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Abstract

Planning in domains with temporal and numerical properties
is an important research problem. In prior work, we presented
an online planning architecture for resource production prob-
lems in RTS games. At every decision point, our planner
constructs plans that achieve a certain fixed set of intermedi-
ate renewable resource goals. It then uses the plan with the
smallest makespan to choose an action at the current decision
point. While each plan it considers is suboptimal, we showed
empirically that this action selection strategy was competi-
tive with human players in solving large resource goals. In
this work, we investigate the effect of reducing one source of
suboptimality in the plan generation step. Instead of consid-
ering a fixed set of intermediate resource goals, we allow the
planner to search over a variable but bounded set of goals.
We investigate empirically the plan quality of three different
problems for our planning architecture.

Introduction
An important component of real-time strategy (RTS) games,
such as Warcraft, is the problem of fast resource production.
In resource production, the player has to produce (or gather)
various raw materials, buildings, civilian and military units,
to improve its economic and military power. A typical RTS
game usually involves an initial period where players rapidly
build their economy via resource production, followed by
military campaigns where those resources are exploited for
offense and defense. Thus, winning the resource production
race is often a key factor in overall success.

In our previous work (Chanet al. 2007), we have fo-
cused on automated planning in the RTS resource produc-
tion domain. In particular, we have developed an action se-
lection mechanism that can achieve any reachable resource
goal as quickly as possible. Such a mechanism is useful
as a component for computer RTS opponents and as an in-
terface option to human players, where a player need only
specify what they want to achieve rather than manually or-
chestrate the many required low-level actions. In addition
to the practical utility, RTS resource production is interest-
ing from a pure AI planning perspective as it encompasses a
number of challenging issues. First, resource production in-
volves temporal actions with numeric effects. Second, per-
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forming well in this task requires highly concurrent activ-
ity. Third, the real-time constraints of the problem require
that action selection be computational efficient in a practical
sense. Unfortunately, most existing planners are not appli-
cable to this domain either because they do not handle both
time and numbers or they are simply too inefficient to be
useful.

The action selection mechanism we have developed is
based on an online planning architecture. At each decision
epoch, we use a combination of means-ends analysis and
heuristic scheduling to quickly generate satisficing plans,
each of which achieves a chosen intermediate goal. We use
the plan with the shortest makespan to select actions at the
current decision epoch. While each plan we consider is sub-
optimal, we showed empirically in prior work that the re-
sulting action selection strategy was competitive with human
players in achieving large resource goals.

The choice of which intermediate goal to achieve is cen-
tral to the success of our planning architecture. In resource
production, there are often units that, if produced, increase
the rate at which resources can be harvested. Production
of such units is usually notnecessaryto achieve the goal,
though they may decrease the makespan of the resulting
plan. Further, since an unbounded number of such units can
be produced, searching over the space of all units is usually
infeasible. In experiments with many real-world planners,
we found that no planner was able to successfully produce
plans that created intermediate units of this sort, even when
they would have vastly reduced the makespan. In our work,
production of such units are the intermediate goals that we
explicitly plan for while achieving the final resource goal.

To keep the search computationally manageable, in prior
work we only considered a fixed set of intermediate goals.
In particular, at each decision epoch, we only considered
building one extra unit of each type of renewable resources.
While we observed empirically that this worked well, it is
possible that we could achieve even better performance with
a more exhaustive search through combinations of units.
Obviously, the planning time will increase when we search
over this larger set of unit combinations. Due to the online
setting of the RTS game, we will need to impose a limit on
the search depth and/or search time. We will show empirical
results on three types of problems, with varying degrees of
difficulties, in our RTS resource production domain.



Figure 1: A screenshot of Wargus.

The RTS Resource Production Domain

The two key components of the RTS resource production
domain are resources and actions. Here, we define resources
to include all raw materials, buildings, civilian and military
units. While the player can reason about each individual ob-
ject at a lower level, we will reason about them at a higher
level by aggregating them into their various types and deal
with each of the total numerical amounts in the game state.
While this abstraction will lead to a certain amount of sub-
optimality, it greatly aids in making the planning problem
more manageable, and as our experiments demonstrate still
allows for high quality plans. As an example RTS game, and
the one used in our experiments, Figure 1 shows a screen
shot of the RTS game Wargus. At the current game state,
the player possesses a “peasant”, which is a type of civilian
worker unit, and a “townhall”, a type of building. A peas-
ant may collect gold by traveling to the gold mine, then re-
turning to the townhall to deposit the gold, or it may collect
wood by traveling to the forest, then returning to the town-
hall to deposit the wood. When enough gold and wood are
collected, a peasant may also build certain buildings, such
as “barracks”. Barracks may then be used to create “foot-
men”, a type of military unit, provided that other resource
preconditions are met.

Human players typically have no difficulty selecting ac-
tions that at least achieve a particular set of resource goals.
However, it is much more difficult, and requires much more
expertise, to find close to minimal makespan plans. As an
example consider the seemingly simple problem of collect-
ing a large amount of gold starting with a single peasant
and townhall. One could simply repeatedly collect gold with
the single peasant, which would eventually achieve the goal.
However, such a plan would be far from optimal in terms
of time-to-goal. Rather, it is often faster to instead collect
gold and wood for the purpose of creating some number of
additional peasants (which consumes gold and wood) that
will subsequently be used to collect gold concurrently and
hence reach the resource goal faster. In practice it can be

quite difficult to determine the correct tradeoff between how
many peasants to create, which require time and resources,
and the payoff those peasants provide in terms of increased
production rate. The problem is even more difficult than just
described. For example, one must also provide enough sup-
ply by building “farms” in order to support the number of
desired peasants and footmen. This requires even more time
and resources. One could also consider building additional
townhalls and barracks, which are used to create peasants
and footmen respectively, to increase their rates of produc-
tion. Our online planner attempts to approximately optimize
these choices while maintaining computational efficiency.

For our experimental testbed we selected Wargus because
it has common properties with many popular RTS games
and it is based on a freely available RTS engine. We will
now review the properties of RTS resource production that
are crucial to our design of the planning architecture.

At any time, a player can choose to execute one or more
actions, defined from the action set of the game. Each action
produces a certain amount of products, but also consumes a
certain amount of other resources, and requires that some
preconditions are met before it can be executed. Actions are
usually durative, i.e., they take a certain amount of time to
finish upon which the products are added to the game state.
In RTS games, resource-production actions are usually de-
terministic, and the preconditions, effects, and durations of
each action are usually given or can be easily discovered
through game-play. For certain actions, where a unit has to
travel to a destination for an action to take place, the dura-
tion of the action will vary due to the spatial properties of a
game map. However, for simplicity we assume we have a
constant duration for each instance of an action. On average
over the many actions taken during a game, this turns out
to be a reasonable assumption. We note that extending our
approach to incorporate durations that are functions of the
current state is straightforward.

In our representation, the game state at timet consists of:
(1) for each resourceRi, the amountri possessed by the
agent and (2) the list of actionsAi, i = 1, . . . ,m currently
being executed along with the start and end timestsi andtei
for each (tsi < t < tei ). We refer to the state reached when all
actions currently executing inS have terminated as thepro-
jected game state, denoted byProj(S). This state is times-
tamped witht = maxi=1,...,m tei , has resources updated ac-
cording to the effects of the actionsAi, and no actions being
executed.

The objective of a player in this domain is to reach a
certain resource goal,G = {R1 ≥ g1, . . . , Rn ≥ gn},
defined as constraints on the resources, from the current
game state. Often, many of the constraints will be triv-
ial, (Ri ≥ 0), as we may only be interested in a subset
of resources. To achieveG, a player must select a set of
actions to execute at each decision epoch. These actions
may be executed concurrently as long as their preconditions
are satisfied when they are executed, as the game state is
changed throughout the course of action. In essence, the
player must determine a plan, which is a list of actions,
((A1, t
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1), . . . , (Ak, tsk, tek)), whereAi is an action that

starts at timetsi and ends at timetei . While this domain



does not require concurrency to achieve the goals in a for-
mal sense (Cushinget al. 2007), plans with short makespan
typically involves a large amount of concurrency.

In Wargus, and many other RTS games, each precondition
and effect is specified by providing the name of a resource,
an amount for that resource, and a usage tag that specifies
how the resource is used by the action (e.g. shared, con-
sumed, etc). We define four possible resource tags:

• Require : An action requires a certain amount of a re-
source if it needs to be present throughout the execution of
the action. For example, the collect-gold action requires
the presence of a townhall. In this case, the same town-
hall can be used for concurrent collect-gold actions, as the
townhall is not “locked up” by the collect-gold actions.
Thus, the requires tag allows for sharing of resources.

• Borrow : An action borrows a certain amount of a re-
source if it requires that the resource amount be “locked
up” throughout the execution of the action, so that no
other action is allowed to borrow those resources during
its execution. After the action has completed the resource
amount is freed up for use by other actions. For exam-
ple, the collect-gold action borrows a peasant. During the
execution of the collect-gold action, the borrowed peas-
ant may not be borrowed by any other action. After the
collect-gold action is finished, the peasant becomes avail-
able again and can be used for other actions. Therefore, to
allow concurrent collect-gold actions, multiple peasants
must be used.

• Consume: An action consumes a certain amount of a
resource at the start of its execution, as this amount is de-
ducted from the game state. As the game state must obey
the constraint that every resource value is non-negative,
the inferred precondition of the action is that this resource
amount must be present at the start of the action. For ex-
ample, the build-barracks action consumes 700 units of
gold and 450 units of wood.

• Produce : An action produces a certain amount of a re-
source at the end of its execution, as this amount is added
to the game state.

These tags are similar to resource requirement specifications
used in the scheduling literature (for example, see (Ghallab,
Nau, & Traverso 2004)). Given the above tags, Figure 2
gives the definitions of a subset of the resource-production
actions in Wargus. In future work, we plan to consider ex-
tensions to this specification, for example, by considering
consume and produce tags that specify rates of consumption
or production, or allowing resource consumption to happen
at the end of an action.

Note that we could have used a more traditional domain
specification language such as PDDL2.1 (Fox & Long 2003)
to describe our domain. However, for this work we choose
the above representation to make the key resource roles
explicit, which will be leveraged by our algorithm. Fig-
ure 3 shows two actions encoded using PDDL2.1. It is
fairly straightforward to translate any action described by
the keywords above into PDDL. Further, it is likely that
the roles played by therequire , borrow , consume and

resource gold
resource wood
resource supply
resource townhall
resource barracks
resource peasant
resource footman

action collect-gold :duration 510
:require 1 townhall :borrow 1 peasant
:produce 100 gold

action collect-wood :duration 1570
:require 1 townhall :borrow 1 peasant
:produce 100 wood

action build-supply :duration 620
:borrow 1 peasant :consume 500 gold 250 wood
:produce 4 supply

action build-townhall :duration 1530
:borrow 1 peasant :consume 1200 gold 800 wood
:produce 1 townhall

action build-barracks :duration 1240
:borrow 1 peasant :consume 700 gold 450 wood
:produce 1 barracks

action build-peasant :duration 225
:borrow 1 townhall :consume 400 gold 1 supply
:produce 1 peasant

action build-footman :duration 200
:borrow 1 barracks :consume 600 gold 1 supply
:produce 1 footman

Figure 2: Resource and action specification of the simplified
Wargus domain.

produce tags could be automatically inferred from a re-
stricted subclass of PDDL.

Given the action specifications, we divide the resources
into two classes, renewable and consumable resources. Con-
sumable resources are those that are consumed by actions,
such as gold, wood, and supply (a peasant or footman can-
not be built unless there is an unused supply). Renewable
resources are those that are required or borrowed by actions,
such as peasants, townhalls and barracks. Generally, a re-
source is either renewable or consumable, but not both, and
this can be easily inferred from the domain description. We
observe that multiple renewable resources are usually not es-
sential to achieve any given resource goal, since most actions
borrow or require only one of such resources. However, if
multiple such resources are available, they can vastly reduce
the makespan of a plan by permitting concurrent actions.

To recap, some key properties of our domain are:

1. Actions have durations;

2. There are multiple units, so actions can be executed con-
currently;

3. Units and buildings can be created as the game pro-
gresses;

4. Many actions involve numeric fluents;

5. Solution plans typically involve a large number of actions
compared to most standard planning benchmarks, and;

6. In our setting, the planner must find a plan in real-time.



(:durative-action collect-gold
:parameters ()
:duration (= ?duration 510)
:condition

(and (over all (> total-townhall 0)))
(at start (> avail-peasant 0))

:effect
(and (at start (decrease avail-peasant 1))

(at end (increase avail-peasant 1))
(at end (increase total-gold 100))
(at end (increase time ?duration))))

(:durative-action build-townhall
:parameters ()
:duration (= ?duration 1530)
:condition

(and (at start (> avail-peasant 0)))
(at start (>= total-gold 1200))
(at start (>= total-wood 800))

:effect
(and (at start (decrease avail-peasant 1))

(at start (decrease total-gold 1200))
(at start (decrease total-wood 800))
(at end (increase avail-peasant 1))
(at end (increase total-townhall 1))
(at end (increase avail-townhall 1))
(at end (increase time ?duration))))

Figure 3: PDDL2.1 specification of the collect-gold and
build-townhall actions.

Thus, our domain exemplifies some of the hardest aspects
of planning. Recent research has resulted in several plan-
ners that are capable of handling some of these aspects. Ex-
amples include SAPA (Do & Kambhampati 2003), MIPS-
XXL (Edelkamp, Jabbar, & Nazih 2006), SGPlan (Chen,
Wah, & Hsu 2006), LPG and LPG-td (Gerevini, Saetti, &
Serina 2006), and TM-LPSAT (Shin & Davis 2005). How-
ever, experimental results have showed that none of them
could satisfactorily solve the RTS resource production prob-
lem (Chanet al. 2007).

In spite of the above, certain properties of our domain
specification help us to efficiently create satisficing plans.
First, the dependency structure between resources is such
that, if the initial state has a townhall and a peasant (and
assuming the world map has enough consumable resources
like gold and wood), there always exists a plan for any re-
source goal. Further, if such a state cannot be reached, no
such plan exists. Thus, we focus our attention to initial
states with at least these elements. In Wargus, and other RTS
games, it is straightforward to hand-code a scripted behav-
ior to reach such a state if the game begins in a state without
the required elements, after which our automated planner
can take over with the guarantee of computational efficiency.
Second, we observe that the amount of renewable resources
in a problem never decreases, since no unit is destroyed in
our scenarios. Third, by the Wargus action specification, all
effects at the start of an action are subtractive effects, while
all effects at the end of an action are additive effects. Fourth,
again by the Wargus specification, for each resource, there

is exactly one action that produces it. This property implies
that every plan that produces the goal resources from a game
state must contain the same set of actions (though possibly
not in the samesequence). Conversely, suppose we have two
executable plans from the same state consisting of the same
set of actions, but with different starting times for some of
the actions. Then the final game states after executing the
two plans will be the same. This is due to the property of
commutativity of action effects, as the game state is changed
by the increase or decrease of resources according to the
actions in the Wargus domain. Each of these properties is
used by our planner to search for satisficing plans more effi-
ciently. Each property can be relaxed, but would result in a
less efficient search process.

Review of Planning Architecture
In this section, we review the architecture of our online plan-
ner (Chanet al. 2007). An online planning architecture is
suitable for the RTS setting where goals and environments
change over time. To adapt to such changes, our planner re-
plans every decision epoch using the current goal and game
state. To find a new plan, it carries out a bounded search
over possible intermediate goals. The set of possible inter-
mediate goals includes all states that have an extra renewable
resource of every type. For each such goal, the planner em-
ploys a sequential planner followed by a heuristic scheduling
process to generate a plan to reach the overall goal via the in-
termediate goal. To select an action to be executed, the plan-
ner chooses the plan with the smallest makespan. If this plan
has any action that is executable at the current game state,
that action (or actions) is started. Notice that the plans gen-
erated by the planner are not usually completely executed—
when the planner replans at the next decision epoch using
the game state at that point, it may not obtain a suffix of the
plan it found at the current epoch. However, constructing
such plans are valuable because they help in action selection
at the current step.

We now briefly review the two components of our on-
line planner. The first component is a sequential planner
which outputs a sequential plan to achieve a given goal from
a given initial state. In principle, any off-the-shelf sequential
planner can be used in this step. However, given the specific
properties of our domain discussed earlier, a simple sequen-
tial planner based on means-ends analysis (MEA) (Newell &
Simon 1995; Fikes & Nilsson 1971) suffices. MEA operates
by selecting a subgoal to solve which will decrease the dif-
ference between the initial state and the goal state, and then
executing the necessary actions to solve the subgoal. Then
from the new state which satisfies the subgoal the process
is recursively applied until we reach the goal state. We can
show that this procedure always results in a plan containing
the minimum number of actions to the goal state.

The second component of our online planner is a heuristic
scheduler. To accurately estimate the utility of any renew-
able resources, we need to reschedule actions in the sequen-
tial plan found above to allow concurrency and decrease the
makespan. We do this by using a heuristic scheduling pro-
cedure that traverses the found action sequence in order. For
each actionAi, the procedure moves the start time ofAi



to the earliest possible time such that its preconditions are
still satisfied. Assume thatAi starts at timetsi , and the state
R+(tsi ) is the resource state at timetsi after the effects of
all actions that end at timetsi are added to the game state,
andR−(tsi ) is the resource game state before the effects are
added. Obviously, the preconditions ofAi are satisfied by
R+(tsi ). If they are also satisfied byR−(tsi ), this means the
satisfaction of the preconditions ofAi is not due to any of
the actions that end at timetsi , and we can now move action
Ai to start earlier thantsi , to the previous decision epoch
(time where an action starts or ends). This is repeated un-
til the preconditions ofA are satisfied by someR+(ts) but
not R−(ts), i.e., the satisfaction of the preconditions ofA
is due to the actions that end at timets. The plan is now
rescheduled such that actionA starts at timets, and we can
proceed to attempt to reschedule the next action in our se-
quential plan. It can be shown that this procedure results in
a sound concurrent plan.

Given the two components described above, our planner
constructs a plan to achieve the resource goal from the cur-
rent state via each intermediate goal. The (concurrent) plan
with the smallest makespan is then used to select an action
at the current state.

Searching Over Intermediate Goals
A key element of our planning architecture is the explicit
search over a set of intermediate goals while solving the final
resource goal. The rationale for this is as follows. It is clear
that we can easily find a successful plan which has a min-
imum number of actions and creates the minimum amount
of renewable resources, such as peasants. However, creating
additional renewable resources can decrease the makespan
of a plan (even though this new plan now has more actions),
if the time penalty paid by creating these resources is com-
pensated by the time saved by the concurrent actions allowed
by the additional renewable resources. This step is never ex-
plicitly considered by many planners, or the plans become
too complex if an unbounded search over all possible inter-
mediate goals is considered. To get around this problem,
in prior work, we explicitly found plans which achieved the
intermediate goal of creating an additional fixed unit of re-
newable resources, such as an additional peasant, then found
a plan which achieved the goal from this intermediate goal
state. The two plans are then combined into a single plan,
and we check if the new plan has a shorter makespan than
the original plan. If so, we prefer the new plan which pro-
duces the additional renewable resources.

Clearly, the procedure outlined above may be subopti-
mal, because resources are often subject to threshold effects:
while producingx or less does not decrease the makespan,
producing more thanx does. For example, consider the sub-
goal of creating one peasant in Wargus. It can only be cre-
ated when there is an unused supply. Therefore, when there
is no unused supply, a precondition of creating an additional
peasant is to build a farm, which provides supply for four
additional units. Thus, it may be possible that creating only
one additional peasant may not shorten the makespan of the
plan, because the payoff of one additional peasant cannot
overcome the reduction in resources when building the farm.

However, creating more than one additional peasant may re-
duce the makespan. In the present paper, we implement a
search procedure that systematically explores different re-
source combinations. This procedure may thus discover in
the situation above that the best intermediate goal is to build
multiple additional peasants.

The search procedure that we implement is a bounded
best-first heuristic search over possible intermediate goals.
In particular, for each renewable resource, we set an upper
bound that seems reasonable according to the domain. For
example, while it seems reasonable to consider five addi-
tional peasants as an intermediate goal, it usually does not
make sense to consider five additional townhalls. So for any
search iteration, we set the upper bound on the number of
peasants to be larger than the upper bound on townhalls. We
can also set a time bound to limit our search. This is neces-
sary due to the online setting of RTS games.

Given the bounds on search depth and time, we can
employ a standard best-first search approach, using the
makespan of the found plans as the heuristic evaluation func-
tion. Consider a search tree where each node represents an
intermediate goal, and a set of search operators which add
one additional resource of each type. The root of the search
tree is a plan without any intermediate goal. We first ex-
pand this node, and consider the intermediate goals of only
one additional resource of each type, and call the planner
to find a plan for each of these intermediate goals. We
use the makespan of the plan as the heuristic value of the
node. From these nodes, we expand the one with the shortest
makespan, by adding one additional resource of each type to
the chosen intermediate goal. Note that even if none of these
new plans improves on the makespan of the original plan, the
search continues.

In summary, at each iteration of expansion, we choose
from the unexpanded nodes the one with the shortest
makespan (assume that the intermediate goal represented is
G′). We expand it by adding one additional resource of each
type toG′, and call the planner to find a plan for each of
these new intermediate goals. Note that our online planner
replans for each new intermediate goal independently, and
not from the plan forG′. If at any point we reach the upper
bound assigned to a resource, that resource is not increased
further, or if we reach the time limit, we terminate the search.
From all the plans produced throughout the search, we can
choose the plan with the shortest makespan, and execute ac-
tions suggested by this plan.

There are three features we can implement to make the
search more computationally efficient. The first feature is a
mechanism which checks whether any of the newly created
nodes have been visited before, by maintaining a memory of
all previously visited nodes. If the node has been visited, we
do not need to call the planner again to produce a redundant
plan.

The second feature is to consider search operators which
add multiple extra renewable resources. For example, when
we expand a node, instead of considering just the operator
of adding one additional peasant, we can also consider the
new search operator of adding multiple additional peasants
(for example, four additional peasants, given that a new farm



can support four peasants). This is because we expect the
best node to have an intermediate goal of creating many ad-
ditional peasants, and by considering this new search opera-
tor, we can reach this node much quicker in the search. This
is useful when the search is given a tight time limit.

The third feature is that instead of finding a plan which
satisfies a singular intermediate goal, we will find a plan
which satisfies a series ofincreasing intermediate goals. To
illustrate this, consider the intermediate goal of creatingn
additional peasants. If we call the planner to find such a
plan which satisfies this singular goal, the one produced by
MEA will be: produce necessary supply forn peasants; col-
lect enough gold forn peasants; create new peasantn times.
However, this plan is not optimal, as the first peasant created
can be used to collect resources necessary for creating the
other peasants. Even after the scheduler rewrites the plan to
allow concurrent actions, the first peasant will not be cre-
ated before enough gold is collected, and will thus not be
able to help produce the necessary supply, which happens
before gold is collected. However, we can improve on this
by calling the planner to find a plan which satisfies a series
of increasing intermediate goals, first of creating an addi-
tional peasant, then of creating two additional peasants, etc.
The plan produced will now be: produce necessary supply
for 1 peasant; collect enough gold for1 peasant; creating
new peasant; repeat whole processn times. Therefore, by
using these increasing intermediate goals, we can find plans
with potentially shorter makespan.1

The pseudocode for our new implementation of the online
planner with search is shown along with the pseudocode for
the main loop of the planner, in Algorithm 1.

Experimental Results
We now evaluate our new planner in the Wargus domain,
by comparing it with our original planner which does not
implement the search procedure. The evaluation criteria are
time taken to reach the goal, and total planning time. We
will also see if the two features we implement, extra search
operators and increasing intermediate goals, can help reach
the goal faster.

In our Wargus domain, the three renewable resources we
need to consider are peasants, which can collect resources
and build buildings, barracks, which can create footmen,
and townhalls, which can create peasants. Increasing any
of them will improve our resource production rate, after we
pay a certain price in makespan in creating these additional
resources. We will start with an initial state of one peasant
and one townhall.

The first experiment we run is to collect10000 units of
gold. The most important factor of achieving this goal is

1When we have a combination of resources in the intermediate
goal, such as townhalls, peasants and barracks, there are many pos-
sible permutations of these series of increasing intermediate goals.
To cut down on the search time, we can use a pre-determined or-
der of these resources, inferred from the dependency graph of the
model, which should give us the best plan. For example, in our
Wargus domain, we always first build townhalls, then create peas-
ants (which depends on townhalls), then build barracks (which cre-
ates footmen that rely on resources collected by peasants).

Algorithm 1 Online planner with search: Main Loop.
MEA calls the sequential planner, whileSchedule calls the
heuristic scheduler.
1: for every pre-determined number of game cyclesdo
2: t← current time
3: S ← current game state
4: if there exists some available actions that can be executed at

the current timethen
5: Plan← Schedule(MEA(S, G))
6: while there exists some unexpanded nodes and search

time within limit do
7: G′ ← best unexpanded node
8: {G1, . . . , Gn} ← set of nodes expanded fromG′

9: for all i = 1, . . . n do
10: if Gi is not visited and within search boundthen
11: Gi ← series of increasing goals ofGi

12: P0 ←MEA(S,Gi)
13: S′ ← state after executingP0 from Proj(S)
14: P1 ←MEA(S′, G)
15: Plani ← Schedule(concatenate(P0, P1))
16: if makespan ofPlani < makespan ofPlan then
17: Plan← Plani

18: for all (Aj , t
s
j , t

e
j) ∈ Plan wherets

j = t do
19: executeAj

how many peasants we create for collecting gold. It is clear
that barracks do not play a part in achieving this goal, and for
now, we will also ignore the effects of townhalls on produc-
ing peasants. We bound the maximum number of additional
peasants in an intermediate goal to be10, and the time limit
for each search to be.1 seconds. The results are showed in
Table 1. From the table, we can see that the online plan-
ner with search is able to reach the goal slightly faster than
without search. As expected, the total planning time needed
is now much longer than without search. Moreover, using
increasing intermediate goals instead of a singular interme-
diate goal not only helps the online planner reach the goal
faster, but also cut down on the total planning time by more
than half.

The second experiment we run is to reach a goal with20
peasants.2 Building an additional townhall can be crucial
in producing a good plan for creating peasants, because an
additional townhall effectively doubles the rate of produc-
ing peasants. However, the timing of when the townhall is
built is also crucial. If it is built too early, there are too few
peasants collecting the necessary resources for the townhall,
thereby increasing the makespan, while if it is built too late,
this additional townhall becomes less beneficial to reducing
the makespan of the plan.

For this experiment, we bound the maximum number of
additional peasants and townhalls in an intermediate goal to
be10 and1 respectively, and the time limit for each search
to be.1 seconds. The results are showed in Table 2. From
the table, we can see that the online planner with search is
competitive with the version without search, but only when

2For this and the next experiment, we will use a model which
needs less resources to build a townhall (600 units of gold,400
units of wood) and more time to create a peasant (1225 game cy-
cles).



G=10k Cycles #P Plan-time
no search 22500 5 .25s

-O-I 21355 9 26s
+O-I 21620 9 30s
-O+I 21145 9 13s
+O+I 21145 9 13s

Table 1: Experimental results comparing the number of
game cycles, number of peasants created, and the total plan-
ning time, to collect10000 units of gold, for different ver-
sions of our online planner. “+O” (or “-O”) indicates the
presence (or absence) of extra search operators, while “+I”
(or “-I”) indicates the usage of increasing intermediate goals
(or a singular intermediate goal).

increasing intermediate goals are used instead of singular
goals.

The final experiment we run is to create30 footmen. This
is the most difficult goal of all three as a plan to build a foot-
men is more complicated than the other two. Our online
planner also needs to consider all three renewable resources.
The rate of creating footmen depends on two variables: the
number of barracks, and the rate of producing the necessary
gold and supply, which depends on the number of peasants
available. Moreover, increasing the number of townhalls,
while having no direct effect on creating footmen, may have
an indirect effect as it can help create more peasants faster.
Therefore, there is a delicate balance between the three re-
newable resources when producing a plan, as increasing one
without the other may not necessarily produce a plan with
a shorter makespan, but increasing a combination of values
may do so.

For this experiment, we bound the maximum number of
additional peasants, townhalls and barracks in an interme-
diate goal to be10, 1 and1 respectively, and the time limit
for each search to be.5 seconds, given the complexity of
the plans. The results are showed in Table 3. As expected,
when no search is implemented, no additional townhalls are
produced, because the online planner never searches for an
intermediate goal which creates both additional townhalls
and peasants. The best result, which builds an additional
townhall and barracks, is found when search is implemented
together with extra search operators and increasing interme-
diate goals.

In general, we find that our online planner is improved
by searching over intermediate goals with both extra search
operators and increasing intermediate goals implemented.
Interestingly, using only extra search operators appears to
make our online planner perform worse, likely because the
plans produced in this case are far from optimal. However,
this is remedied by using increasing intermediate goals in
our online planner, which produces better plans. Moreover,
total planning time is also cut significantly compared to only
using singular intermediate goals, although this is possibly
due to the fact that fewer game cycles are needed to reach
the goal.

P=20 Cycles #T Plan-time
no search 29150 4 10s

-O-I 30040 4 173s
+O-I 33225 4 160s
-O+I 29090 3 89s
+O+I 29155 3 89s

Table 2: Experimental results comparing the number of
game cycles, number of townhalls created, and the total
planning time, to reach a goal of20 peasants, for different
versions of our online planner. “+O” (or “-O”) indicates the
presence (or absence) of extra search operators, while “+I”
(or “-I”) indicates the usage of increasing intermediate goals
(or a singular intermediate goal).

F=30 Cycles #P #T #B Plan-time
no search 38830 15 1 1 47s

-O-I 38845 16 1 1 827s
+O-I 42645 22 2 2 1030s
-O+I 36535 16 1 1 591s
+O+I 33105 22 2 2 468s

Table 3: Experimental results comparing the number of
game cycles, number of peasants, townhalls and barracks
created, and the total planning time, to reach a goal of30
footmen, for different versions of our online planner. “+O”
(or “-O”) indicates the presence (or absence) of extra search
operators, while “+I” (or “-I”) the usage of increasing inter-
mediate goals (or a singular intermediate goal).

Future Work
One may expect that such a search procedure over possible
intermediate goals would always improve the quality of the
resulting plans. However, in our setting, the environment is
dynamic and changing. As a result, our action models be-
come more inaccurate over time. For example, in Wargus,
as the agent harvests wood, forests disappear from the world
map (because they are being chopped down). As a result, the
time taken to harvest wood is a dynamically varying quan-
tity. In our models, however, we use a fixed value to rep-
resent this duration. Performing extensive search with such
inaccurate models may in fact result in suboptimal action se-
lection, because the agent may choose an intermediate goal
that decreases the makespan according to the agent’s inter-
nal model, but increases the makespan when executed in the
world. In our future work, we aim to investigate the relation-
ship between model quality, search depth and plan quality
for various resource production problems, both empirically
and theoretically.

One significant problem of the Wargus game is the im-
plicit spatial properties of the domain. For example, col-
lecting resources and creating new buildings involve travel-
ling of a peasant, and this means that the time taken for the
whole action varies as the game progresses, due to the dif-
ferent locations of buildings, obstacles along the way, and
the thinning of the forest. Currently, the domain specifica-
tion, such as the one given in Figure 2, depends on a certain
map, and the action durations are given as average values



over game-play in the long run. To remedy the problem, we
can implement a learner which adapts the durations of ac-
tions while the game progresses, as the client can read in
the actual time taken to execute actions and change the do-
main specification accordingly. The learner is also useful as
the client learn the action durations even when they are not
given in the beginning of a game. This is particularly useful
when we need to achieve the goal in a different map.

As for improving the quality of search, at present many
of the parameters, such as the bound on depth and time, and
the search operators, are fixed and determined beforehand.
These parameters may be varied dynamically throughout the
search. For example, at the beginning stage of a game, plans
are usually longer, so the time limit should also be longer to
allow more nodes should be searched. Moreover, it is also
important to determine a close-to-optimal amount of addi-
tional renewable resources at that stage of the game. We may
also use a different heuristic value other than the makespan
of the plan. For example, it may be more beneficial to ex-
pand a search node deeper in the search tree.

Finally, at each decision epoch, we use a new search tree
to determine the best plan, independent of the search tree
at the previous decision epoch. However, these two search
trees may very well be closely related, due to the similarity
of the two game states. We will investigate real-time search
techniques which may help improve the search quality by
using the previous search tree as a starting point.

Conclusion

We have extended on our previous approach to solving large
resource production problems in RTS games, which works
in an online setting by searching over possible intermedi-
ate goals that create additional renewable resources at every
decision epoch. Instead of using a fixed set of intermedi-
ate goals, we use best-first search to generate a variable but
bounded set of intermediate goals, guided by the makespan
of the plans produced. We evaluate our approach on Wargus
and show that it is able to reach large and complex resource
goals faster than our previous approach.
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