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Abstract 
This proposed thesis topic aims to combine automated 
planning and hybrid control techniques.  In this paper we 
describe a particular case study in this direction: the 
development of a quadruped bouncing gait with four 
qualitative states, quad-stance, touch-off, flight, and touch-
down.  Our approach is novel in that gait achievement is 
defined in terms of flexible constraint windows in state-
space and time.  This key feature enables the use of a 
controller that chooses from entire sets of optimal joint 
motion trajectories at execution time instead of tracking a 
single pre-planned optimal trajectory with high-impedance.  
In simulation, we demonstrate the robustness of this 
approach by maintaining a steady-state quadruped bouncing 
gait despite significant disturbances at execution time.  The 
focus of this thesis work will be to investigate techniques to 
interleave and concurrently execute such plans in order to 
achieve complex and abstract goal specifications. 

Introduction 
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This paper features the development of a sagittal plane 
model of a bouncing quadruped with actuation limits and 
four qualitative states, quad-stance, touch-off, flight, and 
touch-down, as depicted in Figure 1.  A control policy for 
the template was developed in two phases.  First, the 
bouncing gait was defined in terms of its qualitative states, 
called a Qualitative State Plan (QSP) [3].  Transitions 
between the qualitative states in a QSP occur through 
flexible constraint windows in state-space and time.  For 
example, the center of mass of the quadruped, the red dot 
in Figure 1, passes through the blue constraint windows at 
appropriate times in order to maintain steady-state 
bouncing.  Second, a controller was developed for each 
qualitative state that ensures the quadruped passes through 
the constraint windows under bounded disturbances.  
Steady-state bouncing was achieved in simulation. 
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Figure 1:  Sagittal plane model of a bouncing quadruped 
with four qualitative states. 
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Figure 2: Automated planning given a library of QSPs. 

n the Future Work section of this paper, we hypothesize
 this approach to be applica

cooperating agents that can achieve complex and abstract 
goal specifications. 
 

builds upon prio
 Williams of th

Embedded and Robotic Systems group at MIT [1,2,3].  The 
overarching objective of these cited works is to combine 
automated planning and hybrid control techniques.  For 
example, this previous work has considered problems such 
as getting a walking biped to kick a soccer ball and to 
recover from trip disturbances.  In this study, we employ 
these same techniques to a new problem; demonstrating a 
steady-state bouncing quadruped gait.  In the next two 
sections, we describe why QSPs provide an intuitive link 
between automated planning and hybrid control. 

ed planning techniques traditionally as
f activities or actions (in our case QSPs

automated planner then generatively constructs a plan, 
from among the library of alternatives, by piecing together 
pre and post-conditions.  As depicted in Figure 2, for 
example, to get from the start to the goal, a quadruped may 
choose to walk forward, turn right, and then bounce to the 
goal, by piecing together the goal and initialization regions 
of successive QSPs.  There are often many possible 
alternatives to achieve the goal given a library of actions.  
     The appeal of approach is in reducing the search 
complexity from a large continuous problem over the 
entire state-space (with a branching-factor of all possible  
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Figure 3: A QCP partitions the QSP’s state-space into 
regions, and defines a control action for each region. 
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Figure 4: Flight to Touch-down COM Controller with two 
superimposed trajectories. 
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Figure 5: Quadruped simulation and MPT analysis. 

bu
of this approach does not prescribe a single optim
reference trajectory, but instead outlines a set (or bundle) 
of trajectories with flexible constraint windows in state-
space and time.  We think this approach is significant 
because it: 

1.) Generates plans that ensure the inherent hybrid 
constraints of underactuated robots are obeyed. 

2.) Provides a computationally tractable way to 
generate and then com
objectives, interactions, and concurrent threads of 
activities.  

Note that this approach outputs only valid interconnections 
of trajectory primitives, and is similar in concept to the 
Maneuver Automaton by Frazzoli [4].  In the Future Work 
section, we hypot
multiple coordinating agents is similar in concept to 
planning over and verifying the correct execution of 
multiple, concurrently executing Maneuver Automatons. 

Hybrid Control with QSPs 
In this section, we describe our hybrid control approach i

State Plan, a Qualitative Control P
 in Fig. 3, a QCP is a piecewise line

from robot state-space (only those states within the QSP) 
to control inputs that guarantee achievement of the goal 
region (under bounded disturbance).  In this project, we 
use a technique called multi-parametric optimization in 
order to develop the controllers that comprise the QCP.  
Multi-parametric optimization employs a Linear Quadratic 
Regulator extended to incorporate linear inequality 
constraints [5] in order to develop cost-optimal solutions 
for systems of low complexity.   Implementation-wise, we 
used a freely available and user-friendly Matlab toolbox, 
called the Multi-parametric toolbox (MPT) [6], which was 
developed by the Automatic Control Laboratory at the 
Swiss Federal Institute of Technology (ETH).   
h This approach enables us to find optimal control policies 
for simple, low-dimensional systems, given linear 
constraints on initial, goal, and operating regions.  For 
higher dimensional and nonlinear templates, 
possible to use techniques such as dynamic programming, 
value iteration, and policy search.  Note that as long as the 
trajectory remains within the QCP, plan success and 
dynamic stability are guaranteed. 

 give an example, we depict in Fig. 4 below, a 3
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flight to touch-down phase of the quadruped bouncing gait.  
X1 is “x”, X2 is “y” and X3 is “ߠ”.  In addition, two 
trajectories (starting from different initial conditions) are 
superimposed and shown with red and blue lines in Fig. 4.  
These trajectories depict how control actions are chosen at 
each time-step (green dots) to guide trajectories optimally 
(from different initial conditions) towards the goal.  Notice 
that X2 (the height of the quadruped’s COM) is only 
defined from 4 to 0.4 units, respecting our linear constraint 
that its COM remain greater than 0.4 and less than 4 units. 

ttal-plane q
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is summarized in four steps.  
1. Develop a simple 2D quadruped simulation. 
2. Develop a vertical bouncing gait. 
3. Develop a forward moving bouncing gait. 
4. Add noise to the gaits to show robustness. 

Figure 5 provides a glimpse of the quadruped si
and results. We forego a more detailed explanation
to discuss the most important aspect of this paper, potential 
directions for future work and collaborations. 

http://www.ethz.ch/


Future Work and Potential Collaborations 
In this section, we outline the research directions that we 
wish to pursue, provide comparisons to existing work that 
we are aware of, and invite researchers to inform us of 
other related work that we are not yet aware of.  The 
overarching objective of this research can be stated as 
follows: 

“To develop an autonomous model-based executive 
that coordinates multiple autonomous agents in 
order to achieve complex and abstract goal 
specifications, while responding robustly to 
disturbances and failures at execution time.” 

This broad problem statement cuts across much of current 
AI and automated planning research.  More specifically, 
there are several aspects of the problem that we would like 
to focus on, in-particular: 
• Extending our current model-based approach to 

handle complex and abstract goal specifications 
involving multiple agents. 

• Planning autonomously for agents that are high-
dimensional, underactuated and hybrid in nature. 

• Developing a model-based executive that responds 
robustly to disturbances and failures at execution 
time, in order to maintain progress towards achieving 
the goals. 

To accomplish these objectives, we propose a model-based 
executive which takes as inputs a goal specification and 
plant models for each agent.  The model-based executive 
then reasons from the models to generate and execute a 
plan that accomplishes the goal specification. 
 Informally, we identify and discuss the three key 
components of this architecture:  1.) the goal specification, 
2.) the plant model, and 3.) the model-based executive. 
 
1.) The Goal Specification 
The goal specification we propose needs to be capable of 
supporting complex and abstract goals.  In addition, it 
needs to support flexible state-space and timing 
constraints.  Consider one such example:  “Robot Alpha 
should visit either region 2 or region 3, and then meet up 
with Robot Beta at region 4 within 5 minutes.  Then they 
should proceed to the closest recharging station, and 
recharge for at least 10 minutes but no more than 20 
minutes each.”   
 In the literature, there are many types of specification 
languages, motion description languages [7], temporal 
logics [8], and reactive programming languages [9].  At 
present, our research group uses the Reactive Model-based 
Programming Language [10], an in-house language which 
shares in many aspects of the above languages. 
 
2.) The Plant Model 
Fundamentally, the only requirement we impose on the 
plant model, is that it can model a hybrid, and potentially 
high-dimensional and underactuated, system.  This plant 
model could consist simply of a library of primitive QSPs, 
and an algorithm that is capable of piecing them together.  
Or alternatively, we could pre-compile offline all valid 

interconnections of trajectory primitives into an automaton, 
similar to the Maneuver Automaton approach [4].  We 
could also consider using model-checking formalisms such 
as the Timed Abstract State Machine language [11], or 
perhaps Markov Decision Processes [12].   
 
3.) The Model-based Executive 
The fundamental requirement for our model-based 
executive is the ability to generate and execute plans that 
achieve the goal specification, despite disturbances and 
failures at execution time.  Key to meeting this requirement 
will be the ability to reason over multiple plant models that 
are operating concurrently in order to generate a plan that 
achieves the goal specification, while simultaneously 
obeying the dynamical and environmental constraints 
inherent to each plant.  
   The model-checking, verification, and AI communities 
have done a lot of research on concurrently running and 
hierarchical state machines that may be applicable [13,14].  
It is still unclear to us how much prior work might be 
leveraged in developing our model-based executive, and 
what, if any, are the limitations of prior approaches.  This 
is an important topic for us to address as we move forward. 
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