
Combining Automated Planning and Hybrid Control: A Quadruped
Bouncing Gait

Robert Effinger

Model-based and Embedded Robotic Systems Group
Computer Science and Artificial Intelligence Lab, MIT

effinger@mit.edu

Abstract
This proposed thesis topic aims to combine automated
planning and hybrid control techniques. In this paper we
describe a particular case study in this direction: the
development of a quadruped bouncing gait with four
qualitative states, quad-stance, touch-off, flight, and touch-
down. Our approach is novel in that gait achievement is
defined in terms of flexible constraint windows in state-
space and time. This key feature enables the use of a
controller that chooses from entire sets of optimal joint
motion trajectories at execution time instead of tracking a
single pre-planned optimal trajectory with high-impedance.
In simulation, we demonstrate the robustness of this
approach by maintaining a steady-state quadruped bouncing
gait despite significant disturbances at execution time. The
focus of this thesis work will be to investigate techniques to
interleave and concurrently execute such plans in order to
achieve complex and abstract goal specifications.

Introduction

Touch-off Flight Touch DownQuad

[0.5,1.0]

This paper features the development of a sagittal plane
model of a bouncing quadruped with actuation limits and
four qualitative states, quad-stance, touch-off, flight, and
touch-down, as depicted in Figure 1. A control policy for
the template was developed in two phases. First, the
bouncing gait was defined in terms of its qualitative states,
called a Qualitative State Plan (QSP) [3]. Transitions
between the qualitative states in a QSP occur through
flexible constraint windows in state-space and time. For
example, the center of mass of the quadruped, the red dot
in Figure 1, passes through the blue constraint windows at
appropriate times in order to maintain steady-state
bouncing. Second, a controller was developed for each
qualitative state that ensures the quadruped passes through
the constraint windows under bounded disturbances.
Steady-state bouncing was achieved in simulation.

Start

GoalBounce

Walk

Turn
Right

QSP Library:
Walk
Bounce
Turn Right
Turn Left
JumpOperating Constraints

Intermediate goals

Figure 1: Sagittal plane model of a bouncing quadruped
with four qualitative states.

I
ways to extend ble to multiple

Prior Work
This thesis proposal r work by Andreas
Hofmann and Brian e Model-based and

Automated Planning with QSPs
Automat sume a
library o). The

Figure 2: Automated planning given a library of QSPs.

n the Future Work section of this paper, we hypothesize
 this approach to be applica

cooperating agents that can achieve complex and abstract
goal specifications.

builds upon prio
 Williams of th

Embedded and Robotic Systems group at MIT [1,2,3]. The
overarching objective of these cited works is to combine
automated planning and hybrid control techniques. For
example, this previous work has considered problems such
as getting a walking biped to kick a soccer ball and to
recover from trip disturbances. In this study, we employ
these same techniques to a new problem; demonstrating a
steady-state bouncing quadruped gait. In the next two
sections, we describe why QSPs provide an intuitive link
between automated planning and hybrid control.

ed planning techniques traditionally as
f activities or actions (in our case QSPs

automated planner then generatively constructs a plan,
from among the library of alternatives, by piecing together
pre and post-conditions. As depicted in Figure 2, for
example, to get from the start to the goal, a quadruped may
choose to walk forward, turn right, and then bounce to the
goal, by piecing together the goal and initialization regions
of successive QSPs. There are often many possible
alternatives to achieve the goal given a library of actions.
 The appeal of approach is in reducing the search
complexity from a large continuous problem over the
entire state-space (with a branching-factor of all possible

u1
u2

u3
4

u5

u

Quadruped Bouncing Gait
[0.5,1.0] u6 u7

u8

…

u

control actions at each time step), to a parameterized
discrete search over a library of possible actions with finit

u10 …9

e
t flexible temporal durations. Also note that the solution

al

pare plans with shared

hesize how extending this approach to

n
more detail. We call a control policy that executes a
Qualitative lan (QCP).
As depicted ar mapping

it is also

Figure 3: A QCP partitions the QSP’s state-space into
regions, and defines a control action for each region.

To D
pro he

Figure 4: Flight to Touch-down COM Controller with two
superimposed trajectories.

Results
A steady-state 2D sagi uadruped bouncing gait
was achieved in simula ork towards this result

mulation
 in order

Figure 5: Quadruped simulation and MPT analysis.

bu
of this approach does not prescribe a single optim
reference trajectory, but instead outlines a set (or bundle)
of trajectories with flexible constraint windows in state-
space and time. We think this approach is significant
because it:

1.) Generates plans that ensure the inherent hybrid
constraints of underactuated robots are obeyed.

2.) Provides a computationally tractable way to
generate and then com
objectives, interactions, and concurrent threads of
activities.

Note that this approach outputs only valid interconnections
of trajectory primitives, and is similar in concept to the
Maneuver Automaton by Frazzoli [4]. In the Future Work
section, we hypot
multiple coordinating agents is similar in concept to
planning over and verifying the correct execution of
multiple, concurrently executing Maneuver Automatons.

Hybrid Control with QSPs
In this section, we describe our hybrid control approach i

State Plan, a Qualitative Control P
 in Fig. 3, a QCP is a piecewise line

from robot state-space (only those states within the QSP)
to control inputs that guarantee achievement of the goal
region (under bounded disturbance). In this project, we
use a technique called multi-parametric optimization in
order to develop the controllers that comprise the QCP.
Multi-parametric optimization employs a Linear Quadratic
Regulator extended to incorporate linear inequality
constraints [5] in order to develop cost-optimal solutions
for systems of low complexity. Implementation-wise, we
used a freely available and user-friendly Matlab toolbox,
called the Multi-parametric toolbox (MPT) [6], which was
developed by the Automatic Control Laboratory at the
Swiss Federal Institute of Technology (ETH).
h This approach enables us to find optimal control policies
for simple, low-dimensional systems, given linear
constraints on initial, goal, and operating regions. For
higher dimensional and nonlinear templates,
possible to use techniques such as dynamic programming,
value iteration, and policy search. Note that as long as the
trajectory remains within the QCP, plan success and
dynamic stability are guaranteed.

 give an example, we depict in Fig. 4 below, a 3
jection of the 6D controller for t൫ݔ, ሶݔ , ,ݕ ,ݕ ,ߠ ሶ൯ߠ

flight to touch-down phase of the quadruped bouncing gait.
X1 is “x”, X2 is “y” and X3 is “ߠ”. In addition, two
trajectories (starting from different initial conditions) are
superimposed and shown with red and blue lines in Fig. 4.
These trajectories depict how control actions are chosen at
each time-step (green dots) to guide trajectories optimally
(from different initial conditions) towards the goal. Notice
that X2 (the height of the quadruped’s COM) is only
defined from 4 to 0.4 units, respecting our linear constraint
that its COM remain greater than 0.4 and less than 4 units.

ttal-plane q
tion. Our w

is summarized in four steps.
1. Develop a simple 2D quadruped simulation.
2. Develop a vertical bouncing gait.
3. Develop a forward moving bouncing gait.
4. Add noise to the gaits to show robustness.

Figure 5 provides a glimpse of the quadruped si
and results. We forego a more detailed explanation
to discuss the most important aspect of this paper, potential
directions for future work and collaborations.

http://www.ethz.ch/

Future Work and Potential Collaborations
In this section, we outline the research directions that we
wish to pursue, provide comparisons to existing work that
we are aware of, and invite researchers to inform us of
other related work that we are not yet aware of. The
overarching objective of this research can be stated as
follows:

“To develop an autonomous model-based executive
that coordinates multiple autonomous agents in
order to achieve complex and abstract goal
specifications, while responding robustly to
disturbances and failures at execution time.”

This broad problem statement cuts across much of current
AI and automated planning research. More specifically,
there are several aspects of the problem that we would like
to focus on, in-particular:
• Extending our current model-based approach to

handle complex and abstract goal specifications
involving multiple agents.

• Planning autonomously for agents that are high-
dimensional, underactuated and hybrid in nature.

• Developing a model-based executive that responds
robustly to disturbances and failures at execution
time, in order to maintain progress towards achieving
the goals.

To accomplish these objectives, we propose a model-based
executive which takes as inputs a goal specification and
plant models for each agent. The model-based executive
then reasons from the models to generate and execute a
plan that accomplishes the goal specification.
 Informally, we identify and discuss the three key
components of this architecture: 1.) the goal specification,
2.) the plant model, and 3.) the model-based executive.

1.) The Goal Specification
The goal specification we propose needs to be capable of
supporting complex and abstract goals. In addition, it
needs to support flexible state-space and timing
constraints. Consider one such example: “Robot Alpha
should visit either region 2 or region 3, and then meet up
with Robot Beta at region 4 within 5 minutes. Then they
should proceed to the closest recharging station, and
recharge for at least 10 minutes but no more than 20
minutes each.”
 In the literature, there are many types of specification
languages, motion description languages [7], temporal
logics [8], and reactive programming languages [9]. At
present, our research group uses the Reactive Model-based
Programming Language [10], an in-house language which
shares in many aspects of the above languages.

2.) The Plant Model
Fundamentally, the only requirement we impose on the
plant model, is that it can model a hybrid, and potentially
high-dimensional and underactuated, system. This plant
model could consist simply of a library of primitive QSPs,
and an algorithm that is capable of piecing them together.
Or alternatively, we could pre-compile offline all valid

interconnections of trajectory primitives into an automaton,
similar to the Maneuver Automaton approach [4]. We
could also consider using model-checking formalisms such
as the Timed Abstract State Machine language [11], or
perhaps Markov Decision Processes [12].

3.) The Model-based Executive
The fundamental requirement for our model-based
executive is the ability to generate and execute plans that
achieve the goal specification, despite disturbances and
failures at execution time. Key to meeting this requirement
will be the ability to reason over multiple plant models that
are operating concurrently in order to generate a plan that
achieves the goal specification, while simultaneously
obeying the dynamical and environmental constraints
inherent to each plant.
 The model-checking, verification, and AI communities
have done a lot of research on concurrently running and
hierarchical state machines that may be applicable [13,14].
It is still unclear to us how much prior work might be
leveraged in developing our model-based executive, and
what, if any, are the limitations of prior approaches. This
is an important topic for us to address as we move forward.

References
[1] A. Hofmann, S. Massaquoi, M. Popovic, and H. Herr. A Sliding
Controller for Bipedal Balancing Using Integrated Movement of Contact
and Non-Contact Limbs. In IROS 2004, Sendai, Japan, Oct. 2004.
[2] A. Hofmann, and B. Williams. Exploiting Spatial and Temporal
Flexibility for Plan Execution of Hybrid, Under-actuated Systems. In
AAAI 2006, Boston, MA, USA, July 2006.
[3] A. Hofmann Robust Execution of Bipedal Walking Tasks from
Biomechanical Principles In Ph.D. Thesis, MIT, Dec. 2005.
[4] E. Frazzoli. Robust Hybrid Control for AutonomousVehicle Motion
Planning. Ph.D. Thesis, MIT, 2001.
[5] A. Bemporad, M. Morari, V. Dua, and E.N. Pistikopoulos, “The
explicit linear quadratic regulator for constrained systems,” Automatica,
vol. 38, no. 1, pp. 3–20, 2002.
[6] Multi-Parametric Toolbox (MPT), for Matlab.
http://control.ee.ethz.ch/~mpt/
[7] M. Egerstedt and R. Brockett, “Feedback can reduce the specification
complexity of motor programs,” IEEE Trans. Autom. Control, vol. 48, no.
2, pp. 213–223, Feb. 2003.
[8 G. Fainekos, S. Loizou, and G.J. Pappas, “Translating temporal logic to
controller specifications,” in Proc. 45th IEEE Conf. Decision Control,
San Diego, CA, Dec. 2006, pp. 899–904.
[9] R. James Firby. An investigation into reactive planning in complex
domains. Proceedings of the 6th National Conference on AI, Seattle, WA,
July 1987, 1987.
 [10] Mitch Ingham, Robert Ragno and Brian C. Williams, "A Reactive
Model-based Programming Language for Robotic Space Explorers,"
Proceedings of the Sixth International Symposium on Artificial
Intelligence, Robotics and Automation in Space: A New Space Odyssey,
Montreal, Canada, June 2001.
[11] Ouimet, M.: The TASM Language Reference Manual, Version 1.1.
Available from http://esl.mit.edu/tasm.
[12] M. L. Puterman. Markov Decision Processes: Discrete Stochastic
Dynamic Programming. Wiley Series in Probability and Mathematical
Statistics. A Wiley-Interscience, New York, 1994.
[13] Borger, E., Stark, R.: Abstract State Machines. Springer-Verlag,
2003.
[14] David Harel. Statecharts: A visual formalism for complex systems.
Science of Computer Programming, 8(3):231-274, June 1987.

http://www.dii.unisi.it/cgi-bin/ab_download.cgi?getpaper&paper=BMDP02a
http://www.dii.unisi.it/cgi-bin/ab_download.cgi?getpaper&paper=BMDP02a
http://control.ee.ethz.ch/%7Empt/

