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Abstract

In the 5th International Planning Competition, one objective
was to emphasise plan quality in the evaluation of participat-
ing planners. However, as most of the competition problems
were not solved by any optimal planner, the question of how
good the plans found by competing planners are, in absolute
terms, remains unanswered. This paper presents the results of
efforts to find optimal solutions, or improved lower and upper
bounds on the quality of solutions, to problems in the IPC5
domains, by a variety of methods.

Introduction
Although plan quality has always been a consideration in re-
search on automated planning, and consequently in the eval-
uation of planners participating in the International Planning
Competition (IPC) series, it has often taken a secondary
role, with time required to produce a plan viewed as the
most important criterion. One of the objectives of the 5th
International Planning Competition (IPC5), held in 2006,
was to place a greater emphasis on plan quality. The ver-
sion of PDDL used in IPC5, known as PDDL3, extended
previous versions with several constructs aimed at allowing
more flexibility in specifying constraints and “desiderata”
on plans (Gerevini & Long 2006).

In every competition since the beginning of the IPC se-
ries, there have been some participating planners offering a
guarantee of optimality, w.r.t. some measure of plan quality.
Mostly, however, optimal planners’ ability to solve problems
of increasing size within the time limit set in the competi-
tion has not been able to stay on par with that of suboptimal
planners. This is understandable, as optimal planners solve
a much harder problem, but unfortunate, since it means that
for the majority of problem instances, optimal plan quality
is not known. Although suboptimal planners can be, and in-
deed normally are, compared with respect to the quality of
the plans they generate, this is not a fully satisfactory eva-
lution, as it does not answer one important question: How
good are the plans in absolute terms? Put in a different way,
if two suboptimal planners find plans of similar quality, does
it mean they are equally good or equally bad?

Leaving this question unanswered for the results of IPC5
is particularly unsatisfying, due to its stated objective of rais-
ing the importance of plan quality. This paper presents the
results of efforts to obtain improved bounds on the quality of

solutions, and in some cases optimal solutions, to problems
in the IPC5 domains, by a variety of methods, including
some domain-specific algorithms, and compares the quality
of solutions obtained with that of solutions found by plan-
ners participating in the competition. Results are prelimi-
nary, in the sense that only a few of the IPC5 domains are
considered and in some domains results are not complete.
Particular emphasis is placed on domains that make use of
the new constructs in PDDL3 to specify the quality metric.

The next section describes the domains considered, the
methods used to find solutions and quality bounds in these
domains, and the results obtained. The section after presents
the comparison with the results of the competition. Conclu-
sions are reserved for the last section.

Domains

Ever since the 3rd planning competition it has been custom-
ary to present in competitions several “versions” of each
competition domain, each making use of a different sub-
set of language features, a tradition followed also in IPC5.
However, in most cases these different “versions” encode
radically different problems, and thus should properly be
considered as different domains (sharing only a common
“theme”). This is particularly true of the IPC5 domains
considered here. Moreover, the choice of PDDL constructs
to use in specifying a domain is often somewhat arbitrary,
since the same problem can often be equivalently expressed
in several ways. From this perspective, the IPC tradition of
distinguishing different “tracks” based on language features
is unnecessarily limiting, which is also reflected in the com-
petition results.

A general property of the domains considered is that they
all encode optimisation problems. It is significantly easier
(in some cases trivial) to find a solution that only satisfies
the “hard constraints” of a problem instance: the true dif-
ficulty lies in finding a solution that also has a high qual-
ity. It should also be noted that although some domains are
“inspired” by applications, none of them model actual ap-
plication problems. In this respect, the competition problem
instances are “artificial”, and moreover they are specifically
designed to offer challenging optimisation problems.



product sequence: 1 2 3 5 4
order 1 ({1, 2}): X X
order 2 ({1, 3}): X – X
order 3 ({2, 4}): X – – X
order 4 ({3, 5}): X X
order 5 ({4, 5}): X X
# of open stacks: 2 3 3 3 2

Figure 1: Illustration of how the number of open stacks is
calculated from a a product sequence. An “X” denotes that
the order includes a request for the corresponding product;
a “–” that the order is open at a point in the sequence, even
though it does not include a request for the product made at
that point.

Openstacks
The Openstacks (Propositional) domain is based on the
“minimum maximum open stacks” combinatorial optimisa-
tion problem, which can be stated as follows:

A manufacturer has a number of orders, each for a combi-
nation of different products. Only one product can be made
at a time, but the total required quantity of that product is
made at that time. From the time that the first product re-
quested by an order is made to the time that all products
included in the order have been made, the order is said to be
“open” and during this time it requires a “stack” (a tempo-
rary storage space). The problem is to order the making of
the different products so that the maximum number of stacks
that are in use simultaneously, i.e., the number of orders that
are in simultaneous production, is minimised.

Figure 1 illustrates the relationship between orders, the
product sequence, and the number of open stacks in a small
example problem.

This and several related problems have been studied in op-
erations research (see, e.g., Fink & Voss, 1999). It is a pure
optimisation problem: for any instance of the problem, ev-
ery ordering of the making of products is a solution, which
at worst uses as many simultaneously open stacks as there
are orders. The problem is known to be equivalent to several
other problems, including an NP-hard problem (Linhares &
Yanasse 2002). Recently, it was posed as a challenge prob-
lem for the constraint programming community, and as a
result, a large library of problem instances, as well as data
on the performance of a number of different solution ap-
proaches, is available (see Smith & Gent, 2005).

The Openstacks planning domain is a direct encoding of
the openstacks problem. There are two different formu-
lations of the domain. In the “plain” version of the do-
main, the encoding is done in such a way that the length
of a plan equals the maximum number of open stacks plus
a problem-specific constant (equal to twice the number of
orders plus the number of products). Thus, minimising the
number of actions in the plan also minimises the objective
function, i.e., the maximum number of open stacks. Because
no plan quality metric can be specified in the propositional
(STRIPS/ADL) fragment of PDDL, a different formulation
had to be used in the competition: in this, the “sequenced”

(a) (b) (c) (d) (e)
p01 5 3** 15 20
p02 5 3** 15 20
p03 5 3** 15 20
p04 5 3** 15 20
p05 5 3** 15 20
p06 wbop 10 10 #11 10 5** 30 40
p07 wbop 10 10 #18 10 6** 30 40
p08 nwrsSmaller #3 15 7** 55 80
p09 nwrssmaller #4 15 7** 55 80
p10 wbop 20 20 #12 20 9* 60 80
p11 wbop 20 20 #14 20 9* 60 80
p12 wbop 20 20 #21 20 12* 60 80
p13 wbop 20 20 #35 20 16* 60 80
p14 wbop 20 20 #37 20 15** 60 80
p15 Shaw #4 20 13** 60 80
p16 Shaw #24 20 14** 60 80
p17 nwrsLarger #1 20 12* 70 100
p18 nwrsLarger #3 25 10* 109 168
p19 sp4 #1 25 9* 75 100
p20 wbop 30 30 #17 30 10* 90 120
p21 wbop 30 30 #20 30 9* 90 120
p22 wbop 30 30 #26 30 15* 90 120
p23 wbop 30 30 #37 30 20* 90 120
p24 gp50by50 #2 50 40* 150 200
p25 gp50by50 #4 50 30* 150 200
p26 sp4 #2 50 19* 150 200
p27 sp4 #3 75 34 225 300
p28 gp100by100 #2 100 75* 300 400
p29 gp100by100 #4 100 60* 300 400
p30 sp4 #4 100 54 300 400

Table 1: Facts about the Openstacks problem instances: (a)
corresponding 2005 Constraint Modelling Challenge prob-
lem; (b) number of orders (also an upper bound on the num-
ber of open stacks); (c) number of open stacks in best known
solution; one star indicates the number is optimal, two that
the problem (in plain formulation) was solved by an opti-
mal planner; (d) the constant offset between plan length and
number of open stacks, for the plain formulation; (e) ditto,
sequenced formulation.

version, additional constraints ensure that no two actions can
be executed in parallel, so that minimising the number of
“parallel steps” is equivalent to minimising the number of
actions. The constant offset between the number of steps
and the maximum number of open stacks is larger in the se-
quenced domain (equal to twice the number of orders plus
twice the number of products). The problem instances used
in the competition are a selection of instances from the con-
straint modelling challenge problem library, plus five extra
instances of trivially small size (p01–p05). Table 1 sum-
marises some facts about the competition problems.

In the 2005 Constraint Modelling Challenge, the dynamic
programming algorithm by Garcia de la Banda & Stuckey
(2005) stood clearly out from the rest in terms of perfor-
mance. It solved all problems in the challenge library except
two: “sp4 #3” and “sp4 #4”. Naturally, both of these were



included among the problems used in the planning competi-
tion. For one of these problems, #3, SGPlan found a solution
using one stack less than the best previously known solution.
However, the optimal number of stacks remains unknown.

Solutions to problems in the Openstacks domain were ob-
tained with a re-implementation of Garcia de la Bandas &
Stuckeys algorithm. However, the MIPS-BDD planner, con-
figured to ensure optimality w.r.t. number of actions in the
plan, was also able to solve a decent number of problems
using the plain domain version.

Openstacks SimplePreferences
The Openstacks SimplePreferences (SP) domain models a
problem similar to, yet radically different from, the original
openstacks problem. The main ingredients are the same: a
set of products to be made in sequence, a set of orders, each
for some subset of products, and the constraint that an or-
der is “open”, and requires a “stack”, from the point where
the first product requested by the order is made to the point
where the last such product is made. The difference lies in
the objective function: in this problem, the number of stacks
that may be used is fixed to a constant in each problem in-
stance, and the constraint that all requested products must
be included in each order is “soft”, i.e., it does not have to
be satisfied for a plan to be valid, but the plan is given a
penalty for each violation. The objective is to minimise the
total penalty for unsatisfied product requests.

The encoding of this problem makes use of preferences,
one of the new features in PDDL3. Briefly, (simple) prefer-
ences allow a plan metric to be defined in terms of the truth
or falsity of atoms in the state at the end of plan execution.
Preferences are used to specify the penalties for not deliver-
ing requested products. The same objective could also have
been expressed using numeric state variables.

Two different models for the penalty associated with un-
satisfied product requests were used, each in roughly half
the instances. In the “uniform” model, the penalty is 1 for
every request in every order, so the objective is simply to
minimise the number of unsatisfied requests. In the other,
the “exponential”, model, products requested by each order
were given an (arbitrarily chosen) “order of importance”:
the value of satisfying only the request for the most impor-
tant product is 1, and each following request satisfied adds
twice the value of the previous. For example, if an order re-
quests the set {1, 6, 9}, the value of delivering {1} is 1, the
value of delivering {1, 6} is 3, and the value of delivering the
full set is 7. Note that the penalty for failure to satisfy prod-
uct requests follows an opposite pattern: in the example, not
delivering product 1 implies a total penalty (value lost) of 7,
while failure to deliver only product 9 gives a penalty of 4.

The intent when creating problem instances for this do-
main was to make the number of stacks in each instance
slightly smaller than the minimum required to accommodate
all product requests, thus forcing a solution to choose a sub-
set of the requests in each order to satisfy. However, because
optimal solutions to all the original openstacks problems
were not known when instances were constructed, some in-
stances ended up having a sufficient number of stacks to per-
mit solutions with zero penalty. This unintentional flaw led

to some interesting results.
Table 2 summarises some facts about the competition

problems.

The Min-Penalty-Fixed-Sequence Problem Openstacks
SP is a difficult optimisation problem, because it has many
degrees of freedom: a solution must choose both an ordering
of the products and which product requests to leave unsat-
isfied, with the fixed maximal number of open stacks as the
only constraint. Fixing one of these choices, i.e., either fix-
ing the sequence of products or the requests to drop, makes
attacking the remaining problem easier, and the quality of
a solution to any such “partially fixed” problem is an upper
bound on the obtainable quality. The chosen approach was
to enumerate product sequences and minimise penalty for
each fixed sequence.

The “minimum penalty for a fixed product sequence”
(MPFS) problem is solved by a branch-and-bound algo-
rithm. To reduce by one the number of open stacks at any
point in the sequence, it is necessary to drop from one of
the orders open at that point either all requests for products
made earlier in the sequence (“to the left”) or all requests for
products made later in the sequence (“to the right”), as well
as for the product made at the point, if the order includes
it (see Figure 1). Each such “fix” carries a penalty, and the
penalty for reducing the number of open stacks at a point by
some k > 1 is no less than the sum of the k such “fixes” that
have the smallest individual penalties. The algorithm selects
a point in the sequence where the number of open stacks ex-
ceeds the limit and branches on the fix to apply. The lower
bound is fairly weak, as it considers only “the cheapest fix
to the most costly problem”. Stronger bounds are possible:
if, for example, the sets of orders open at two points where
the number of open stacks exceeds the limit are disjoint, the
sum of the lower bounds on the penalties to fix both points
is also a lower bound on the total penalty of a solution.

The algorithm is reasonably efficient when the difference
between the number of stacks available and number used
by the input product sequence is small, but degrades as this
difference grows.

Lower Bounds Since the MPFS algorithm does not prove
optimality of the solution, other methods are needed to find
lower bounds on the minimum penalty attainable. With
the exception of instances p15–p18, the stack limit in the
Openstacks SP problems is less than the number required
to satisfy all product requests, so a simple lower bound is
the smallest penalty for dropping any single request. In sur-
prisingly many instances, this bound is met by the MPFS
solution.

Several lower bounds on the minimum number of stacks
can be obtained from the co-demand graph (Smith & Gent,
2005, give a summary). This graph has a node for each order
and an edge between two nodes iff the corresponding orders
have a product in common. The minimum degree of any
node in the co-demand graph plus one and the size of any
clique in the graph are both lower bounds on the number
of stacks needed. To lower either bound edges must be re-
moved from the graph, which corresponds to removing each
of the shared product requests from one of the two orders.



(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k)
p01 wbop 10 10 #11 E 70 4 ( 5) 14.0 4 / 4 / – 6 38.0 70.0 70.0 59.0 (2,3)
p02 wbop 10 10 #18 E 70 5 ( 6) 11.6 4 / 4 / – 4* 35.6 60.6 69.6 52.8 (3)
p03 nwrsSmaller #3 U 90 6 ( 7) 12.8 1 / 1 / 1 2 24.8 84.8 89.6 70.0 (5)
p04 nwrsSmaller #4 U 100 6 ( 7) 14.2 1 / 1 / 2 4 29.2 96.2 99.4 79.8 (4)
p05 wbop 20 20 #12 E 140 8 ( 9) 15.5 4 / 0 / – 4* 39.5 120.5 139.5 98.5 (5)
p06 wbop 20 20 #14 E 140 8 ( 9) 15.5 4 / 0 / – 4* 39.5 120.5 139.5 94.0 (4)
p07 wbop 20 20 #21 E 300 11 (12) 25.0 8 / 8 / – 8* 110.0 265.0 300.0 248.0 (8)
p08 wbop 20 20 #35 E 620 15 (16) 38.7 16 / 16 / – 24 364.7 565.7 619.2 593.1 (13)
p09 wbop 20 20 #37 E 620 14 (15) 41.3 16 / 16 / – 16* 347.3 568.3 619.5 554.3 (11)
p10 Shaw #24 U 120 13 (14) 8.5 1 / 0 / 0 1* 24.5 114.2 119.0 90.5 (9)
p11 Shaw #4 U 120 12 (13) 9.2 1 / 0 / 0 1* 27.2 115.5 119.6 88.4 (7)
p12 nwrsLarger #1 U 153 11 (12) 12.75 1 / 0 / 0 1* 32.75 151.75 153.0 122.0 (8)
p13 nwrsLarger #3 U 223 9 (10) 22.3 1 / 1 / 1 3 43.3 216.3 223.0 185.6 (2)
p14 sp4 #1 U 65 7 ( 9) 7.2 1 / 0 / 1 3 27.6 55.2 64.8 42.8 (4)
p15 wbop 30 30 #17 E 210 11 (10) 17.5 0* 40.5 164.5 175.0 138.0 (6)
p16 wbop 30 30 #20 E 210 11 ( 9) 17.5 0* 40.5 171.5 157.5 120.5 (5)
p17 wbop 30 30 #26 E 450 17 (15) 25.0 0* 131.0 400.0 375.0 331.0 (11)
p18 wbop 30 30 #37 E 930 21 (20) 42.2 0* 390.2 848.2 844.0 650.8 (14)
p19 gp50by50 #2 U 1581 37 (40) 39.5 1 / 1 / 3 96 84.5 1580.5 1580.0 1524.0 (6)
p20 gp50by50 #4 U 1348 27 (30) 44.9 1 / 3 / 3 127 86.9 1347.9 1347.0 1336.3 (7)

Table 2: Facts about the Openstacks SP and QP problem instances: (a) corresponding 2005 Constraint Modelling Challenge
problem; (b) penalty model (“Uniform” or “Exponential”); (c) maximum total penalty for unsatisfied product requests; (d) fixed
number of stacks in the SP domain; (in parentheses: minimum number of stacks needed to accommodate all product requests);
(e) penalty/stack in the QP domain.
Openstacks SP domain: (f) lower bounds: smallest single-product penalty / by co-demand graph min degree / by co-demand
graph max cliques (problems with uniform penalty model only); (g) best MPFS solution; a star indicates the solution is optimal
(matched by one of the lower bounds). In problems p15–p18 the stack limit is large enough to accommodate all product
requests, making a penalty of zero possible.
Openstacks QP domain: (h) lower bound; (i) upper bound by single-stack construction (using approximate weighted indepen-
dent set); (j) upper bound by optimal solution to original openstacks problem; (k) best known solution (in parenthesis: number
of stacks used by this solution). For instances p13, p14, p19 and p20, the best solution is one submitted by a planner in the
competition. In the remaining instances, it was found by trying the MPFS solver with different fixed numbers of stacks.

Thus, each edge can be assigned a weight, equal to the mini-
mum penalty incurred if it is removed, and lower bounds on
the minimum penalty overall obtained by finding (or lower
bounding) the least weight set of edges to remove that brings
both bounds on the number of stacks down to the limit.

MPFS solutions and lower bounds for the competition
problems are summarised in Table 2, columns (f) and (g).
The lower bounds on penalty are fairly weak, in particular
for problems with uniform penalties.

Openstacks QualitativePreferences
The Openstacks QualitativePreferences (QP) domain com-
bines the two objective functions of the openstacks and
Openstacks SP problems, by a weighted sum. That is, a so-
lution may use any number of stacks and may drop any set
of product requests, but must minimise the sum of a price
per stack used and the total penalty for unsatisfied requests.
The encoding of the problem makes some use of PDDL3
plan constraints, to keep track of the number of stacks used
in a plan, but that is not an essential feature of the domain:
this part of the objective function could equally well have
been expressed using only simple (goal state) preferences,
or numeric state variables (in fact, the latter is done in the

Openstacks MetricTime domain).
The competition problems for this domain are based on

the same instances as in the Openstacks SP domain and
use the same two penalty models (uniform and exponen-
tial). The price per stack in each instance was set to the
total penalty for unsatisfied product requests divided by the
optimal (or, in the case of problems p15–p18, best known
at the time) number of stacks required to accommodate all
requests, with the aim of making the two extreme solutions
roughly equal in value so that, hopefully, the best solution
would be a trade-off somewhere in between. The price per
stack for each problem is listed in column (e) in Table 2.

Upper and Lower Bounds The Openstacks QP domain
has essentially no hard constraints, which, while making it
hard to optimise, makes it easy to construct feasible solu-
tions, and therefore to derive upper bounds. One is given
by the cost of a solution that delivers all requested products
using an optimal number of stacks. Another set of solutions
are given by the best solution to the Openstacks SP prob-
lem induced by fixing the number of stacks at any value less
than the optimal. For large instances, however, this method
can only find solutions that use a relatively large number of



stacks, because the efficiency of the MPFS algorithm de-
grades as the discrepancy between the stack limit and the
optimal number of stacks for the original problem increases.

At the other end of the spectrum, a solution using a sin-
gle stack can be constructed by selecting a set of orders that
form an independent set in the co-demand graph. As no two
orders in this set request the same product, they can be ac-
commodated on a single stack, if all requests of all orders not
in the chosen set are dropped. Because the value (i.e. penalty
avoided) of satisfying an order may vary between orders,
this amounts to solving a weighted independent set prob-
lem. This is an NP-hard problem, but good solutions can
be found by approximation algorithms (Halldórsson 2000;
Kako et al. 2005).

A lower bound can be obtained by the methods described
in the last section, minimising over all numbers of stacks
less than the minimum required to satisfy all product re-
quests. This bound, however, inherits the weakness of the
lower bounds on Openstacks SP problems. Lower and up-
per bounds obtained for the competition problems are listed
in Table 2, columns (h)–(k).

Openstacks Time and MetricTime
The Openstacks Time and MetricTime domains again have
the same elements as the original openstacks problem but
very different objective functions. In the Openstacks Time
domain, the objective is to minimise plan makespan. Mak-
ing each product takes a different amount of time, but any
number of products can be made in parallel as long as all
orders requesting the products are simultaneously open. In
the Openstacks Time domain the maximal number of stacks
in use is fixed, while in the MetricTime domain it is unlim-
ited and the objective function is a weighted combination
of makespan and the number of stacks used. There are no
“soft” goals: satisfaction of all product requests is manda-
tory.

The problem was encoded in the “timed” fragment of
PDDL. Numeric state variables were used to keep track of
the number of stacks used in the MetricTime domain, but,
again, this part of the objective function could have been
formulated differently (e.g., as done in the Openstacks QP
domain). Problem instances for the competition were based
on the same set of openstacks problems as in the Openstacks
SP and QP domains. The time to make each product was
set randomly, in the range 1 to 10. The encoding of the
problem has a fairly large number of “mandatory” actions,
meaning any valid plan must contain them; to ensure that the
scheduling of the product-making actions dominates plan
makespan, their durations were scaled up by a factor equal
to the number of orders in the problem, while all other ac-
tions were given a duration of 1. The fixed number of stacks
available in instances of the Openstacks Time domain was
set to a value close to the upper bound (number of orders).
For the MetricTime domain, the “price per stack” was deter-
mined by comparing the makespan of the best plans found
with different fixed numbers of stacks, and choosing a value
equal to the average decrease in makespan per stack added,
following again the principle of making the extreme points
on the spectrum of trade-offs roughly equal in value.

The Openstacks Time domain is too hard for any current
makespan-optimal planner to solve. The solutions used in
the construction of the MetricTime problems were obtained
with the LPG planner (Gerevini, Saetti, & Serina 2006), by
allowing it to run for a long time on each problem. In many
cases, though not all, these solutions are still the best known.
Lower bounds on makespan were obtained with the temporal
h2 (admissible) heuristic. For problems in the MetricTime
domain, the combination of the known minimum number
of stacks required and the h2 estimate of makespan (which,
due to the nature of the heuristic, is the same for any fixed
number of stacks greater than or equal to two) yields a lower
bound.

Facts about the problem instances, best known solutions
and lower bounds are summarised in Table 3.

Rovers MetricSimplePreferences
The Rovers MetricSimplePreferences (MSP) domain is
nominally based on the Rovers domain, introduced in IPC3
(Long & Fox 2003), but more importantly it is an instance
of the class known as net benefit maximisation problems.
These are “over-subscribed problems”, in which the task of
the planner is not to plan for all the given goals, but to se-
lect and plan for a subset of goals in a way that maximises
some measure of “return” within given constraints. Prob-
lems of this kind have been studied in scheduling and have
also attracted interest among planning researchers recently
(e.g. Smith 2004; Do et al. 2007).

The net benefit of a plan is defined as the value of the
goals achieved by the plan minus the cost of the plan. There
are no “hard goals”, i.e. goals that must be achieved. The
cost of a plan is the sum of the (independent and constant)
costs of actions in it, and the value of the set of goals
achieved is given by associating to each of a set of atomic
potential goals a constant value. The objective is to max-
imise net benefit. Problems of this kind are straightforward
to encode in PDDL3, using preferences to assign values to
the goals and one or more numeric state variables to keep
track of plan cost.

Problem Instance Construction Instances of the Rovers
MSP domain for IPC5 were created by a method aimed
at generating “interesting” problems, having balanced costs
and values for each subset of goals and thus non-obvious
optimal solutions. It is a general method, applicable to any
domain.

First, (random) base problem instances with action costs
assigned and a relatively large number of potential goals are
generated. Second, the real cost of achieving small sets of
goals (single goals and pairs of goals) is found, by opti-
mally solving the corresponding planning problems. Third,
goals (and, in some cases, conjunctions of two goals) are as-
signed “base values”, using the costs to estimate the kind and
strength of “interaction” between goals, in a way intended
to make the achievable net benefit of all goal sets roughly
equal. Final goal values are then determined by randomly
adding or subtracting a percentage from the base value (for
the competition problems, up to ±99%). Note that, as there
are no hard goals, the plans generated as part of the construc-



(a) (b) (c) (d) (e) (f) (g)
p01 wbop 10 10 #11 8 ( 5) 41.0 105 188 310.0 477.0
p02 wbop 10 10 #18 9 ( 6) 32.0 105 138 297.0 426.0
p03 nwrsSmaller #3 13 ( 7) 55.5 155 275 543.5 873.0
p04 nwrsSmaller #4 13 ( 7) 66.5 155 297 620.5 1054.0
p05 wbop 20 20 #12 18 ( 9) 52.0 205 311 673.0 1247.0
p06 wbop 20 20 #14 18 ( 9) 27.0 205 261 448.0 747.0
p07 wbop 20 20 #21 18 (12) 59.0 205 330 913.0 1392.0
p08 wbop 20 20 #35 19 (16) 100.0 205 312 1805.0 2212.0
p09 wbop 20 20 #37 18 (15) 54.5 205 322 1022.5 1303.0
p10 Shaw #4 18 (13) 71.5 205 353 1134.5 1640.0
p11 Shaw #24 18 (14) 73.0 205 359 1227.0 1673.0
p12 nwrsLarger #1 18 (12) 88.0 205 403 1261.0 1849.0
p13 nwrsLarger #3 18 (10) 35.3 255 535 610.0 1170.4
p14 sp4 #1 23 ( 9) 40.5 255 345 619.5 1276.5
p15 wbop 30 30 #17 28 (10) 23.5 305 378 540.0 1036.0
p16 wbop 30 30 #20 28 ( 9) 34.5 305 390 615.5 1356.0
p17 wbop 30 30 #26 28 (15) 78.0 305 495 1475.0 2679.0
p18 wbop 30 30 #37 28 (20) 100.0 305 532 2305.0 3093.0
p19 gp50by50 #2 48 (40) 120.5 505 833 5325.0 6618.0
p20 gp50by50 #4 48 (30) 144.5 505 775 4840.0 7816.0

Table 3: Facts about Openstacks Time and MetricTime instances: (a) corresponding 2005 Constraint Modelling Challenge
problem; (b) fixed number of stacks in the Time domain; (in parentheses: minimum number of stacks required); (c) price/stack
in the MetricTime domain.
Openstacks Time domain: (d) lower bound on makespan; (e) makespan of best known solution.
Openstacks MetricTime domain: (f) lower bound on metric value; (g) metric value of best known solution.

Figure 2: Single-goal and pair-of-goals optimal costs in a
small Rovers problem.

tion are all valid plans for the final problem, and so yield a
lower bound on the net benefit attainable.

The interaction between two goal atoms p and q is labelled
a synergy if the cost of achieving {p, q} is less than the cost
of achieving p plus the cost of achieving q. The synergy ef-
fect is the difference between the two. Conversely, if the cost
of achieving the pair is greater than the sum of the single-
goal costs, the interaction is labelled an interference. Figure
2 illustrates the relationships between goal atoms in a small
problem instance. The base value of a single-atom goal that
has no interactions equals the optimal cost of achieving the
goal. The base value of a goal that has only synergy rela-
tions to other goals is reduced by half the average synergy
effect, while for goals with only interference relations it is
increased by the corresponding amount. Goals that are in
both synergy and interference relations have their base val-
ues reduced in the same way as goals with only synergy re-
lations, but as compensation the conjunction of any pair of
such goals that are in an interference relation is given an ad-

ditional value, equal to the interference effect.
For the Rovers MSP domain, base problems were gener-

ated with a slightly modified version of the random prob-
lem generator used in IPC3 (STRIPS version). Only the
navigate actions were given a non-zero cost, and only
instances of comm rock data, comm soil data and
comm image data were selected as goals. (Some goals
turned out to be achievable by zero cost plans, and therefore
got a base value of zero; as this was only discovered at a
late date, the problem was “fixed” by assigning such goals a
small value, 1%–10% of the total goal value.) In general, the
decision problem underlying this domain is NP-hard (this
can be shown by a reduction from Hamiltonian cycle, similar
to that used for the Travelling Salesman problem). However,
the roadmaps created by the IPC3 problem generator have a
particularly simple form. In the competition, the net benefit
maximisation objective was reformulated as a minimisation
objective, and also shifted by a problem-dependent constant.

Three sets of problem instances were created: one com-
prising problems with only synergy relations between goals
(“type I”), one with problems having only interference re-
lations (“type II”) and one with problems having a mixture
of goal relations (“type III”). A “test run”, using a simple
optimal planner for net benefit problems, was made to filter
out problems that were too easy (solved optimally) or that
appeared too hard (no improvement over the lower bound
from problem construction could be found).

Generating and Solving Decision Problems The planner
used for the “test run” in problem construction is too inef-



(a) (b) (c) (d)
– Type I (synergistic goals) –

p01 851.1 811.3* 4/ 5
p02 610.8 473.2* 5/ 6
p03 862.2 811.3* 5/ 6
p04 461.9 418.7* 5/ 5
p05 870.0 483.6* 6/ 6
p06 655.7 649.2* 5/ 8
p07 402.2 402.2* 2/ 5

– Type II (interfering goals) –
p08 978.7 698.4* 6/ 9
p09 432.9 326.2* 9/ 9
p10 873.5 617.1* 6/ 9
p11 698.1 468.6* 7/ 8
p12 425.6 371.9 363.3 9/10
p13 1550.6 755.8 718.6 11/12

– Type III (mixed) –
p14 578.4 442.2* 6/ 7
p15 3948.4 1004.5 940.6 21/22
p16 4672.3 944.7* 22/22
p17 1768.7 721.9* 18/18
p18 742.9 628.8* 8/10
p19 699.0 345.2* 6/ 6
p20 3183.1 1116.2 924.7 20/20

Table 4: Bounds on Rovers MSP problems: (a) upper bound
from problem construction; (b) best known solution; a star
indicates it is optimal; (c) lower bound on best possible so-
lution; (d) fraction of soft goals achieved by best known so-
lution. Note that values refer to the metric as specified in the
competition domain: the objective is to minimise this value.

ficient to be able to provide optimal solutions to the com-
petition instances (indeed, that was one of the criteria by
which they were chosen). Instead, improved solutions and
bounds were found by iteratively generating and solving de-
cision problems seeking to improve on the quality of the best
known plan.

Let V (G′) denote the value of a subset of goals G′.
Given a bound B, a plan that achieves G′ attains a net
benefit greater than B iff the cost of the plan is less than
C = B − V (G′). Thus, the question “does there exist a
plan with net benefit > B?” can be answered by deciding
the solvability of a collection of cost-bounded ordinary plan-
ning problems, one for each goal subset. As soon as a plan
is found for any one of them, the process is repeated with
the bound B on net benefit set to the value of that plan.

The number of goals in the competition problems range
from 5 to 22. Enumerating all goal subsets is feasible, but
solving all the corresponding decision problems is not: for
this approach to be practical it is essential to have good
bounds on the cost of reaching each set of goals. Lower
bounds can be obtained using various admissible heuristics
(for the Rovers domain, the additive h2 heuristic by Haslum,
Bonet & Geffner, 2005, is fairly useful, if a suitable action
partitioning is provided). A decision problem with goals G′

and cost bound C that has been searched and proven to be
unsolvable also yields a lower bound of C on the cost of

achieving G′, or any superset of G′.
Using all available information, including plans submitted

by the competitors, the number of decision problems that
needed to be solved could be brought down to a few hundred
for most instances. When the cost bound is relatively loose,
it was often worth first trying to solve problems using one
or more fast suboptimal planners, since any solution found
improves the lower bound on net benefit and thus tightens
the cost bound in the next iteration. For proving problems
unsolvable, however, using an optimal planner was the only
viable option. (Some experiments with a domain-specific
solver, based on a constraint programming formulation of
the problem, were also done.) All but four instances could
be solved optimally by this method. Table 4 summarises the
results. The results shown in the table are with respect to
the plan metric as specified in the competition domain: the
objective is to minimise the value.

Rovers QualitativePreferences
The Rovers QualitativePreferences (QP) domain is also
based on the IPC3 Rovers domain but, again, it models a
very different problem. This domain makes extensive use of
the plan constraints introduced in PDDL3. In fact, it was
designed explicitly to test the ability of competing planners
to trade off “soft” plan constraints against each other.

PDDL3 plan constraints allow certain forms of
“temporally extended goals”, meaning conditions on
intermediate states visited by the plan, to be ex-
pressed. In domains without metric time, the possible
plan constraints are (always ϕ), (sometime ϕ),
(at-most-once ϕ), (sometime-before ϕ ψ)
and (sometime-after ϕ ψ), where ϕ and ψ are state
formulas, and conjunctions of these. The modal operators
have, for the most part, their intuitive meaning; definitions
are given by Gerevini & Long (2006).

Plan constraints in the Rovers QP domain are all “soft”,
i.e., a plan does not have to satisfy them, but is given a
penalty for each unsatisfied constraint. The constraints are
“artificial”, in the sense that they do not encode any real pref-
erences on plans. Problems also have regular “hard” goals
to be achieved in the final state. Plan constraints may con-
tradict each other, or the hard goals: an optimal solution in
this domain is one that selects a jointly achievable set of
constraints with maximum value (the “value” of a constraint
being the penalty avoided by satisfying it).

Problem Instance Construction As in the case of the
Rovers MSP domain, the method used to construct problem
instances for the Rovers QP domain is general, and aims at
producing problems with non-obvious optimal solutions.

For a given base problem, a set of candidate plan con-
straints is found by “mining” a set of plans for the problem.
Testing if a plan satisfies a given constraint is easy, and for a
sufficiently restricted class of state formulas it is feasible to
determine the set of all possible constraints built with state
formulas of the class that are satisfied by a plan. Given a
set of plans, the candidate set of constraints are those that
are satisfied by at least one plan, but not by all. This en-
sures that the chosen constraints are all satisfiable but not



trivially implied by the structure of the problem. (Due to
bugs in the construction, some competition instances have
a few constraints that conflict with the hard problem goals
and therefore can not be satisfied.) Additional filtering cri-
teria can also be applied.

The strategy for assigning penalties to chosen constraints
is again to calculate a “base value”, in a manner intended
to make the values of all maximal satisfiable sets of con-
straints roughly equal, and determine final values by ran-
domly adding or subtracting a percentage of the base value.
Actually determining the maximal satisfiable sets of con-
strains is hard, so the calculation is an estimate, also based
on the set of plans used to find the candidate constraints. Let
N be the number of constraints in the chosen set, and let
Mi be the maximum number of constraints in this set sat-
isfied by any plan that satisfies constraint i: the base value
(penalty) assigned to constraint i is (N −Mi)/N .

Note that the plans used in the construction are all valid
plans for the final problem, and thus yield upper bounds on
the minimum penalty attainable.

For the Rovers QP domain, base problems were the in-
stances of the Rovers domain (STRIPS version) used in
IPC3, and the plans used to find and rank candidate con-
straints were the plans submitted by planners participating in
that competition. Constraint state formulas were restricted
to single atoms. Because the number of “two formula” con-
straints (sometime-before and sometime-after) in
the candidate set tend to be very large, only a randomly
chosen subset of sometime-before constraints was in-
cluded. The penalty for each constraint was chosen ran-
domly within ±50% of the base value.

Plan Constraint Compilation The approach to finding
bounds and improved solutions in the Rovers QP domain
was again to enumerate and analyse decision problems cor-
responding to subsets of preferences. To analyse or solve
these problems, the plan constraints were compiled away to
yield ordinary STRIPS problems.

The approach of compiling away plan constraints was also
used by several competing planners (e.g. Baier & McIlraith
2006; Edelkamp 2006). The compilation used here is direct
(not via finite automata, as is otherwise common), produces
plain STRIPS problems and preserves plan length. It ex-
ploits the fact that plan constraints in decision problems are
hard (for example, a constraint (always (p)) is com-
piled by removing all actions that delete (p)). Potentially,
the compilation may increase the size of the problem (num-
ber of actions) exponentially, but this does not happen for
the Rovers QP problems due to the restricted form of state
formulas in plan constraints in these instances.

Lower bounds were obtained using the admissible h3

heuristic. As this domain has no plan cost, what matters
is only the heuristics ability to detect unreachability of sets
of goals. Results are summarised in Table 5.

Comparison with Competition Results
Figure 3 shows comparisons between the quality of plans
submitted by planners participating in IPC5 and the current
best known solutions, lower and upper bounds. To avoid

(a) (b) (c)
p01 68.0393 79.3947 68.0393
p02 32.6666 38.1111 38.1111
p03 29.19 57.11 29.19
p04 23.8857 38 38
p05 65.1469 266 160.971
p06 28.608 68.901 68.901
p07 20.9077 116.196 87.9637
p08 484 856 620
p09 427.835 1558.74 884.375
p10 219.467 1484.63 473.361
p11 624.776 1559.42 996.759
p12 238.404 1282.68 250.716
p13 288.357 5309.38 2110.62
p14 246.787 929.05 513.937
p15 971.361 3108.81 2211.16
p16 468 3234 2406
p17 1162.69 5101.07 2553.72
p18 1240 8390 4971
p19 517.949 3896.32 2150.26
p20 567.899 30590 11282.5

Table 5: Bounds on Rovers QP problems: (a) lower bound;
(b) upper bound from problem construction (i.e., the value
of the best IPC3 plan); (c) current best known solution. Ex-
cept for problems p01, p02, p04 and p06, current best
solutions are plans submitted by competitors.

clutter in the graphs, individual planners are not identified.
Graphs showing comparisons of the results of different plan-
ners can be found on the website of the IPC5 deterministic
track.1

In the Openstacks domain, best quality plans are all by
SGPlan, though shared with the optimal planners MIPS-
BDD, FDP and MaxPlan, and with IPPLAN-G1SC, in some
instances. In the Openstacks SP domain, best plans are by
MIPS-BDD in two instances, and by SGPlan in the rest (the
only other planner attempting this domain is MIPS-XXL,
which in this domain finds plans of much worse quality).
In the Openstacks QP domain, best plans are mostly by
SGPlan, but in a few instances by MIPS-BDD or HPlan-P
(MIPS-XXL also solves a few problems; in most instances,
the quality of all planners’ plans is quite close). In the
Openstacks Time domain, best plans are all by YochanPS

(MIPS-XXL and SGPlan in shared second place), while in
the Openstacks MetricTime domain best plans are all by SG-
Plan (with MIPS-XXL again a very close second). In the
Rovers MSP domain, best plans are mostly by MIPS-XXL
and SGPlan, with a few by YochanPS (no other planners
attempted this domain).

Even in the light of the information now available about
the possible quality of solutions to the problems in these do-
mains, it is hard to spot any general trend in the results of
the competing planners. One observation is that, perhaps
not so surprisingly, they mostly fare better in domains with
a single quality criterion to optimise, curbed only by hard

1http://ipc06.icaps-conference.org
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Figure 3: Comparison of the quality of plans found by competitors with current best known solutions and bounds. Note that
all domains are minimisation problems. The solid line (—) displays the best known solution (a star on the line indicates that
the solution is optimal), the dashed line (– –) the lowest upper bound, and the dotted line (· · · ) the highest lower bound (both
bounds are not present in all graphs). Note that “upper bound” refers to “low complexity” bounds (e.g., bounds obtained as
a side effect of problem construction) and does not include all known solutions. Plans submitted by competing planners are
indicated by circles.

constraints, than in domains where the objective function
encodes a trade off different quality critera (such as num-
ber of stacks vs. satisfied requests or makespan, plan cost vs.
value of goals achieved). Such problems are hard. Note
that the solution methods developed in this paper for the
Openstacks QP, Openstacks MetricTime and Rovers MSP
domains are all, in one way or another, based on fixing one
criterion while optimising the other.

Nevertheless, in the Rovers MSP domain, all the three
planners that submitted plans occasionally found plans of
optimal quality. Interestingly, on the instances where they
do not, SGPlan and YochanPS both in most cases pick the
same or a very similar set of soft goals to achieve as the opti-
mal (or best known) plan, so it appears that when the quality
of their plans in this domain falls short this is due to a fail-
ure to optimise plan cost. Also noteworthy is that the quality
of the plans found by all three planners is generally further

from optimal on problem instances of types II and III (with
interfering goals) than instances of type I (with only syn-
ergistic goals). No such trend is perceivable in the planner
runtimes.

Concerning individual planners, it is easiest to say some-
thing about SGPlan, due to the volume of data available: it
submitted a plan for every problem in all of the domains
studied. A fact that is clear is that its ability to optimise plan
quality is far from even over different criteria. The quality
of plans found by SGPlan in the Openstacks domain is quite
remarkable: in all instances except one it equals the best
known solution, and in one instance, the best known solu-
tion is the one found by SGPlan. In the Openstacks SP and
Time domains, on the other hand, the plans it finds are not
particularly good (with the exception of problems p15–p18
in the Openstacks SP domain, where it is able to exploit the
fact that all soft goals can be met). Its tendency to find solu-



tions using a small number of stacks is helpful in the Open-
stacks QP domain, where the stacks appear to be somewhat
“overpriced”, but not in the Openstacks MetricTime domain,
where the gain in metric value of using no more than the op-
timal number of stacks is not enough to compensate for an
inflated makespan.

Conclusions
The obvious use of the results presented in this paper is that
they allow for a better evaluation of the results produced
by planners competing in the 5th planning competition, by
placing the quality of their plans in the context of upper and
lower bounds on the best plan quality attainable.

Unfortunately, data on the performance of most of the
competing planners across different domains is scarce, as
many planners did not attempt to solve more than a few of
the domains. A large part of the blame for this must be
laid on the decision to base competition tracks on the PDDL
fragment used and have each domain represented only in one
track. For example, the real difference between the five do-
mains based on the openstacks problem lies in the objec-
tive to optimise: number of stacks, product requests met and
makespan, and weighted combinations of these. The assign-
ment of each of these problems to only one “language cate-
gory” is very arbitrary, since all of them could be formulated
in ways fit for at least two or three such categories. Doing
that, and allowing competing planners the choice of which
formulation to solve, would almost certainly have resulted
in better data.

The detailed study of the competition problems also re-
veals some properties of the problem instances, some of
which can perhaps be considered “flaws”. For example, cur-
rent results suggest that stacks are overpriced relative to the
cost of dropping product requests in the Openstacks QP do-
main and that there are synergy effects in large goal sets not
accounted for by the method of problem construction in the
Rovers MSP domain.

A question not addressed in this work is the generality of
the results. The competition domains are “artificial”, in the
sense that they do not model real application problems, and
in most cases problem instances were constructed with the
explicit aim of posing challenging optimisation problems.
As this analysis has also shown, instances in some domains
have peculiarities that induce a bias towards certain kinds of
plans. It can not be ruled out that the picture would be very
different over a different problem set, in particular over a set
of “real” problems.
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