
The Cyclic SEQUENCE Constraint

Nina Narodytska and Toby Walsh
University of New South Wales and NICTA

Introduction

In rostering problems, we need to find a schedule that satis-
fies various constraints. Ergonomic constraints, that place
restrictions on a number of consecutive days, are com-
mon (Bourdais, Galinier, & Pesant 2003) . To model such
rules, several global constraints have been introduced. For
example, the STRETCH constraint (Hellsten, Pesant, & Beek
2004) is useful for limiting the length of stretches of vari-
ables (e.g., no more than 3 consecutive night shifts for an in-
dividual employee). The SEQUENCE constraint (Beldiceanu
& Contejean 1994) is used to restrict the number of occur-
rences of specific values in a given period (e.g., each em-
ployee has to have 2 days-off in any 7 consecutive days).
The REGULAR constraint (Pesant 2004) ensures that an as-
signment of a given sequence of variables belongs to a reg-
ular language. This can express, for example, that an em-
ployee has to have at least two consecutive days on any shift.

Many public services, like hospitals, police departments,
some factories, work 7 days per week. Such organizations
require a schedule than can be repeated with a given pe-
riod. To express rules for such cyclic schedules the Cyclic
REGULAR constraint (Quimper & Walsh 2006) and the
Cyclic STRETCH constraint (Hellsten, Pesant, & Beek 2004)
have been introduced. Propagating the Cyclic REGULAR

constraint is NP-hard, whilst there is a polynomial filter-
ing algorithm for the Cyclic STRETCH constraint. Recently,
the Cyclic SEQUENCE has been introduced but no polyno-
mial filtering algorithms have been proposed (Brand et al.
2007). In this paper we present a polynomial filtering algo-
rithm for the Cyclic SEQUENCE. We also consider a special
case of SEQUENCE, the ATMOSTSEQ constraint, and prove
that the Cyclic ATMOSTSEQ constraint can be decomposed
into ATMOST constraints without hindering propagation.

The SEQUENCE constraint

The AMONG constraint restricts the number of occurrences
of some given values in a sequence of k variables. More
precisely, AMONG(l, u, [X1,X2, . . . ,Xk], v) holds iff l ≤
|{i|Xi ∈ v}| ≤ u. The AMONG constraint can be encoded
by channeling into Boolean variables, namely, X ′

i = 1 if

Xi ∈ v, X ′
i = 0 otherwise, and l ≤

∑k

i=1 X ′
i ≤ u

We are very thankful to George Katsirelos for valuable discussions
on this work.

without hindering propagation. Consequently, we will sim-
plify notation and consider AMONG (and SEQUENCE) on
Boolean variables with v = {1}. If l = 0, AMONG

becomes an ATMOST constraint. ATMOST is monotone
since given a support, we also have support for any larger
value (Bessiere et al. 2007). The SEQUENCE constraint is a
conjunction of overlapping AMONG constraints. More pre-
cisely, SEQUENCE(l, u, k, [X1, . . . ,Xn]) holds iff for i =
1, . . . , n−k+1, AMONG(l, u, [Xi, . . . ,Xi+k−1]) holds. For
instance, SEQUENCE(1, 2, 4, [X1, . . . ,Xn]) ensures that in
any sequence of four consecutive variables only one or two
of variables can take the value 1.

The Cyclic SEQUENCE constraint

In scheduling problems, we might want a rotating sched-
ule, which can be repeated in a cycle. To model this
we can use a cyclic version of the SEQUENCE constraint.
SEQUENCE¯(l, u, k, [X1, . . . ,Xn]) ensures that between l
and u variables in Xi to X1+(i+k−2 mod n) take value 1 for
i = 1, . . . , n.

We propose a polynomial filtering algorithm for the
Cyclic SEQUENCE constraint. This algorithm is an exten-
sion of the HPRS algorithm (Hoeve et al. 2006) for the
SEQUENCE constraint. The core of the HPRS algorithm is
the CheckConsistency procedure that finds support for
all domain values of all variables or proves that a support
does not exist. In order to find a support for vj ∈ D(Xk) =
{0, 1}, an array of cumulative sums y of length n + 1 is in-
troduced. A value yi shows the number of ones in the first
i variables X . The algorithm initially assigns values y as

yi =
∑i

k=1 min(D(Xk)) for i = 1 to n and keeps repairing
y’s until they satisfy all constraints: yi+1 − yi ∈ D(Xi+1),
i = 0, . . . , n − 1 and l ≤ yi+k − yi ≤ u, i = 0, . . . , n − k.
It should be noted that there is a one-to-one correspon-
dents between valid assignments X and solutions y for the
SEQUENCE constraints. As was shown (Hoeve et al. 2006),
CheckConsistency procedure returns the minimal so-
lution ymin, such that for any solution y of the SEQUENCE

constraint holds that ymin
i ≤ yi, i = 1, . . . , n. Simi-

larly, the algorithm can compute a solution ymax, such that
yi ≤ ymax

i , i = 1, . . . , n.
The core of the proposed algorithm for the cyclic

SEQUENCE constraint consists of extension of the
CheckConsistency procedure to the cyclic case, so

that, for all variable domain values if finds a cyclic support or
proves that it does not exists. We will use the following run-
ning example throughout the rest of the paper to illustrate the
algorithm. Consider SEQUENCE¯(1, 2, 4, [X1, . . . ,X6]),
D(Xi) = {0, 1},i = 1, . . . , 6. Suppose we perform the
consistency check for X4 = 0. This is equivalent to finding
a solution for cyclic SEQUENCE with D(Xi) = {0, 1},
i ∈ [1, 2, 3] ∪ [5, 6] and D(X4) = 0.
The algorithm is based on two simple observations.

1. Consider the SEQUENCE(1, 2, 4, [X1, . . . ,X9]) con-
straint over extended sequence of variables. We introduce
3 extra variables X7,X8,X9 to break cyclicity. Do-
mains of extra variables are D(X6+i) = D(Xi),
i = 1, . . . , 3. The SEQUENCE(1, 2, 4, [X1, . . . ,X9])
constraint can be seen as relaxed version of
SEQUENCE¯(1, 2, 4, [X1, . . . ,X6]), such that solutions
of the cyclic SEQUENCE form a subset of its solutions. If
a solution of SEQUENCE(1, 2, 4, [X1, . . . ,X9]) satisfies
X6+i = Xi, i = 1, . . . , 3 , then it is a solution of the
cyclic SEQUENCE.

2. Consider a cumulative sum yi. As mentioned above, it
can take values in the interval [ymin

i , ymax
i]. Find the

minimal solution y′ of the SEQUENCE constraint such
that yi is fixed to w, w ∈ [ymin

i , ymax
i] and the cor-

responding assignment for X’s: Xj+1 = y′
j+1 − y′

i,
j = 0, . . . , n − 1. Then X is the lexicographically small-
est assignment among all valid assignments with yi fixed
to w. Moreover, the suffix of X , Xi+1, . . . ,Xn, is the lex-
icographically smallest suffix among suffixes of all valid
assignments with yi fixed to w. Coming back to the ex-
ample, consider a cumulative sum y6, which can take val-
ues from 1 to 4 (Figure 1a). If we fix y6 to 1, the min-
imal solution of SEQUENCE[X1, . . . ,X9] with y6 = 1
is y′ = [0001111222]. The corresponding assignment
is X = [001000100] which is lexicographically smallest
among all valid assignments with y6 = 1. The suffix of
X , [X7,X8,X9] = [100] is the lexicographically small-
est suffix among suffixes of all valid assignments with
y6 = 1.

Consider the minimal solution y′ = [0001111222]
and the corresponding assignment X = [001000100] of
SEQUENCE[X1, . . . ,X9], where y6 is fixed to 1. From the
second observation it follows that the prefix [X1,X2,X3] =
[001] is the lexicographically smallest prefix among prefixes
and the suffix [X7,X8,X9] = [100] is the lexicographically
smallest suffix among suffixes of all valid assignments with
y6 = 1. Consider the earliest position where the prefix and
the suffix are different. This is the first position: X1 = 0
and X7 = 1. From the first observation it follows that for
a cyclic solution the prefix and the suffix of length 3 are
equal. Then, there is no cyclic assignment for X with the
suffix [X7,X8,X9] = [0, ∗, ∗], because the lexicographi-
cally smallest prefix is [X1,X2,X3] = [1, ∗, ∗]. So, we can
safely prune all assignments with prefixes with the value 0
at the first position.

This observation is the intuition behind the following
Lemma 1.

y0
 y1
 y2
 y3
 y4
 y5
 y6
 y7
 y8
 y9

x1
 x2
 x3
 x4
 x5
 x6
 x7
 x8
 x9

0

1

2

3

4

5

0

1

0
0

1

0

0

0

0

(a)

y0
 y1
 y2
 y3
 y4
 y5
 y6
 y7
 y8
 y9

x1
 x2
 x3
 x4
 x5
 x6
 x7
 x8
 x9

0

1

2

3

4

5

0

1

0
0

1

0

0

0

0

Failure

(b)

x1
 x2
 x3
 x4
 x5
 x6
 x7
 x8
 x9

0

1

2

3

4

5

0

1

0
0

0

1

0

0

0

y0
 y1
 y2
 y3
 y4
 y5
 y6
 y7
 y8
 y9

(c)

x1
 x2
 x3
 x4
 x5
 x6
 x7
 x8
 x9

0

1

2

3

4

5

0

1

0
0

0

1

0

0

y0
 y1
 y2
 y3
 y4
 y5
 y6
 y7
 y8
 y9

(d)

1

Solution

Figure 1: Finding a cyclic support of
SEQUENCE¯(1, 2, 4, [X1, . . . ,X6]) for X4 = 0

Lemma 1 Consider the minimal solution y′ of
SEQUENCE(l, u, k, [X1, . . . ,Xn+k−1]) with yn fixed
to w, w ∈ [ymin

n , ymax
n]. Let i be such position that

∀h ∈ [0, i) : Xh = Xn+h, and Xi 6= Xn+i. We assume
that Xi = 0 and Xn+i = 1 (the case Xi = 1 and Xn+i = 0
is symmetric). Then yi is greater than y′

i in any solution y
of SEQUENCE¯(X1, . . . ,Xn) with yn = w.

Consider solutions of SEQUENCE[X1, . . . ,Xn+k−1]
where yn is fixed to w, w ∈ [ymin

n , ymax
n]. Lemma 1 allows

us to increase the low bound of yi for some i ∈ [1..k − 1] ∪
[n+1..n+k−1] without losing any cyclic assignments. Then
we re-compute the minimal solution y taking this new lower
bound into account. These steps are repeated until we find
a cyclic assignment or fail and select the next value of yn.
The pseudocode for the resulting cyclic consistency check
procedure is presented as Algorithm 1. The algorithm uses
an auxiliary procedure CheckConsistencyEx, which is
a generalization of CheckConsistency. It finds the min-
imal solution for a constraint SEQUENCE ∧ S, where S is a
conjunction of primitive constraints of the form {yi = p} or
{p < yi}. The algorithm for CheckConsistencyEx is
identical to the original CheckConsistency procedure
except it adjusts the initial values of y’s to satisfy S and
check if a resulting solution y satisfy S.

As can be seen from the Algorithm 1, we per-
form the main loop (lines 6–16) no more than O(n)
times. In a loop, we can do no more than 2(k −
1)2 iterations before failing or finding a solution for
SEQUENCE(l, u, k, [X1, . . . ,Xn+k−1]) with yn fixed to w.
The cost of the CheckConsistencyEx procedure is
O(n2). Consequently, the total time complexity of the
CheckConsistencyCyclic procedure is O((nk2)n2).
As we perform it for all variables domain values, the total
complexity of the filtering algorithm is O((nk2)n3d).

Algorithm 1 Consistency check for the Cyclic SEQUENCE

1: procedure CHECKCONSISTENCYCYCLIC(X,D, k)
2: for i ← 1 to k − 1 do
3: D(Xn+i) ← D(Xi);

4: if ¬CheckConsistency(ymin, ymax) then
5: return 0;

6: for w ← ymin
n to ymax

n do
7: S ← {yn = w};
8: while (¬CheckConsistencyEx(S, y′)) do
9: for i ← 1 to k − 1 do

10: xi ← y′
i − y′

i−1;
11: xn+i ← y′

n+i − y′
n+i−1;

12: if (xi == 0) ∧ (xn+i == 1) then
13: S ← S ∪ {y′

i < yi}; break;

14: if (xi == 1) ∧ (xn+i == 0) then
15: S ← S ∪ {y′

n+i < yn+i}; break;

16: return 1;

17: return 0;

Consider how the algorithm works on the example.

1. Line 4: Find ymin and ymax solutions of SEQUENCE over
extended sequence of variables [X1, . . . ,X6,X7,X8,X9]
to get bounds for y6, y6 ∈ [1, 4] (Figure 1(a)).

2. Line 6 (first iteration): Set y6 to 1. Add the constraint
{y6 = 1} to S and perform CheckConsistencyEx

(Figure 1(b)), which returns the minimal solution y′ =
[0001111 222]; the corresponding assignment for X is
X = [001000 100]. The first mismatch between the prefix
and the suffix of length 3 is in the first position: X1 = 0
and X7 = 1. Hence, we add {y1 > 0} to S and invoke
CheckConsistencyEx, which fails. So, we go to the
next possible value of yn.

3. Line 6 (second iteration): Set y6 to 2. Add {y6 = 2} to
S and perform CheckConsistencyEx (Figure 1(c)),
which returns the minimal solution y′ = [0001112 222];
corresponding assignment for X is X = [001001 000].
The first mismatch between the prefix and the suffix
of length 3 is in the third position: X3 = 1 and
X9 = 0. Hence, we add {y9 > 2} to S and in-
voke CheckConsistencyEx, which returns y′ =
[0001112 223]. This solution corresponds to a cyclic sup-
port [001001] for X4 = 0 (Figure 1(d)).

The Cyclic ATMOSTSEQ constraint

In this section we consider a cyclic ver-
sion of the ATMOSTSEQ constraint.
ATMOSTSEQ¯(u, k, [X1,X2, . . . ,Xn]) ensures that at
most u variables in Xi to X1+(i+k−2 mod n) take value
1 for i = 1 to n. Decomposition of the ATMOSTSEQ

constraint into set of ATMOST constraints does not hinder
propagation because the ATMOST constraint is monotone
(Bessiere et al. 2007). We show that decomposition of
ATMOSTSEQ¯ into set of ATMOST constraints also does
not hinder propagation. First, we prove a more general
statement that domain consistency on the conjunction of

any set of monotone constraints with a common order on
domain values is achieved by enforcing domain consistency
on the individual constraints.

Definition 1 Let Γ = {C1, . . . , Cm} be a set of monotone
constraints. Γ is a monotone set of constraints iff there exists
a single total ordering ≺ of the domain values such that for
any two values v, w, if v ≺ w then w can be substituted for
v in any solution for any Ci.

Lemma 2 If a set of constraints Γ = {C1, . . . , Cm} is
monotone then domain consistency on

∧m

i=1 Ci is equiva-
lent to domain consistency on (Ci) for i = 1, . . . ,m.

Proof: If
∧m

i=1 Ci is domain consistent then all Ci, i =
1, . . . ,m are domain consistent. Suppose all Ci, i =
1, . . . ,m are domain consistent. We show that Xk = vj

has support for the conjunction of Ci for i = 1 to m. Con-
sider the assignment where Xk = vj and all other variables
are set to the first value in their domains from the total or-
der ≺. This assignment satisfies all constraints because if a
constraint Ci is not satisfied this way, then it does not have
any support at all, hence it can not be domain consistent.
Consequently, Xk = vj has a global support for

∧m

i=1 Ci. ¦
As a consequence of Lemma 2 and the fact that ATMOST

is monotone, we get:

Corollary 1 Enforcing domain consistency on
ATMOSTSEQ¯ is equivalent to enforcing domain con-
sistency on ATMOST(u, [Xi, ..,X1+(i+k−2)mod n)]) for
i = 1 to n.

References

Beldiceanu, N., and Contejean, E. 1994. Introducing
global constraints in CHIP. Mathematical and Computer
Modelling 12:97–123.

Bessiere, C.; Hebrard, E.; Hnich, B.; Kiziltan, Z.; and
Walsh, T. 2007. The SLIDE-meta constraint. TR.

Bourdais, S.; Galinier, P.; and Pesant, G. 2003. Hibiscus:
A constraint programming application to staff scheduling
in health care. In Proc. of the 9th Int. Conf. on Principles
and Practice of Constraint Programming, 153–167.

Brand, S.; Narodytska, N.; Quimper, C.-G.; Stuckey, P.;
and Walsh, T. 2007. Encodings of the sequence constraint.
TR COMIC-2007-010.

Hellsten, L.; Pesant, G.; and Beek, P. v. 2004. A domain
consistency algorithm for the stretch constraint. In Wallace,
M., ed., In Proc. of the 10th Int. Conf. on Principles and
Practice of Constraint Programming, 290–304.

Hoeve, W.-J. v.; Pesant, G.; Rousseau, L.-M.; and Sab-
harwal, A. 2006. Revisiting the Sequence Constraint. In
Benhamou, F., ed., Proc.of the 12th Int. Conf. on Principles
and Practice of Constraint Programming, 620–634.

Pesant, G. 2004. A regular language membership con-
straint for finite sequences of variables. In Wallace, M.,
ed., Proc. of 10th Int. Conf. on Principles and Practice of
Constraint Programming, 482–495.

Quimper, C.-G., and Walsh, T. 2006. Global grammar
constraints. TR COMIC-2006-005.

