current solu-
tion. Step 1 represents the crucial difference between the
approaches of (Cesta, Oddi, & Smith 2000) and (Michel &
Van Hentenryck 2004). In the former approach Steps 2-4
are performed only once (i.e., MaxRlxs = 1), whereas in
(Michel & Van Hentenryck 2004) these steps are iterated
several times (from 2 to 6), such that, a new critical path of
S is computed at each iteration. Notice that this path can
be completely different from the previous one. This allows
the relaxation step to also take into account those paths that
have a length very close to the one of the critical path.
Chain Relaxation. This second relaxation requires an in-
put solution in POS-form. A solution in POS form is an
extension of the original precedence graph representing the

PCPS(P, S)
begin
1. Propagate(S)
2. if IsSolution(S)
3. then return(S)
4. else
5. mcs← SelectConflict(P,S)
6. if Solvable(mcs, S)
7. then
8. pc← ChoosePrecedence(S, mcs)
9. MCSS(P, S ∪ {pc})
10. else return(fail)
end

Figure 4: The PCPS algorithm

input scheduling problem. As previously introduced, a POS
form solution is a graph GS(N, Eprob ∪ Ech), such that the
set E = Eprob ∪ Ech is partitioned into a set of chains
CH1, CH2, . . . , CHnc. Each chain CHi imposes a total
order on a subset of problem activities requiring the same
resource. Hence, given a generic activity ak, pred(ak) =
{ap|∃CH : (ap, ak) ∈ CH} is the set of its predeces-
sor activities and succ(ak) = {as|∃CH : (ak, as) ∈
CH} is the set of its successors activities. In particular,
pred(asource) = succ(asink) = ∅ Figure 3 shows the
chain-based relaxation procedure. The procedure (a) ran-
domly selects a subset of activities from the input solution
S on the basis of the parameter pr ∈ (0, 1), (b) removes the
edges (ap, ak), ap ∈ pred(ak) and (ak, as), as ∈ succ(ak)
without updating the start times esti of the activities; (c) the
Chaining procedure (previously described) is applied on the
set of unselected activities, that is, the activities not removed
by the random selection. It is worth observing that such
activities still represents a feasible solution to a schedul-
ing sub-problem, which can be transformed in POS-form,
in which the randomly selected activities float outside the
solution thus re-creating contention peaks.

Flattening Procedures
Both relaxation schema create a solution with contention
peaks that should be flattened. We have implemented two
general solution schema, one based on the PCP idea, the sec-
ond on the SST strategy. Both solving algorithms are able to
perform a complete search through backtracking.

PCP Search (PCPS). The flattening step (see Figure 4)
used in (Cesta, Oddi, & Smith 2000) is inspired by prior
work on the Earliest Start Time Algorithm (ESTA) from
(Cesta, Oddi, & Smith 1998). The algorithm is a variant
of a class of PCP scheduling procedures characterized by a
two-phase solution generation process. The first step con-
structs an infinite capacity solution. The current problem
is formulated as an STP (Dechter, Meiri, & Pearl 1991)
temporal constraint network3 where temporal constraints are

3In a STP (Simple Temporal Problem) network we make the
following representational assumptions: temporal variables (or

modeled and satisfied (via constraint propagation) but re-
source constraints are ignored, yielding a time feasible solu-
tion that assumes infinite resource capacity. The second step
levels resource demand by posting precedence constraints.
Resource constraints are super-imposed by projecting “re-
source demand profiles” over time. Detected resource con-
flicts, which are Minimal Conflict Sets (MCS) as in (Cesta,
Oddi, & Smith 2002), are then resolved by iteratively post-
ing simple precedence constraints between pairs of compet-
ing activities. The constraint posting process of ESTA is
based on the Earliest Start Solution (ESS) consistent with
currently imposed temporal constraints. It then proceeds to
compute a resource conflict (Step 2-5). If this set is empty
the ESS is also resource feasible and a solution is found;
otherwise if a conflict exists that can be solved, a new prece-
dence constraint is posted to do so (Steps 8-9); otherwise the
process fails (Step 10). For further details on the functions
SelectConflict(), and ChoosePrecedence() (non determinis-
tic version of the precedence selection operator) the reader
should refer to the original references.

SST Search (SSTS). The second solving procedure is
based on the idea of searching the set of possible assign-
ments to the activity start-times. In particular, our im-
plementation of SSTS can be seen as a serial scheduling
schema (Kolisch 1996) adopting the latest finish time (LFT)
priority rule, which branches the search on the possible ear-
liest start times (Dorndorf, Pesch, & Phan Huy 2000). How-
ever, other search schemas are possible, with different prior-
ity rules, this will be motivation for further experiments in
the near future. A recursive and non deterministic version
of the solver is shown in Figure 5. At Step 1 the procedure
Propagate propagates the current temporal constraints. In
particular, for each activity ai updates its earliest stat-time
esti and latest finish time lfti of the activities. When the
output solution S is a complete and resource feasible solu-
tion (all the activities has a start-time assigned), the proce-
dure returns it (Steps 2-3). Otherwise an activity is selected
on the basis of a priority rule. Currently, we select the ac-
tivity with the minimal latest finish time lft (ties are broken
by the est values). Given a selected activity ai, the search
branches (Step 8) on the possible resource feasible assign-
ments of the earliest start-time esti.

Iterative Flattening Variants
The concept of Iterative Flattening introduced in (Cesta,
Oddi, & Smith 2000) is quite general and provided an in-
teresting new basis for designing more sophisticated and
effective local search procedures for scheduling optimiza-
tion. The IFLATRELAX procedure proposed in (Michel &
Van Hentenryck 2004) is a nice example of an IFLAT exten-
sion which obtains substantial improvements over its origi-
nal version. In addition, the version of Iterative Flattening
proposed in (Godard, Laborie, & Nuitjen 2005) produced
further improvements on both the previous procedures. This

time-points) represent the start and end of each activity, and the
beginning and end of the overall temporal horizon; distance con-
straints represent the duration of each activity and separation con-
straints between activities including simple precedences.

SSTS(P, S)
begin
1. Propagate(S)
2. if IsSolution(S)
3. then return(S)
4. else
5. ai ← SelectActivity(P,S)
6. if ExistFeasibleEST(ai, S)
7. then
8. esti ← ChooseEST(S, ai)
9. SSTS(P, S ∪ esti)
10. else return(fail)
end

Figure 5: The SSTS algorithm

procedure uses a solving strategy similar to SSTS and a
chain-based relaxation schema.4

However, till now, an uniform study to evaluate the effec-
tiveness of the single component strategies proposed in the
literature were an open issue. In this spirit, the paper pro-
poses an uniform framework to combine and experimentally
evaluate different IFS strategies. Specifically, we examine
the utility of: (i) operating with different relaxation strate-
gies; (ii) using different strategies to built a new solution.
Hence, our idea is to shed light on the weaknesses and the
strengths of the ideas proposed over the past years and sug-
gest more effective and efficient IFS procedures. According
to this idea we propose the following IFS procedures:

• Two procedures based on PCPS search, one uses the
precedence relaxation – identified with PCs – and another
one the chain relaxation - identified with ACTs. PCPS is
implemented as a depth-first backtracking procedure us-
ing an input parameter α, which is used to limit the num-
ber of backtracking steps. In particular, the PCPS proce-
dure returns the solution found with minimal makespan,
within αn steps, where n is the number of problem’s ac-
tivities. We observe that the combination of PCPS and
PC-based relaxation with α = 0 reproduces the algorithm
in (Michel & Van Hentenryck 2004) furtherly extended
with a backtracking search procedure.

• Two IFS procedures based on SSTS search, one with
precedence relaxation – called SSTS-PCs – and another
one with chain relaxation – called SSTS-ACTs. Also
in this case, SSTS search uses the same parameter α to
bound the number of backtracking steps to the value αn
and returns the best solution found with regard to the
makespan.

• A new IFS procedure – called PCPS-ACTs-iPCs – which
coincides with the combination of PCPS and Chain-
based relation, except when an improved solution is found
within the Iterative Flattening loop (see Steps 3-10 in Fig-
ure 1). In this case the relaxation procedure is temporary

4It is worth noting that at present neither PCPS nor SSTS in-
clude any resource propagation algorithm (e.g., timetabling, edge
finding, etc.).

switched to the precedence based one.

• A new IFS procedure –called SSTS-ACTs-iPCs – which
mirrors the previous one on the relaxation strategy, but
uses the SSTS search procedure.

As introduced above, the main goal of this paper is per-
form a first uniform study for evaluating the strengths and
the weaknesses of the single IFS component strategies. In
particular, the first four IFS strategies, basically combines
already know procedures, even if two of them (PCPS-ACTs
and SSTS-PCs) are relatively new algorithms. Whereas, the
last two procedures, proposes two new algorithm based on
the following intuition. We observe, the PC-based relax-
ation is more targeted on directly reducing the makespan of a
solution, because specifically relaxes its critical path, which
is directly correlated to the solution’s makespan. However,
such procedure seems also more incline to be trapped in a lo-
cal minima. On the contrary, the Chain-based relaxation re-
moves activities independently from the critical path, hence
it promotes a search with an higher degree of diversifica-
tion. The last two IFS procedures are two attempts to inter-
leave intensification and diversification mechanisms within
the same IFS procedure in order to improve performance. In
the next section, after a short summary on the used bench-
marks, we propose a first empirical evaluation of the proce-
dures defined in this section.

The MCJSSP Scheduling Problem
We consider the Multi-Capacity Job-Shop Scheduling Prob-
lem, MCJSSP, as a basis for evaluating the performance of
our search procedures. This problem involves synchroniz-
ing the use of a set of resources R = {r1 . . . rm} to perform
a set of jobs J = {j1 . . . jn} over time. The processing of
a job ji requires the execution of a sequence of m activi-
ties {ai1 . . . aim}, each aij has a constant processing time
pij and requires the use of a single unit of resource raij for
its entire duration. Each resource rj is required only once
in a job and can process at most cj activities at the same
time (cj ≥ 1). A feasible solution to a MCJSSP is any tem-
porally consistent assignment to the activities’ start times
which does not violate resource capacity constraints. An
optimal solution is a feasible solution with minimal over-
all duration or makespan. Generally speaking, MCJSSP has
the same structure as JSSP but involves multi-capacitated re-
sources instead of unit-capacity resources.

Benchmark Sets
For our analysis, we refer to the benchmarks introduced
in (Nuijten & Aarts 1996). They consist of four sets of
problems which are derived from the Lawrence job-shop
scheduling problems (Lawrence 1984) by increasing the
number of activities and the capacity of the resources.

Set A: LA1-10x2x3 (Lawrence’s problems numbered 1 to
10, with resource capacity duplicated and triplicated). Us-
ing the notation #jobs × #resources (resource capacity),
this set consists of 5 problems of sizes 20x5(2), 30x5(3),
30x5(2), 45x5(3).

Set B: LA11-20x2x3. 5 problems each of sizes 40x5(2),
60x5(3), 20x10(2), 30x10(3).

Set C: LA21-30x2x3. 5 problems each of sizes 30x10(2),
45x10(3), 40x10(2), 60x10(3).

Set D: LA31-40x2x3. 5 problems each of sizes 60x10(2),
90x10(3), 30x15(2), 45x15(3).

We observe that the proposed benchmark set still represents
a challenging benchmark for comparing algorithms. In fact,
(a) in relatively few instances they cover a wide range of
problem sizes; (b) they also provide a direct basis for com-
parative evaluation. In fact, as noted in (Nuijten & Aarts
1996), one consequence of the problem generation method
is that the optimal makespan for the original JSSP is also a
tight upper bound for the corresponding MCJSSP (Lawrence
upper bounds). Hence, even if for many instances there are
known better solutions, distance from these upper-bound so-
lutions can provide a useful measure of solution quality.

Current Experimental Results
This section proposes a first explorative evaluations of the
IFS procedures introduced in the previous sections. In this
phase of our work, we are using the Set C benchmark, which
is a quite representative sub-set of the proposed full bench-
mark of MCJSSP instances. It contains very interesting in-
stances ranging from 300 to 600 activities and is really suit-
able for exploring interesting trends before a time consum-
ing intensive testing. All algorithms were implemented in
Allegro Common Lisp and were run on a Pentium 3 proces-
sor 800 MHz, under Windows XP.

The general settings for the tested IFS strategies were the
following:

1. we have limited the amount of backtracking for the pro-
cedures PCPS and SSTS by setting α = 2;

2. the parameters for the precedence-based relaxation were
pr = 0.2 and MaxRlxs = 6;

3. the parameter pr of the chain-based relaxation was set to
0.1 and 0.2;

4. we imposed a timeout of 3200 seconds for each problem
instance and for each strategy we set MaxFail = 1600
(the maximum number of non improving moves that the
algorithm tolerates before termination).

In addition, in order to met the imposed timeout, we adopt
the same restarting schema used in previous works (Cesta,
Oddi, & Smith 2000; Michel & Van Hentenryck 2004). In
the case a first run finishes before the imposed time limit, the
random procedure restarts from the initial solution until the
time bound is reached. At the end, the best solution found is
returned.

Table 1 compares the performance of the IFS strategies
with respect to the value ∆LWU%, which represents the av-
erage percentage deviation from the Lawrence upper bound
(Lawrence 1984). In particular, given a numeric value in the
table, (for example 9.84) the corresponding IFS strategy is
given by reading the column’s label (PCPS or SSTS), repre-
senting the solving strategy, and the row’s label (one among

IFS PCPS SSTS
PCs 6.97 12.92
ACTs (pr = 10) 1.97 9.95
ACTs (pr = 20) 4.03 8.77
ACTs-iPCs (pr = 10) 1.48 9.84
ACTs-iPCs (pr = 20) 4.10 8.95

Table 1: Comparative performance (∆LWU%) on Set C

PCs, ACTs or ACTs-iPCs) representing the adopted relax-
ation strategy. In particular:

– PCs row represents the precedence-based relaxation on
the solution critical path,

– ACTs represents the chain-based relaxation,

– ACTs-iPCs represents the chain-based relaxation with the
switching to the PCs relaxation when the makespan im-
proves within the iterative flattening loop.

Some of the relaxation strategies are differentiated with re-
spect to the value of the parameter pr (the probability to ran-
domly remove an activity in a POS-form solution). Hence,
the value 9.84 in Table 1 refers to an IFS algorithm using
SSTS search and the relaxation strategy ACTs-iPCs with
pr = 10. The remaining IFS procedures can be easily de-
duced in analogous way.

First of all, the results shown in Table 1 gives a first empir-
ical evidence of the fact that within the same computational
framework, PCPS search performs better than SSTS. We re-
member our implementation of SSTS can be seen as a serial
scheduling schema adopting the latest finish time (LFT) pri-
ority rule, which branches the search on the possible earliest
start times. Other search schemas are possible, with differ-
ent priority rules, this will be investigated stimulus in the
near future.

When we consider the first three rows of Table 1, we
clearly see that ACTs always outperforms PCs. In partic-
ular, the best performance is obtained by the combination of
PCPS and ACTs. A possible explanation of this fact is that
precedence-based relaxation is more targeted on directly re-
ducing the makespan of a solution, because specifically re-
laxes its critical path (which is directly correlated to the solu-
tion’s makespan). Hence, such procedure seems also more
incline to be trapped in a local minima. On the contrary,
the chain-based relaxation removes activities independently
from the critical path, hence it might promotes a search with
a higher degree of diversification thus explaining the better
performance observed.

Things get even more interesting when we read also the
last two rows of Table 1, where we see that the IFS pro-
cedures using PCPS and the relaxation strategy ACTs-iPCs
improves over the other PCPS-based procedures. Notice that
the last two IFS procedures are a first attempt to interleave
intensification and diversification within the same IFS pro-
cedure. In particular, the idea is that when an improvement
of the makespan is detected within the IFS loop, the relax-
ation strategy is temporary switched to the PCs one, which
should be the more suited procedure to explore the detected

local minima. When no more improvement is found, the re-
laxation strategy is restored back to the ACSs one, which
promotes a search with an higher degree of diversification.

A last comment concerns the parameter pr, representing
the probability of removing at random an activity in a POS-
form solution. Here we consider two different values (0.1
and 0.2) just to test the sensibility of the performance mea-
sure with respect to pr. Again, we remark the need for a
more in depth experimentation. Nevertheless, we observe
the opposite effect with respect to the IFS flattening proce-
dures. In fact, the best performance for the PCPS-based pro-
cedures is obtained with pr = 0.1, whereas the best perfor-
mance for the SSTS-based ones are obtained with pr = 0.2.

Conclusions
In this paper we have discussed a set of extensions to the It-
erative Flattening Search procedure. IFLAT is a local search
procedure for solving large-scale scheduling problems with
a makespan minimization objective criterion. The presented
extensions were motivated to perform an uniform study to
evaluate the effectiveness of the “single component” IFS
strategies proposed in the literature. In this spirit, we pro-
pose an uniform framework to combine and experimentally
evaluate different IFS strategies. Specifically, we examine
the utility of:
i) operating with different relaxation strategies, one targeted

on removing decisions on the solution critical path and
another one considering the whole solution;

ii) using different strategies to built a new solution, one post-
ing precedence constraints among the activities and an-
other one based on setting the start time of the activities.

We proposed a first experimental evaluation on benchmark
instances of the Multi-Capacity Job-Shop Scheduling Prob-
lem, which have been used in previous studies of IFS pro-
cedures. The present experimental results start to clarify
some weaknesses and strengths of the ideas proposed over
the past years and suggest more effective and efficient IFS
procedures. Some of the proposed extensions were found to
improve the performance of the reference strategies. We are
planning now to start an intensive experimentation on the
complete set of MCJSSP benchmarks.

Acknowledgments
Amedeo Cesta, and Angelo Oddi ’s work is partially sup-
ported by MIUR (Italian Ministry for Education, University
and Research) under the project VINCOLI E PREFERENZE
(PRIN). Nicola Policella is currently supported by a Re-
search Fellowship of the European Space Agency, Direc-
torate of Operations and Infrastructure. Stephen F. Smith’s
work is supported in part by the National Science Founda-
tion under contract #9900298, by the Department of De-
fense Advanced Research Projects Agency under contract
FA8750-05-C-0033 and by the CMU Robotics Institute.

References
Cesta, A.; Oddi, A.; and Smith, S. 1998. Profile Based Al-
gorithms to Solve Multiple Capacitated Metric Scheduling
Problems. In Proceedings of the 4th International Confer-
ence on Artificial Intelligence Planning Systems, AIPS-98,
214–223.
Cesta, A.; Oddi, A.; and Smith, S. F. 2000. Iterative
Flattening: A Scalable Method for Solving Multi-Capacity
Scheduling Problems. In AAAI/IAAI, 17th National Con-
ference on Artificial Intelligence, 742–747.
Cesta, A.; Oddi, A.; and Smith, S. F. 2002. A constraint-
based method for project scheduling with time windows. J.
Heuristics 8(1):109–136.
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal con-
straint networks. Artificial Intelligence 49:61–95.
Dorndorf, U.; Pesch, E.; and Phan Huy, T. 2000. A Branch-
and-Bound Algorithm for the Resource-Constrained
Project Scheduling Problem. Mathematical Methods of
Operations Research 52:413–439.
Godard, D.; Laborie, P.; and Nuitjen, W. 2005. Random-
ized Large Neighborhood Search for Cumulative Schedul-
ing. In Proceedings of the 15th International Conference
on Automated Planning & Scheduling, ICAPS’05, 81–89.
Kolisch, R. 1996. Serial and parallel resource-constrained
project scheduling methods revised: Theory and computa-
tion. European Journal of Operational Research 90:320–
333.
Lawrence, S. 1984. Resource Constrained Project Schedul-
ing: An Experimental Investigation of Heuristic Schedul-
ing Techniques (Supplement). Technical report, Graduate
School of Industrial Administration, Carnegie Mellon Uni-
versity.
Michel, L., and Van Hentenryck, P. 2004. Iterative Relax-
ations for Iterative Flattening in Cumulative Scheduling. In
Proceedings of the 14th International Conference on Auto-
mated Planning & Scheduling, ICAPS’04, 200–208.
Nuijten, W., and Aarts, E. 1996. A Computational Study of
Constraint Satisfaction for Multiple Capacitated Job Shop
Scheduling. European Journal of Operational Research
90(2):269–284.
Policella, N.; Smith, S. F.; Cesta, A.; and Oddi, A. 2004.
Generating Robust Schedules through Temporal Flexibil-
ity. In Proceedings of the 14th International Conference on
Automated Planning & Scheduling, ICAPS’04, 209–218.

