
Planning and Scheduling Teams of Skilled Workers

Laurent Perron, Paul Shaw,Didier Vidal
ILOG SA, 9 rue de Verdun, 92453 Gentilly Cedex, France

Abstract

Solving problems that mix planning and scheduling are often
seen as a challenge. Discrete time-based scheduling, along
with complex side constraints does not mix well with the
more flexible nature of the planning model. This is demon-
strated in our experiments when trying to solve a problem
where we must assemble teams of skilled workers to perform
jobs that require these skills, break these teams and then as-
semble new ones to perform more jobs. The mixing of the
planning part (grouping workers into teams) and the schedul-
ing part (creating a schedule for each worker), along with
some difficult side constraints and a large problem size (800
workers, 2000 jobs over one month) combine to contribute to
the challenge of finding good solutions for this problem.

Introduction
Planning and scheduling, the juxtaposition of the two names
stems from the technical limitations of the engines used to
solve them. On the one hand, we deal with the approximated
nature of the long term planning; and we often use math pro-
gramming to solve it. On the other hand, the discretization
or bucketization of time, the low-level side constraints, the
special cases and requests that have been approximated out
in the planning phase, all ask for another kind of solver, of-
ten a constraint-based one.

In fact, we would like to get rid of the distinction and
solve both problems at once. This is like solving the crew
pairing and the crew scheduling problem at the same time in
the airline industry, or the capacity planning and the detailed
scheduling in the same model for the discrete manufacturing
world.

However in doing so, we often face all kind of difficulties
from fitting the model in memory to finding feasible solu-
tions, even trivial ones as the solver has to deal with a het-
erogeneous model, in which seearch guidance information
becomes lost or difficult to extract.

This article tells a version of the same story. The complex
and heteronegeous nature of a timetabling problem forced
us to look at a decomposition to get a grip on the problem

Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

itself. We tried different methods of avoiding a decompo-
sition, from complex modeling to heuristics to reduce the
problem size and complexity. All techniques were pitted and
evaluated against a simple decomposition schema were the
linear constraints were separated from the scheduling ones
and given respectively to a MIP solver and a CP solver.

We began our work with an interesting timetabling prob-
lem with some twists: travel constraints, set covering con-
straints, knapsack constraints. We looked at it and came
up with two alternative models for it. Both were evaluated
against tiny, small, medium and large data sets and the re-
sults were extremely disappointing as one was able to treat
only the tiny problems and the other was able to treat the
tiny and the small ones. However, the goal was to solve the
large instances. We were far from success at that time.

To deal with the size of the largest models, we tried two
approaches. The first one was to give the packing and set
covering part to ILOG CPLEX(CPLEX 2007) and the rest
to ILOG CP Optimizer(CP-Optimizer 2007).

The second one was to do some something like simple
column generation where part of the problems were pre-
computed (the packing + set covering part). The the master
problem was not a linear one but a timetabling one and was
solved with ILOG CP Optimizer.

The article is divided in four sections. The first one will
present the problem and discuss its nature. It will also
present the implementation details of the side constraints.
The second section will present our initial failed experi-
ments. The third section speaks about decomposition and
model improvements. The last section presents experimen-
tal results on the final two approaches.

Presentation of the Problem
The skilled team problem can be described as follows. Given
a set of skills like painting, plumbing, roofing, a set of work-
ers with these skills and a set of jobs that requires these
skills, the goal is to assign workers to jobs and to find a start
date for each job such that they form an acceptable schedule
for each worker. Meaning, all workers participating in the
same job work on the same days. A worker can perform at
most one job per day. And finally, if a worker has to go to
a distant (far) job, he must stay at a hotel before and after

this job. In addition, if a worker returns home because he
has no job that day, then he cannot leave the same day. This
is equivalent to saying that there cannot be exactly one free
day between two jobs which are far from home.

This model is a closely related to the audit scheduling
problem(Balachandran & Zoltners 1981; Chan & Dodin
1986; J.C. & Lofti 1990; Dodin 1991). Different meth-
ods have been proposed to solve it (Bajis & Elimam 1996;
Dodin, Elimam, & Rolland 1996; Drexl, Frahm, & Salewski
).

Model Description
Given a set of Location L = { l1, . . . , l#l } along with a
decision procedure bool far(li, lj).
Given a set of Skills S = { s1, . . . , s#s }.
Given a set of Jobs J = { j1, . . . , j#j }.

where ji = < l, d, n, s ⊆ S, w > with l the index of the
location of the job, d the number of days needed to perform
the job, n the number of workers needed for the job, s the
subset of S of skills required by the job and w the weight
(importance) of the job.
Given a set of Workers W = { w1, . . . , w#w }.

where wi = < l, s ⊆ S > where l is the index of the
location of the home of the worker and s is the set of skills
the worker is qualified for.
Given a number of work days nd.

Given the following variables:

bool ax,y; x ∈ [1..#w], y ∈ [1..#j] wx performs jy
bool by; y ∈ [1..#j] jy is performed
int ty in [0..nd]; y ∈ [1..#j] start time of jy

The problem can be stated as:

maximize
∑
y∈1..#j jy.w × by

subject to
card: ∀y

∑
x ax,y = by × jy.n

day worked: ∀x
∑
y ax,y × jy.d ≤ nd

skill covering: ∀y
⋃
x ax,y ⊗ w.s ⊇ jy.s⊗ by

unperformed: ∀yty = 0⇔ by = false
valid schedule: At most one job at a time per worker
home: If idle, a worker is at home
forbidden: Far/home/far is forbidden

In the above model, s ⊗ b with s a set and b a boolean
value is defined as ∅ if b is false and s if b is true.

Discussion
In this problem, we can distinguish between three sub-
problems. The first one is a constrained variation on the
knapsack problem where we want to pack jobs to workers
and maximize the pack value. The second one is a set cov-
ering problem to determine valid combination of workers to
assign to a particular job. The last one is derived from a
classing scheduling problem with alternative ressources and
some specific forbidden transitions between activities.

An important aspect of this problem is the size of it. The
real life problem this model is derived from counts 800
workers, 2000 jobs, fifteen skills and the scheduler spans
roughly twenty days.

Therefore, we have to be careful about model complexity.
Let’s imagine we maintain a precise agenda for each worker
featuring the exact job he is performing each day. Then im-
plementing the compatibility table that will link three con-
secutive days has a size of 2000 × 2000 × 800 = 3.2 billion
cells in the dense graph of the relation!

Thus implementing the precise constraint cannot be done
in a naive way. This will be the subject of the next section.

Implementation of the Home and Forbidden
constraints as a Disjuction
As seen in the previous section, the tricky part in the imple-
mentation of the model is the definition of a valid schedule
that will express correctly the forbidden sequence constraint.

We first tried to implement the complete schedule with
just the start variables (ty) of the jobs. In that case, we can
add the following constraint to state the natural disjunction
between jobs than can be performed or not:

disjunct1: ∀x,y,y′ax,y ∧ ax,y′ ⇒
(ty >= ty′ + j′y.d) ∨ (ty >= ty′ + j′y.d)

Of course, this formulation is quadratic, and thus does not
scale well. Even if we filter out ax,y that we can safely set
to false1 there remains a huge number of constraints of this
type.

In addition, this type of constaint (disjunction) is typically
handled less efficiently than global or specialized constraints
in typical CP solvers. Regardless of the quadratic complex-
ity, we will try to improve the individual constraints them-
selves.

A better formulation would be to replace the implication
by a term in the sum that would nullify the constraint if
ax,y ∧ ax,y′ is false. This formulation is a bit better as it
allows slightly more propagation.

disjunct2: ∀x,y,y′(ty ≥ ty′ + j′y.d+ αx,y,y′)
∨(ty ≥ ty′ + j′y.d+ αx, y, y′)

interact: αx,y,y′ = (ax,y × ax,y′ − 1)×M

where M is a big enough constant2 and αx,y,y′ is a three
dimensional array on intermediate expressions3. This kind
of formulation is common in the math programming com-
munity.

Using this type of formulations, we can add a constraint
a simple constraint that is stronger than the forbidden con-
straint stating that if two jobs are far from the same worker
and can interact, then they cannot be one day apart.

1Because wx.s ∩ jy.s = ∅.
2greater than nd for instance.
3That are lazily generated, in order not to hit the dreaded #j ×

#j ×#w complexity.

forbidden1: ∀x,y,y′|farwx.l,jy.l∧farwx.l,j
y′ .l

(ty 6= ty′ + j′y.d+ αx,y,y′ + 1)
∧(ty 6= ty′ + j′y.d+ αx,y,y′ + 1)

This constraint is actually cutting valid solution as it
would have been possible to have a one day job in between
two far jobs. We will evaluate them in the experimentation
section.

Maintaining the Precise Agenda of Workers
Another possible implementation is to introduce variables
that will record the precise agenda of workers.

int gx,d in [0..#j]; x ∈ [1..#w], d ∈ [1..nd]

The variable gx,d represent the job performed by the
worker at the date d. A value of zero indicates that the
worker is idle.

To help implement the forbidden and home constraints,
we will introduce three sets of auxiliary variables:

bool hx,d; x ∈ [1..#w], d ∈ [1..nd]
bool fx,d; x ∈ [1..#w], d ∈ [1..nd]
int workedx, x ∈ [0..nd]

where hx,d is true when the worker x is idle on day d,
false otherwise; and fx,d is true when the worker x is work-
ing far from home on day d and false otherwise. The vari-
able worked computes the total number of days worked per
workers.

When this is done, we can pose constraints that will set
the g and f variables when a job is assigned to a worker.

agenda: ∀x,d, ax,y ⇒
∨
δ∈[0..jy.d−1] gx,ty+δ = y

far1: ∀x,d, ax,y ⇒∨
δ∈[0..jy.d−1] fx,ty+δ = far(wx.l, jy.l)

Computing the h variables is a bit more complex. As
the constraints that maintain the agendas are implications
between the a variables and the g variables, deciding if a
worker is idle is a bit tricky if not all teams have been built
and all start times assigned.

To compute the h variables, we count the number of days
worked and we know that for any worker, the number of
days worked + the number of days idle is always equal to
nd. Thus we can write the following constraints:

worked: ∀x workedx =
∑
y ax,ywy.d

idle1: ∀x,d, hx,d ⇔ gx,d = 0
full schedule: ∀x, workedx +

∑
d hx,d = nd

With all the extra variables and constraints, we can now
state the forbidden constraint:

forbidden2: ∀x,d∈[1..nd−2]

fx,d + hx,d+1 + fx,d+2 ≤ 2

This constraint, as opposed to the forbidden1 constraint,
the implementation of forbidden2 is exact. It does not rule
out valid solutions. Unfortunately, it propagates very late
as only when the schedule for a worker finished is this con-
straint fired – because only at that time are the h variables
completely defined.

Solving the Complete Problem
In this section, we investigate the effect of data size on the
feasibility of the previous approaches and the different con-
sumptions in term of memory and time.

Test Sets
To evaluate the different consumptions for the model, we
have generated 4 tests sets of different size:
Tiny: 20 workers and 60 jobs
Small: 40 workers and 200 jobs
Medium: 100 workers and 500 jobs
Large: 800 workers and 2000 jobs. This is the size of the

real world problem this model is inspired from.
All these test sets have 15 skills, 20 days. The far

predicate is implemented in the following way. All work-
ers homes and all jobs locations are placed randomly on a
10×10 grid. Then we use a cutoff distance (6) and a man-
hattan distance.

Thus, one job y and one worker x ’s home are far from
each other if and only if

abs(jy.posX−wx.posX)+abs(jy.posY −wx.posY) > 6

We will use these data sets to test ideas. As the large
size is very challenging to solve, we cannot hope to test new
ideas easily. Thus the need for smaller test sets to evaluate
ideas before the polishing needed to solve the large instance.

Experimental Context
Due to various external constraints, the model has to be
coded in ILOG OPL 5.2(OPL 2007) and the search part has
to be very simple.

The goal here is find how we can solve a large and com-
plex problem without writing complex search procedures or
custom constraints.

Hitting the Size Limit
We evaluate our two implementations and the different test
sets. For all experiments, we present the number of con-
straints in our engine used to solve it, the number of vari-
ables in the model, the memory used, the number of possi-
ble assignments – that is the number of pairs of compatible
worker - job, and the number of possible interactions be-
tween two jobs, that is the number of times two jobs may
share a worker. This will for instance count the number of
disjunctions in the disjunctive model.

We begin with the disjunctive model on the tiny samples
as any other size of sample will not fit into 1.5 GB mem-
ory. We tried with and without a simple shaving schema (as
exposed in the next section).

We first report the disjunctive model on the tiny sample
with and without shaving.

no shaving shaving
constraints 2208 2045
memory (MB) 37 35
variables 1340 1340
assignments 488 293
interactions 3600 961

This implementation would not even create the model for
other sizes of test sets (small, medium and large).

We move on to the agenda based implementation on the
tiny test sets.

no shaving shaving
constraints 10073 7192
memory (MB) 17.6 12
variables 2180 2180
assignments 488 293
interactions 3600 961

And the on the agenda based implementation of the small
test sets.

no shaving shaving
constraints 62764 49805
memory (MB) 212 166
variables 10120 10120
assignments 3721 2857
interactions 40000 20736

and finally on the medium test sets.

no shaving shaving
constraints too large too large
memory (MB) too large too large
variables too large too large
assignments 22792 20481
interactions 250000 190969

The large test set is not reachable with this model. For the
medium test sets, only the shaving part is performed. The
engine would not create the model and post constraints.

Discussion
The two model tested in this section performs very badly.
We can analyse why.

On the disjunctive model, the problem comes from the
implementation of the forbidden constraint. While the rest
of the model is very light, this constraint set is not. In fact,
if p1 is the probability of a worker to be able to perform a
job, then this worker may perform #j× p1 jobs. If p2 is the
probability of a job to be far from home of a worker, then
the number of forbidden constraints for a worker is (#j ×
p1 × p2)2.

Thus we have a total number of constraints in term of
#j2 ×#w. This is catastrophic.

If we look at the agenda based model, what is costly in
the model is the agenda constraint itself. In the constraint,
we have an element constraint:

∀x,d, ax,y ⇒
∨

δ∈[0..jy.d−1]

gx,ty+δ = y

The gs,ty+δ part. This one is expensive because we have
#w×#j×nd×average duration of these constraints. This
means 160000 * 2 = 320000 constraints if the average du-
ration of a job is 2. This is not as bad as before but still it
will not even reach the medium instances (2,000,000 of this
constraints).

Improving the Model
As we have seen before, solving the large model directly is
not tractable. First we have improved the timetabling model
and second we have investigated two possible ways of con-
taining the complexity of the model.

There are different ways to reduce the size of the problem.

• The first one is exact and and is based on an real computa-
tion of feasible combination of workers to perform a job.
With this information, we can rule out workers that never
appear in any feasible combination4.

• The second one is heuristic. We need a way to reduce the
number of possibilities. We will implement two methods,
one based on a limitation of the previous exact method
and the second on a hybrid decomposition of the problem
using a simplex to solve the assignment part.

Maintaining Active Jobs
The previous implementations of the scheduling were not
satisfying. We worked on another one that would count ac-
tive jobs on a given day. For this model, we reused the same
f, h and g variables from the previous models:

int gx,d in [0..#j]; x ∈ [1..#w], d ∈ [1..nd]
bool hx,d; x ∈ [1..#w], d ∈ [1..nd]
bool fx,d; x ∈ [1..#w], d ∈ [1..nd]

and we introduce a new kind of variables e to decide if a
job y s active at a given date d.

bool ey,d; y ∈ [1..#j], d ∈ [1..nd]

We can now post constraint that will maintain these e vari-
ables:

effective: ∀y,dey,d = (d− jy.d+ 1 ≤ ty ≤ d)

Which basically says that the time interval representing
the job y is spanning over the day d.

We can now implement the idle, far, valid schedule and
forbidden constraints.

valid schedule1: ∀x,d
∑
y ey,d × ax,y ≤ 1

idle2: ∀x,d
∑
y ey,d × ax,y + hx,d = 1

far2: ∀x,d
∑
y|far(x,y) ey,d × ax,y = fx,d

forbidden3: ∀x,d∈[1..nd−2]

fx,d + hx,d+1 + fx,d+2 ≤ 2

4This will force the corresponding ax,y variable to 0

The valid schedule is a simple constraint. It states that
at most one job is active for any given day and any given
worker.

The idle is also simple as it states that a worker is either
performing a job or idle. It is interesting to see that the h
variables are in fact the slack variables of the valid schedule
constraints. In that case, the idle constraints subsumes the
valid schedule constraint and the latter can be removed.

In the same spirit, the far constraint just checks if there is
one far job active for a given worker and a given day.

The forbidden constraint is the same as the previous one.

This model is much better than the previous one in our
case as the complexity depends on the number of time
points, which is low in our case. Thus the discrete time ap-
proach is much lighter in memory than the disjunctive one.

Shaving Combinations of Workers
The scope of the skill covering constraint is limited to one
assignemnt at a time. We have added another constraint that
rules out workers that have no skills needed by the job:

exclusion: ∀x,y jy.s ∩ wx.s = ∅ ⇒ ax,y = 0

With this method, we can create a sub-model that will
compute feasible solutions of the skill covering, card and
exclusion constraints.

Now, we can embed this algorithm inside a script that will
loop over feasible solutions and record workers selected by
the sub-algorithm.

We can now experiment with this shaving module.

tiny small medium large
jobs 60 200 500 2000
workers 20 40 100 800
possible 488 3721 22792 762596
removed 305 1513 6334 –
removed jobs 32 56 63 –
run time (s) 0.2 2.8 58 –

where possible counts the number of possibles pairs
(workers, jobs) as given by the exclusion constraint and re-
moved gives the number of such pairs the shaving procedure
has removed.

A ’–’ indicates that the computation excedeed a 20 min-
utes time limit.

While promising, this technique is not useful in practise
because of the runtime for the large instances – the one we
want to solve. We must find a solution for this runtime prob-
lem.

What we can do is limit the maximum number of ex-
plored solutions for one job. If we hit the solution limit,
we use the possible assignments as given by the exclusion
constraint This approach will just sacrifice quality of shav-
ing w.r.t. time.

Let’s see the effect of shaving when we experiment with
this solution limit. We look at the number of removed as-
signments and run time when constraint the number of solu-
tions explored. This is guide us in the time/quality balance.

First with the tiny test sets

solution limit #possible # removed run time
5 488 290 0.2
10 488 293 0.2
50 488 305 0.2
100 488 305 0.2
200 488 305 0.2
500 488 305 0.2
1000 488 305 0.2

Then with the small test sets:
solution limit #possible # removed run time
5 3721 1153 1.0
10 3721 1265 1.2
50 3721 1454 2.0
100 3721 1485 2.4
200 3721 1502 2.7
500 3721 1513 2.8
1000 3721 1513 2.8

then with the medium test sets:
solution limit #possible # removed run time
5 22792 4535 6.4
10 22792 5043 7.9
50 22792 6241 18.7
100 22792 6301 28.2
200 22792 6313 39.9
500 22792 6325 53.7
1000 22792 6334 57.3

and finally with the large test sets:

solution limit #possible # removed run time
5 762596 85734 258
10 762596 87225 320
50 762596 140997 793
100 762596 – –
200 762596 – –
500 762596 – –
1000 762596 – –

The idea to limit the loop is useful in practice and allow
a correct shaving and a robust one in term of runtime if we
restrict ourselves to small limits (less than 50).

Furthermore, the sheer numbers displayed illustrates the
complexity of the problems. In the large instances, 762596
possible assignments is simply to big.

Limit Combinations of Workers
The idea is to change the behavior of the shaving procedure
when the solution limit is crossed. In that case, instead of
recording the possible assignments, we record the assign-
ments found in the previous solution.

Thus we limit the possible combination and remove fea-
sible solutions from the model. On the other hand, we will
get a much smaller problem. In that sense, it is interesting to
look at small values for the loop limit.

First with the tiny test sets

solution limit #possible # removed run time
3 488 366 0.2
6 488 343 0.2
10 488 322 0.2
30 488 305 0.2
60 488 305 0.2
100 488 305 0.2
300 488 305 0.2

Then with the small test sets:

solution limit #possible # removed run time
3 3721 3007 0.9
6 3721 2725 1.0
10 3721 2443 1.2
30 3721 1835 1.7
60 3721 1623 2.1
100 3721 1538 2.4
300 3721 1513 2.6

then with the medium test sets:

solution limit #possible # removed run time
3 22792 20653 5.5
6 22792 19579 6.4
10 22792 18402 7.4
30 22792 14232 12.6
60 22792 11019 19.3
100 22792 9250 26.8
300 22792 6967 45.9

and finally with the large test sets:

solution limit #possible # removed run time
3 762596 753728 211
6 762596 748467 255
10 762596 741720 309
30 762596 715522 560
60 762596 686295 907
100 762596 649563 1341
300 762596 522302 3540

This technique shows good results in reducing the total
size of the model. We will evaluate these techniques in the
results section.

Hybrid Implementation
The idea here is to use ILOG CPLEX to solve the pack-
ing + set covering problem. More specfically the card, day
worked, skill covering and exclusion constraints. The fol-
lowing unique assignment is then given to the schedule.

This method can be seen as an optimized shaving version.
The good effect is that it simplifies a lot the scheduling mod-
ule.

Here are the remaining constraints (we note βx,y if the
assignment (worker x on job y) is selected by the planning.
This is now a data and not a variable anymore):

unperformed: ∀yty = 0⇔ by = false
effective: ∀y,dey,d = (d− jy.d+ 1 ≤ ty ≤ d)
idle3: ∀x,d(

∑
y|βx,y

ey,d × by) + hx,d = 1
far3: ∀x,d

∑
y|far(x,y)∧βx,y

ey,d × by = fx,d
forbidden4: ∀x,d∈[1..nd−2]

fx,d + hx,d+1 + fx,d+2 ≤ 2

We can make an important remark. By combining unper-
formed and effective, we can notice that a job is active only
if its start time is greater than 0.

Thus we can rewrite the effective constraint this way:

effective1: ∀y,d
ey,d = (max(1, d− jy.d+ 1) ≤ ty ≤ d)

With this new formulation, a job is effective only if it is
performed. This has an impact on other constraints as the
multiplication by by is not needed any more.

Thus we have the simplified and last model:

unperformed: ∀yty = 0⇔ by = false
effective1: ∀y,d

ey,d = (max(1, d− jy.d+ 1) ≤ ty ≤ d)
idle4: ∀x,d(

∑
y|βx,y

ey,d)) + hx,d = 1
far4: ∀x,d

∑
y|far(x,y)∧βx,y

ey,d = fx,d
forbidden4: ∀x,d∈[1..nd−2]

fx,d + hx,d+1 + fx,d+2 ≤ 2

This model is much smaller that the full scheduling model
developped in the previous sections. This will be visible in
the memory consumption of the different tests.

Experimental Results
It is time now to evaluate these two new models on the dif-
ferent test sets.

All experiments are made with ILOG OPL 5.2. They are
made on a Intel quad 2.67 GHz Xeon with 4 GB of memory
running Fedora 7 (64 bit).

Results with Limited Combinations of Workers
We give the results with the full model and the model limited
with a solution limit of six and three. The time limit is 2s per
job, thus 120, 400, 1000 and 4000s.

Here is the tiny test set with a solution limit of 3 and 6:

tiny test set Full Limited 6 Limited 3
Memory (MB): 7.1 6.4 6.2
Best Solution found: 48 48 48
Time (s): 11 30 30
Planning Solution: 48 48 48

and for the small test set:
small test set Full Limited 6 Limited 3
Memory (MB): 52 32 28.8
Best Solution found: 111 142 145
Time (s): 350 347 348
Planning Solution: 200 200 200

and the medium data set:
medium test set Full Limited 6 Limited 3
Memory (MB): 350 108 98
Best Solution found: 0 159 190
Time (s): 308 910 953
Planning Solution: 510 510 510

As we have seen before, the full model is not able to create
the problem for the large instances. The limited model is
able to create the problem but does not find a solution when
any job is assigned in less than 1h. We could have improved
the search heuristics to solve it, but we had decided early in
the project that we would use the default search of ILOG CP
Optimizer(Refalo 2004) with a minimum effort.

Results with Hybrid Model
With the hybrid instances, we get much better results:

Here is the tiny test set:

tiny test set Hybrid Model
Memory (MB): 2.3
Best Solution found: 48
Time (s): 0
Planning Solution: 48

and for the small test set:
small test set Hybrid Model
Memory (MB): 6
Best Solution found: 196
Time (s): 358
Planning Solution: 200

and the medium data set:
medium test set Hybrid Model
Memory (MB): 14
Best Solution found: 510
Time (s): 81
Planning Solution: 510

and the large data set:

large test set Hybrid Model
Memory (MB): 102
Best Solution found: 1759
Time (s): 3240
Planning Solution: 3327

Discussion on the Results
Without limiting the complexity of the problem, we simply
cannot solve the problem.

Furthermore, with a naive heuristics to reduce its size as
implemented by the shaving part, we still do not get good
results. We get the optimal solutions on the tiny samples,
but even the full model finds them. We get good solutions
on the small instances, the smaller the limit, the better they
are. Thus, the more we reduce the problem, the lowest the
optimal value but the better the best solution found.

On medium instance, we find poor solutions, far from the
optimal ones.

Thus it is the complexity of the problem that forbids the
a good search strategy. The search is lost and the number of
constraints is so huge that we just do not search enough. We
tried more aggressive search strategies, ones that would try
to perform all jobs instead of one that would first try not to
perform any job and then perform more and more of them
(branch up instead of branch down on the by variables). But
this one is not robust enough and while very good solutions
are found on the small and tiny test sets, we do not find any
solution for the medium and large instances.

Finally, the hybrid solution is by far the best and most
robust approach. It consumes less memory, finds good solu-
tion. Still, on the large instances, there is room for improve-
ment as we are quite far (1759 vs 3327).

Conclusion
The story repeats itself. We tried to get rid of the distinction
between planning and scheduling on this timetabling prob-
lem and we failed.

The combinatorial explosion of the search space and of
the number of constraints are the main limiting factors. As
a result, the problem cannot be solved by one engine in a
single run. Decomposition have to be used.

Furthermore, we are a bit disappointed by the results of
the model with limited combination of workers. This is par-
ticularly visible on the medium data set where the obtained
results (around 150) are very far from the planning solution
(510).

If we look at the bright side, the hybrid solution is very
small and elegant. It finds optimal solutions quickly for all
instances except the large ones. And for the large instances,
it finds good solutions and we are confident we will find
a way to solve the problem effectively with a little bit of
tweaking.

Finally, in order to sparkle discussion and comparison
with other methods, we have decided to make the instances
public. They can be obtained upon request from the author.
Please note that we are working on a more complex version
of the problem where some days are unavailable for workers.
This will be the subject of future work.

References
Bajis, D., and Elimam, A. 1996. Audit scheduling with
overlapping activities and sequence dependent setup costs.
The A. Gary Anderson Graduate School of Management
96-09, The A. Gary Anderson Graduate School of Man-
agement. University of California Riverside. available at
http://ideas.repec.org/p/fth/caland/96-09.html.
Balachandran, B., and Zoltners, A. 1981. An interactive
audit–staff scheduling decision support system. The Ac-
counting Review 56:801–812.
Chan, K., and Dodin, B. 1986. A decision support system
for audit–staff scheduling with precedence constraints and
due dates. The Accounting Review 61:726–733.

CP-Optimizer. 2007. ILOG CP Optimizer 1.0 User’s Man-
ual and Reference Manual. ILOG, S.A.
CPLEX. 2007. ILOG CPLEX 10.2 User’s Manual and
Reference Manual. ILOG, S.A.
Dodin, B.; Elimam, A.; and Rolland, E. 1996.
Tabu search in audit scheduling. The A. Gary An-
derson Graduate School of Management 96-25, The
A. Gary Anderson Graduate School of Management.
University of California Riverside. available at
http://ideas.repec.org/p/fth/caland/96-25.html.
Dodin, B., C. K. 1991. Application of production schedul-
ing methods to external and internal audit scheduling. Jour-
nal of Operational Research 52:267–279.
Drexl, A.; Frahm, J.; and Salewski, F. Audit-staff schedul-
ing by column generation.
J.C., R. H., and Lofti, V. 1990. A multiperiod audit staff
planning model using multiple objectives: Development
and evaluation. Decision Sciences 21:154–170.
OPL. 2007. ILOG OPL 5.2 User’s Manual and Reference
Manual. ILOG, S.A.
Refalo, P. 2004. Impact based strategies for constraint
programming. In Proceedings of CP 2004.

Acknowledgements
I would like to thank Alex Fleisher, Frank Wagner, Philippe
Refalo, Olivier Lhomme and Frédéric Delhoume for their
contribution to this work.

Annex
Here is the tuple definition in ILOG OPL 5.2(OPL 2007)
tuple Assignment {

int duration;
int required;
int weight;
int posX;
int posY;
int skills[allSkills];

}

tuple Worker {
int homeX;
int homeY;
int qualifications[allSkills];

}

and here is what a data test looks like
nbWorkers = 20;
nbJobs = 60;
nbSkills = 15;
nbDays = 20;
assignments = [
<3 4 1 2 1 [1, 0, 1, 0, 0, 1, 0,
1, 0, 1, 0, 0, 0, 0, 1] >
...
];
workers = [
<7 3 [0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 1] >

...
];

