
Discrepancy-based Method for Distributed Supply Chain Operations Planning

Jonathan Gaudreault1,2, Jean-Marc-Frayret1,2 and Gilles Pesant1

1 École Polytechnique de Montréal, Montréal, Canada
2 FORAC Research Consortium, Université Laval, Québec, Canada
{jonathan.gaudreault, jean-marc.frayret, gilles.pesant}@polymtl.ca

Abstract
This paper studies the case of a supply chain made up of
autonomous facilities. They need to coordinate their
manufacturing operations in order to optimize customer
satisfaction. The coordination space can be described as a
tree. Simple coordination mechanisms used by industry
allow them to visit only the first leaf. We show how
factories can implement distributed search in order to
evaluate alternative solutions. While chronological
backtracking can be easily implemented in a distributed
framework (e.g. Synchronous Branch and Bound), it is not
the same for other strategies such as Limited Discrepancy
Search (LDS). We therefore propose MacDS, a novel
mechanism allowing the agents to implement a search
strategy based on discrepancies (LDS or others) while
allowing concurrent computation. Use of this mechanism
improved quality of solutions and computation time for real
industrial problems.

Introduction
This paper studies the case of industrial supply chains
where agents represent factories offering services to the
other factories (Figure 1). An external client announces a
call for bids and the cooperation of each factory is needed
to produce and deliver the final good. Different alternatives
are possible regarding the parts to use, the manufacturing
processes to follow, the scheduling of operations and the
choice of transportation. The partners wish to develop a
common production plan (e.g. what to do, where and
when); the common objective function represents the
client’s interest, e.g. minimize lateness. However, the
factories may be competing against each other for other
projects. Therefore privacy is an important issue; each
factory wants to plan its own activities, doesn’t know
alternative production processes of the others, etc.

Product
flow

Factory
1

External
customer

Product
flow

Factory
2

Product
flow

Factory
3

Figure 1: Example of a simple supply chain

Compilation copyright © 2007, American Association for Artificial
Intelligence (www.aaai.org). All rights reserved.

Supply Chain Operations Coordination
The traditional supply chain management literature focuses
on coordination practices found in real life supply chains,
with a few exceptions (responsibility tokens, Porteus
2000). Indeed, this literature studies inventory policies in a
basic coordination context, including transactional
information exchange, request for quote/tender or JIT
kanban cards.
 Recent literature in supply chain management proposes
more advanced coordination frameworks involving various
forms of negotiation and information exchange scheme
(e.g. Dudek and Stadtler 2005). Most of the time,
negotiation methods are defined for contexts in which
agents have different goals but wish to reach an agreement,
are defined for binary partnership only or involves a
mediator agent.
 Finally, the multi-agent community dedicated to
building advanced information systems for network
enterprises proposes a literature that particularly
emphasizes the design of interaction protocols for agent
coordination. A review is presented in (Frayret et al. 2005).
These protocols can be described as coordination
heuristics.
 The most common class of coordination heuristics is the
‘hierarchical’ approach (de Kok and Fransoo 2003), both
in the literature and industrial practice. Figure 2 shows an
example of a hierarchical method. The agent first makes a
temporary plan to compute its needs in raw materials. The
supplier will try to satisfy this demand and responds with a
supply plan, but it is not mandatory for that plan to satisfy
all demand. For example, some deliveries may be planned
to be late or some products can be replaced by substitutes.
When informed of the supply granted by its supplier, the
initial agent has to revise its production plan. When applied
to the whole supply chain, the task flow forms a loop.

Planning
demand

plan
demand

plan

supply
plan

supply
plan Planning

supply
planPlanning

supply
plan

supply
plan

12

3

4

Planning

Planning
Planning

demand
plan

supply
plan

5

External
customer

Figure 2: Two-phase planning

Coordination Space as a Tree
In this section we propose to generalize the hierarchical
approach described in the previous section. The algorithms
used to make each local decision usually allow producing
alternative solutions (Kilger and Reuter 2005). By
considering each of these propositions we can describe the
coordination space as a tree. The tree has one level per type
of subproblem (each level will correspond to one of the
boxes in Figure 2). Each node on a specific level represents
an instance of that subproblem type (defined by decisions
for previous subproblems). Each arc is an alternative and
feasible solution.
 The simplest method for the agents to collectively
explore this tree is to perform what Hirayama calls
Synchronous Branch and Bound (SyncBB) (Hirayama and
Yokoo 1997). SyncBB has two main drawbacks. First,
only one agent at a time is working. Second, it applies
chronological backtracking. In a centralized context,
chronological backtracking is often outperformed by
methods based on discrepancies like Limited Discrepancy
Search (LDS) (Harvey and Ginsberg 1995). We propose a
method allowing the agents to implement a search strategy
based on discrepancies (like LDS or others) and allowing
concurrent computation.

Multi-agent Concurrent Discrepancy Search
Limited Discrepancy Search (LDS) was the first method
based on discrepancies (Harvey and Ginsberg 1995). It was
proposed for centralized problems. The main idea is that
the leaves of the tree (solutions) do not all have the same
expected quality; that it decreases with the number of times
one branch to the right when going from the root to that
leaf (i.e. the number of discrepancies). The rationale is that
a move to the right is a move against the value ordering
heuristic. LDS aims to first visit the leaves with the fewest
discrepancies. Another effect of LDS is that the solutions
visited in a given period of time will be from more
different parts of the tree than those produced using
chronological backtracking.

Proposed Algorithm (MacDS)
We will first describe the algorithm informally. Each agent
manages a list of nodes (corresponding to the alternative
solutions from the previous agent). With each solution to
its subproblem sent to the next agent, the agent attaches the
‘path’ that would go from the root of the global tree to this
specific node. At all times, each agent works on the
node/subproblem with the highest priority from its list. The
priority of a node is a function of its path and the number
of alternative solutions already sent for that subproblem
(i.e. the path of next child to be sent). This approach is
similar to implementing a backtracking strategy in
centralized search using a node selector (Beck and Perron
2000), except that it is applied locally by each agent. By
changing the selector function, it is possible to implement

different known strategies: LDS or others (even
chronological backtracking).
Pseudocode. The following objects are manipulated by the
algorithm:
• A message msg is a couple <d,p> where d represents

the solutions for the previous subproblems and p is a
vector of integers representing the path. The element
p[j] defines, for a level j, which arc should be
followed when going from the root to the corresponding
node in the global tree.

• A list of nodes (nodes) contains the nodes under the
responsibility of the agent for which there is unexplored
alternative solutions. A node is defined by d and p, by
the number of local solutions produced to date (i) and
by a boolean indicating if the agent thinks there are no
more alternative solutions (noMoreSol).

 Each agent runs many threads: one for each node plus a
control thread. A single thread per agent is active at any
time. The control thread (Figure 3) is activated when the
agent receives a message (WhenReceiveMsg) and when
the agent has just produced a new solution for a node
(WhenNewSolution). The agent then updates the node list
and transfers control to the thread of the node with higher
priority (ActivateANode). In the pseudocode, we
suppose that the list of nodes is sorted by decreasing
priority (according to the chosen policy, e.g. LDS).

WhenReceiveMsg(msg)
 if (running ≠ ∅) running.Sleep();
 nodes.insert(<msg.d, msg.p, 0, false>));
 ActivateANode();

WhenNewSolution(node)
 node.Sleep();
 SendMessage(Successor(node), <node.d +
 node.sol.d, node.p + node.i>);
 node.i++;
 if (node.noMoreSol)
 nodes.Remove(node);
 running ← ∅;
 ActivateANode();

ActivateANode()
 if (nodes.count() > 0)
 running ← nodes[1];
 running.WakeUp();
 else
 running ← ∅;

Figure 3: Control thread of the agent

The pseudocode for the node threads is shown in Figure
4. When a node is created, its thread is idle. It must be
activated by the control thread. When a thread produces a
new subproblem solution, it signals this fact to the control
thread (SignalNewSolution) and goes idle (sleep). The
control thread then sends the message to the agent that
owns the next subproblem (Successor).

Run(node)
 node.noMoreSol ← false;
 node.sol ← NextSolution(node);
 while (node.sol ≠ ∅)
 SignalNewSolution(node);
 Sleep();
 node.sol ← NextSolution(node);
 node.noMoreSol ← true;
 SignalNewSolution(node);

Figure 4: Thread associated to a node

Evaluation
We compared MacDS (applying LDS policy) to

SyncBB using real industrial data with complex
subproblems. The case is a supply chain coordination
problem in the forest products industry (Frayret et al.
2005). The network has three facilities (Sawing, Drying
and Finishing). They apply two-phase planning (Figure 2)
in order to minimize orders’ lateness. The data were
extracted from the company databases at different
moments in 2005.

For both SyncBB and MacDS, the first global solution
and computation time are always the same (same as
standard two-phase planning). Consequently, we compared
the algorithms according to the reduction of the objective
function they achieved with additional computation time
(in seconds). Figure 5 illustrates the results for the four
industrial cases studied. The industrial impact of both
algorithms is huge. MacDS outperforms SyncBB in a
significant manner, except for one case (ii) here SyncBB
provides the best solution by 0.5% given a computation
time greater than 1000 sec.

Conclusion
From a supply chain management point of view, we
showed how hierarchical approaches can be generalized

and the coordination space represented as a tree. Using
distributed search allows for the exploration of alternative
solutions while maintaining current business relationships,
responsibilities and local decision-making algorithms. We
also showed that even simple algorithms like SyncBB
provide for great improvement in solution quality. As for
distributed optimization, we showed how discrepancy-
based methods can be applied in a distributed and
concurrent context. It improved computation time and
quality for both real problems and generated trees (results
not shown here).

References
Beck, J.C., Perron, L. 2000. Discrepancy-Bounded Depth First
Search. Proc. of CPAIOR, 7-17. Paderborn, Germany.

de Kok, A.G., Fransoo, J.C. 2003. Planning Supply Chain
Operations. In: Supply Chain Management. de Kok, A.G. and
Graves, S.C. eds. Amsterdam: Elsevier.

Dudek, G., Stadtler, H. 2005. Negotiation-based collaborative
planning between supply chains partners. European Journal of
Operational Research. 163(3): 668-87.

Frayret, J.M.et al. 2005. Agent-based Supply Chain Planning in
the forest products industry. Québec: CENTOR, Université
Laval. DT-2005-JMF-1.

Harvey, W.D., Ginsberg, M.L. 1995. Limited discrepancy search.
Proc. of IJCAI, 607-613. Montreal, Can: Morgan Kaufmann.

Hirayama, K., Yokoo, M. 1997. Distributed partial constraint
satisfaction problem. Int. Conf. on Principles and Practice of
Constraint Programming, LNCS #1330, 222-236. Linz : Springer.

Kilger, C., Reuter, B. 2005. Collaborative Planning. In: Supply
Chain Management and Advanced Planning. Stadtler, H. and
Kilger, C. eds. New York: Springer.

Porteus, E.L. 2000. Responsibility tokens in supply chain
management. Manufacturing and Service Operations
Management. 2(2): 203-19.

0%

20%

40%

60%

80%
0 1000 2000 3000

SyncBB

MacDS_LDS

(i)

0%

10%

20%

30%

40%

50%
0 1000 2000 3000

SyncBB
MacDS_LDS

(ii)

0%

1%

2%

3%

4%

5%

6%

0 1000 2000 3000

SyncBB

MacDS_LDS

(iii)

0%

5%

10%

15%

20%

25%
0 1000 2000 3000

SyncBB

MacDS_LDS

(iv)

Figure 5: Reduction of the objective function, according to computation time (in seconds) for cases (i), (ii), (iii) and (iv)

