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Abstract

We introduce a non-admissible heuristic for planning with ac-
tion costs, called theset-additive heuristic, that combines the
benefits of theadditive heuristicused in the HSP planner and
therelaxed plan heuristicused in FF. The set-additive heuris-
tic is defined mathematically and handles non-uniform action
costs like the additive heuristic but like FF’s heuristic, it en-
codes the cost of a specificrelaxed planand is therefore com-
patible with FF’s helpful action pruning and its enforced hill
climbing search. This new formulation is used to introduce
a further variation that takes certain deletes into account by
forcing the values of certain multivalued variables in the re-
laxed plan to be spanned by a path rather than by a tree. We
show last how soft goals can be compiled away and report
empirical results using a modification of the FF planner that
incorporates these ideas, leading to a planner that is as robust
as FF but capable of producing better plans in a broader set
of contexts.1

Planning Model and Heuristics
We consider planning problemsP = 〈F, I, O, G〉 expressed
in Strips, whereF is the set of relevant atoms or fluents,
I ⊆ F andG ⊆ F are the initial and goal situations, andO
is a set of (grounded) actionsa with preconditions, add, and
delete listsPre(a), Add(a), andDel(a) respectively, all of
which are subsets ofF .

For each actiona ∈ O, there is also anon-negative cost
cost(a). We take the costcost(π) of a planπ = a1, . . . , an

to be
cost(π) =

∑
i=1,n

cost(ai) (1)

The search for plans is guided commonly by heuristics
that provide an estimate of the cost-to-go that are extracted
automatically from the problem encodingP . We discuss
two of the most common heuristics below.

In order to simplify the definition of some of the heuris-
tics, we introduce in some cases a new dummyEnd action
with zero cost, whose preconditionsG1, . . . , Gn are the
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1This is a shorter version of the paper by the same name by Emil
Keyder & Héctor Geffner submitted to the ICAPS ’07 workshop
on heuristics. For extensions of the concepts discussed here and
further information, please consult this paper.

goals of the problem, and whose effect is a dummy atom
G.

The Additive Heuristic
Under the delete-relaxationP+, the assumption that all sub-
goals areindependentis normally false but results in a sim-
ple heuristic function (Bonet & Geffner 2001):

ha(s) def= ha(G; s) (2)

This function can be efficiently computed in every states
visited in the search:

h(p; s) def=
{

0 if p ∈ s
mina∈O(p)[h(a; s)] otherwise (3)

whereh(p; s) stands for an estimate of the cost of achieving
the atomp from s, O(p) is the set of actions in the problem
that addp, and

h(a; s) def= cost(a) +
∑

q∈Pre(a)

h(q; s) (4)

stands for the cost of achieving the preconditions of an
actiona and applying it.

The Relaxed Planning Graph Heuristic
Unlike ha, the heuristichFF used in the FF planner makes
no independence assumption for approximatingh+, instead
computing one plan forP+ which is not guaranteed to be
optimal. This is done by a Graphplan-like procedure (Blum
& Furst 1995), which due to the absence of deletes, con-
structs a planning graph with no mutexes, from which a
planπFF(s) is extracted backtrack-free (Hoffmann & Nebel
2001). The heuristichFF(s) is set then to|πFF(s)|.

The Set-Additive Heuristic
In the additive heuristic, the value of the best supporterap

of p in s, h(ap; s), is propagated to obtain the heuristic value
of p, ha(p; s). In contrast, in theset-additiveheuristic, the
best supporterap of p itself is propagated, and supports are
combined by theset-unionrather than thesumoperation,
resulting in a functionπ(p; s) that represents aset of actions
which can be defined similarly toha(p; s):



π(p; s) =
{

{} if p ∈ s
π(ap; s) otherwise (5)

where

ap = argmina∈O(p)Cost(π(a; s)) (6)

π(a; s) = {a}
⋃

{∪q∈Pre(a) π(q; s)} (7)

Cost(π(a; s)) =
∑

a′∈π(a;s)

cost(a′) (8)

The set-additive heuristichs
a(s) for a states is then de-

fined as

hs
a(a) = Cost(π(G; s)) (9)

Thoughπ(p; s) is asetand not asequenceof actions, its
definition ensures that the actions it contains can be ordered
into an action sequence that is arelaxed planfor p in the
relaxed problemP+ given start states. The primary advan-
tage of this relaxed plan over that computed by FF is that it
attempts to minimize thecostof the plan rather than its size.

Testing the Heuristics
We tested the three heuristicsha, hs

a, andhFF in combination
with the Enforced Hill Climbing (EHC) and WA* search al-
gorithms. All combinations were implemented within the
framework of Metric-FF. When testinghs

a in combination
with EHC search, the relaxed plan computed from the plan-
ning graph was replaced with the plan computed by the set-
additive heuristic. Modified versions of the domains Satel-
lite, Driverlog, Depots, Rovers, and Zenotravel were used
for the experiments.

• FF vs. FF(hs
a): EHC with the set-additive heuristic yields

higher quality plans in domains in which there are signif-
icant differences in the costs of the relaxed plans com-
puted for the initial state, indicating that it pays off to take
cost information into account. The differences in quality
change from domain to domain.

• Time Overhead: FF(hs
a) takes longer than normal FF

(typically by a factor between 4 – 10) but scales up simi-
larly. The reasons are two: the overhead due to propagat-
ing sets rather than numbers in the heuristic computation,
and the fact that the plans that FF(hs

a) finds are sometimes
longer(though with less overall cost). This overhead does
not affect coverage in the domains studied.

• Heuristics in WA*: when the heuristicsha, hs
a, and

hFF are used in the context of the WA* search described
above, the first two heuristics do better than the latter, both
in terms of quality and coverage.

• Heuristics for Uniform Costs: The heuristic values re-
sulting fromhs

a andhFF are very much alike in Strips do-
mains, and both are consistently lower than the normal
additive heuristicha that tends to overcount.

Richer Labels and the TSP Heuristic

We now consider labelsL(p; s) that result from treating one
designated multivalued variableX in the problem in a spe-
cial way. A multivalued variableX is a set of atomsx1, . . . ,
xn such that exactly onexi holds in every reachable state.
We refer to the atomsxi as encoding the different values of
X. We show that part of the problem space can be solved
by a TSP procedure that is integrated into thehs

a heuristic
described above.

In order to define the graph upon which the TSP algorithm
will be used in the computation of the heuristic, we replace
the set of actionsπ(p; s) that constitute a relaxed plan for
p in Equation 5), with apair of sets: roughly, the actions
in π(p; s) that do not affect the TSP variableX, denoted
by πx(p; s), and theX-atoms required by these actions, de-
noted asαx(p; s).

The TSP heuristichX(s) is then defined as:

hX(s) def= Cost(〈πx(G; s), αx(G; s)〉) (10)

with the set of actionsπx(p; s), the set ofX-atoms
αx(p; s), and the functionCost mapping such pairs into
numbers, defined below.

〈πx(p; s), αx(p; s)〉 def=
{

〈{}, {}〉 if p ∈ s, else
〈πx(ap; s), αx(ap; s)〉 (11)

where

ap = argmina∈O(p)Cost(〈πx(a; s), αx(a; s)〉)

πx(a; s) = {a}
⋃

{∪q∈Pre(a),q 6∈X πx(q; s)}

αx(a; s) = (Pre(a) ∩X)
⋃
{∪q∈Pre(a),q 6∈X αx(q; s)}

Cost(πx(a; s), αx(a; s)) =
∑

a′∈πx(a;s) cost(a′) +

TSPx(αx(a; s); s)
(12)

andTSPX(V ; s) stands for an estimate of the cost of the
best plan that achieves all atomsx ∈ V , starting froms.
This plan can be computed by a fast but suboptimal TSP
algorithm over a graphGV with vertex setV ∪ {xd}, where
xd is a dummy vertex, and edges(xi, xj) with costscij :

ci,j =

{
Ds(xi, xj) if xi 6= xd andxj 6= xd

0 if xi = xd andxj = xs, or xj = xd

∞ if xi = xd andxj 6= xs, xj 6= xd

wherexs is theX-atom true ins, the dummy vertexxd is
linked toxs with zero cost, and allxi ∈ X are linked toxd

with zero cost as well, so that the TSP tours for computing
TSPX(V ; s) will effectively start atxs and visit all atomsx
in V before reaching the dummy vertexxd.

The distance matrixDs(xi, xj) encodes the cost of
achievingxj from the statesi obtained froms by deleting
xs and addingxi, and can be computed by any delete-based
heuristic.



Soft Goals
In many problems, there is a preference over atomsp in a
problem expressed by positive rewardsrwd(p), so that plans
are sought that achieve all the ’hard’ goals (if any) while
satisfying such preferences as much as possible. We denote
that a planπ makes an atomp true asπ |= p. The valuev(π)
of a plan that achieves all hard goals can then be formalized
as the sum of the gathered rewards minus the cost of the
plan:

v(π) =
∑

p:π|=p

rwd(p)−
∑
ai∈π

cost(ai) (13)

so that plans with max value are sought.
Variations of this model of planning with soft goals have

been recently considered in (Smith 2004; Sanchez & Kamb-
hampati 2005; Bonet & Geffner 2006). Here we want to
show that it is possible to compile away soft goals.

Let P be a Strips planning problem extended with cost in-
formationc(a) ≥ 0 over its actions, and reward information
rwd(p) ≥ 0 over a subset of its atoms. We will assume that
atomsp with strictly positive rewardrwd(p) > 0 cannot be
deleted.

We define a Strips problemP ′ with action costsc(a) ≥ 0
andno rewards, such that there is a direct correspondence
between the optimal plans forP andP ′.

Let S(P ) stand for the set of ’soft goals’ inP :

S(P ) = {p | p ∈ F ∧ rwd(p) > 0}

and let

S′(P ) = {p′ | p ∈ S(P )}

be a set of atoms not inP .
Then forP = 〈F, I, G,O〉 whereF is the set of fluents,

I andG are the initial and goal situations, andO is the set
of actions, the problemP ′ = 〈F ′, I ′, G′, O′〉 can be defined
as:

• F ′ = F ∪ S′(P )

• I ′ = I

• G′ = G ∪ S′(P )

• O′ = O ∪ {Collect(p) , Forgo(p) | p ∈ S(P )}
whereCollect(p) has preconditionp, effectp′, and cost

0, while Forgo(p) has an empty precondition, effectp′ and
cost equal torwd(p).

Proposition 1 (Elimination of Soft Goals) An action se-
quenceπ is an optimal plan for the problemP with per-
sistent soft goalsif and only if π is the result of stripping
away theCollect andForgo actions from an optimal plan
for the problemP ′ with no soft goals.

More Experiments
We tested thehX(s) heuristic with both the WA* and EHC
search algorithms, in addition to all combinations discussed
above, on 3 domains.

• FF vs. FF(hs
a)vs hX(s): The TSP heuristic finds

markedly better plans in a simple grid domain in which
the agent must collect packages. This is also true of a
rover-style domain with compiled soft goals.

• Time overhead The TSP heuristic does impose a large
time overhead compared to FF in these types of domains,
but this is partly due to the fact that longer plans of lower
cost are found.

Summary
We have introduced a new non-admissible heuristic for plan-
ning, theset-additive heuristic, that combines the benefits
of the additive and relaxed planheuristics. The motiva-
tion is similar to the work in (Sapena & Onaindia 2004;
Fuentetaja, Borrajo, & Linares 2006), but rather than mod-
ifying the planning graph construction or extraction phases
to take action costs into account, we have modified the cost-
sensitive additive heuristic to yield relaxed plans. The result-
ing formulation suggests further refinements that can result
from the propagation of symbol labels (supports) rather than
numbers in the basic formulation.

The TSP heuristichX(s) aims to approximate the cost of
the relaxationP+

X of the problemP where the only deletes
that are preserved are the ones involving the atomsxi asso-
ciated withX.

We show also thatsoft goalscan be compiled to produce a
problem with action costs but no rewards, through a simple
and fast procedure.
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