
Wizard: Suggesting Macro-Actions Comprehensively

M.A. Hakim Newton, John Levine
Computer and Information Sciences

University of Strathclyde
Glasgow, United Kingdom

e-mail: {newton, johnl}@cis.strath.ac.uk

Abstract
This paper presents Wizard, a generalised framework for
learning macro-actions in planning. Wizard suggests macro-
actions that can be provided as additional actions for future
planning. It enhances a domain for a planner through com-
prehensive macro suggestions. Wizard learns macro-actions
for arbitrary planners or domains without exploiting their
structural properties. It not only captures macro-actions that
are observable from examples, but also evolves other macro-
actions that are not observable. It learns macro-actions that
capture various system aspects. It explores both individual
macro-actions and their combinations.

Introduction
Planning has achieved significant progress in recent years
from planning competitions. The focus of planning research,
however, lies mostly on developing planning technologies
while the impact of problem formulation on its solution pro-
cess remains overlooked. Re-engineering a domain by util-
ising knowledge acquired for a planner paves the way for
further research in this direction. Macro-actions, when rep-
resented as additional actions, are one relatively convenient
way by which to convey such knowledge and achieve do-
main enhancements. Within current limits of the Planning
Domain Definition Language (PDDL), any knowledge can
be conveyed only by additional actions and practically only
in STRIPS and FLUENTS subsets of the PDDL.

A macro-action, or macro, is a group of actions selected
for application at one time like a single action. One ap-
plication of a macro leads to planning of several steps at a
time. Macros could represent plan fragments that are found
with enormous search effort or are frequently used. Macros
could capture local search to find better successor nodes es-
pecially when the immediate search neighbourhood is not
good. Consequently, a goal could be reached quickly and
problems that are unsolvable could become solvable1. When
macros are added into a domain as additional actions, no
planner modification is needed; also, the reachability of a
problem is not affected. But they cause more preprocess-
ing time and incur an extra overhead for the planners adding

Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1By solvability we mean, using the original domain, whether
the planner can solve the problem within given resource (e.g. time,
memory, etc.) limits. Whether the goal of a problem can be attained
in a given context is discussed under the term reachability.

more branches in the search tree. Furthermore, macros, of-
ten lead to increased plan length.

This paper presents Wizard, a comprehensive framework2

(see Figure 1) for learning macros in planning. Given a plan-
ner, a domain, and a number of example problems, Wizard
suggests macros that can be provided as additional actions
for future planning. The framework uses evolutionary and
example-based learning approaches for macro generation;
for their evaluation, it uses experiential and rewarding meth-
ods. Wizard learns macros for arbitrary planners or domains.
Planners could have deterministic or stochastic output but
their internal architectures could be arbitrary. Although syn-
tactically restricted to STRIPS and FLUENTS, Wizard is
not limited by any assumption of particular structures be-
ing present in the domain. Wizard explores both individual
macros, called chunks and their combinations (i.e. collec-
tions of macros), called bunches (henceforth both referred
to as macros). Note, a bunch’s performance may not be a
simple accumulation of the member chunks’ performances.
Wizard not only captures macros that are observable from
examples, but also evolves macros that are not observable.
The macro evaluation is based on an weighted average of
time gains achieved while solving problems with the origi-
nal domain and the macro augmented domains. The prob-
lems used in evaluation are more difficult3 than those used
in capturing macros; however, all of them are solvable with
the original domain.

Probs Planner Domain Probs

Enhanced Domain

Collector

Example Plans

Evolver Generator Observer

Macro-Actions

Evaluator

Survival-of-the-Fittest

• Planners

– Deterministic and stochastic

– Arbitrary planning architecture

• Domains

– STRIPS and FLUENTS

– Semantically any structure

• Macros

– Chunks: observed, evolved

– Bunches as a combination

– Capturing various aspects

Figure 1: Wizard’s architecture and different dimensions

The rest of the paper, in separate sections, discusses re-
lated work, evolutionary algorithms, motivations, imple-
mentation, experiment, and conclusion in the order.

2Part of this framework appears in (Newton et al. 2007)
3By problem size or difficulty level we mean, the time required

by the given planner to solve the problem with the original domain.

Related Work
Macros are not very new in planning research. STRIPS
(Fikes, Hart, & Nilsson 1972) generates macros from unique
subsequences of wholly parameterised plans. REFLECT’s
(Dawson & Siklóssy 1977) macros are based on causal links
between actions in the domain. MORRIS (Minton 1985)
learns macros from plan fragments that are frequently used
or achieve interacting goals. Macro Problem Solver (MPS)
(Korf 1985) learns a complete set of macros that totally
eliminates the search but only for a particular goal in fixed
size problems on domains exhibiting operator decompos-
ability. MACLEARN (Iba 1989) learns macros from action
sequences that lead the search to reach a peak from another
peak in its heuristic profile. It then uses an automated static
filter based on domain knowledge and a manual dynamic
filter based on usages of macros in plans. It finally adds a
small number of macros to the domain like regular actions.
MARVIN (Coles & Smith 2004) learns macros from the
plan of a reduced version of the given problem after elim-
inating symmetries and also from the action sequences that
help the search escape plateaus in its heuristic profile. It fur-
ther adopts library management strategies to keep number
of macros manageable. Macro-FF (Botea et al. 2005) learns
macros by using component level abstraction based on static
facts of a domain and also by partial-order lifting from plans
based on an analysis of causal links. It then evaluates the
macros by solving other problems and counting the states
explored. It also keeps a small number of macros. Macro-
FF’s recent extension exploits its FF style search to dynam-
ically build iterative macros i.e. chains of the best macros.

Evolutionary Algorithms

An evolutionary algorithm keeps a population of good in-
dividuals and generates a new population from the current
one using a given set of genetic operators. It then replaces
inferior current individuals by superior new individuals (if
any) to get a better current population, which is again used
to repeat the process until the termination condition is met.
In a particular problem context, an individual is taken for
a solution (chunk or bunch in our case); which means evo-
lutionary algorithms are an optimisation based multi-point
search on the solution space. Moreover, newly generated in-
dividuals are other possible solutions in the neighbourhood
of the currently kept solutions and a richer collection of ge-
netic operators explores more possible solutions.

Evolutionary algorithms have produced promising results
in learning control knowledge for domains and some suc-
cess in generating plans. EvoCK (Aler, Borrajo, & Isasi
2001) evolved heuristics generated by HAMLET (Borrajo
& Veloso 1997) for PRODIGY4.0 (Veloso et al. 1995) and
outperformed both of them. L2Plan (Levine & Humphreys
2003) evolved control knowledge or policies that outper-
formed hand-coded policies. Spector, using evolutionary
algorithms, managed to achieve plans for small problems
having a range of initial and goal states (Spector 1994).
SINERGY (Muslea 1998) could only solve problems with
specific initial and goal states. GenPlan (Westerberg &
Levine 2000) showed that genetic algorithms can generate
plans; but it is somewhat inferior than the state-of-the-art
planners.

Motivations
Conceptual A system achieves better performance when it
is assisted with given knowledge. Such knowledge should
be acquired from simpler situations, manipulated for further
evolution, reinforced in complex but manageable situations,
and applied in yet more complex and even unmanageable
situations. The learning method should be generic over the
systems for which it learns, over the knowledge it acquires
for them, and over the way it conveys knowledge. For ar-
tificial systems, excessive knowledge becomes overhead; so
volume of delivered knowledge should be optimised. Our
interest lies with planning systems as we take planning as
self thinking before acting. For various reasons, described
in Introduction, we choose macros as knowledge convey-
ors. Modelling a domain and optimising it for a planner are
difficult. Our motivation is to enhance a domain through
comprehensive macro suggestions.

Technical Most existing methods (see Related Work) ex-
ploit specific planner or domain characteristics, or are lim-
ited to capturing macro-actions that are observable in ex-
amples only, or learn individual macros only. Any specific
properties are not likely to be common with many planners
or domains. The examples, especially that are used to ac-
quire previous experiences, might not cover many aspects
of the system as what problems make a good collection is
not easily addressed. Also, the examples might not always
reflect that better choices have been made during the search
as planners often make hasty moves to avoid overwhelm-
ing grounded actions. Furthermore, keeping arbitrary num-
ber of best macros in the collection can not be desirable
because individual best macros may not collaborate with
each other. Wizard’s example-based learning captures ob-
servable macros, the evolutionary approach explores other
non-observable macros, the experiential and rewarding ap-
proaches evaluate them. Wizard generates macros using ac-
tions from plans of smaller problems, evaluates them against
other larger but solvable problems, and demonstrates per-
formance of the suggested macros against yet larger prob-
lems that might include unsolvable instances. The use of
plans to represent examples is because plans reflect success-
ful choices made during search and provide a unified source
of knowledge, bearing the system’s structure inherently.

Implementation
Chunks are represented both as sequences of parameterised
(and so generalised) constituent actions and as resultant ac-
tions composed up by regression4 of the actions in the se-
quences; bunches are simple combinations (i.e. collections
or sets). The genetic operators on chunks operate on se-
quences and the operators on bunches are set operators. The
constituent actions of a chunk come from example plans al-
ways. However, the operators are designed from clear moti-
vations of exploring wider spaces of chunks and bunches;
chunk operators contain both types – generating observ-

4Action composition by regression is a binary, associative, and
non-commutative operation on actions where the latter action’s pre-
condition and effect are subject to the former action’s effect, and
both actions’ parameters are unified. Regression is practically fea-
sible in STRIPS and FLEUNTS only

able ones and non-observable ones. Note that, by defining
these, the specific knowledge, we give, is actually generic in
planning and by no way specific to a planner or a domain.
Macro evaluation is based on time gain because explored
state or macro usage do not necessarily translate into time
efficiency. For a good macro (chunk or bunch), in qualita-
tive terms, most problems should be solved taking less time
in most cases when added to the domain. A bad macro, in
contrast, causes an overhead that leads to longer solution
times or even failures in solving problems within given re-
source limits. A good macro, however, may not have high
usage because there could be a less frequent tricky macro
that saves enormous search time. Furthermore, good macros
need not be intuitively natural. Plans containing macros are
validated as needed. Various pruning techniques, but not ex-
cessive, are used to save effort wastage. Bunches are learnt
from the chunks learnt already or even incrementally. Al-
ternatively, a combined procedure explores both chunks and
bunches simultaneously focusing more on chunks initially
and then shifting focus gradually on bunches.

Experiments
Figure 2 shows performances of some macros for Planner
LPG on Domain Blocks. The learning time shown gives
an idea and can be improved by tuning different parameters
which are currently chosen intuitively. We have other results
for a number of planners on several domains; further exper-
iments are underway. The planners are the current state-
of-the-art ones from different base architectures (e.g. FF,
LPG, VHPOP, SATPLAN, SGPLAN, etc.). The domains
are bench mark ones (propositional and numerical) used in
planning research (e.g. blocks, gripper, satellite, ferry, re-
duced settlers, reduced rovers, etc.) and also some newly
created domains. The analysis of the results is based on
how significantly the learnt macros improve planners’ per-
formances on domains and how effectively differently char-
acterised macros are learnt. The characterisations are on
whether macros are chunks or bunches, observable or non-
observable, reagent (i.e. applicable) or catalytic (i.e. not-
applicable but help speedup search), domain specific (i.e.
planner independent) or planner specific, plateau escaping,
obtaining interacting subgoals, improving plan length (e.g.
see examples in Figure 2), etcetera.

Conclusion
This paper presents Wizard, a comprehensive framework for
learning macro-actions in planning. The framework uses
evolutionary and example-based learning approaches to gen-
erate macro-actions; for their evaluation, it uses experien-
tial and rewarding methods. Wizard suggests macro-actions
that can be added to the domain permanently as additional
actions. Wizard optimises a domain for a planner by sug-
gesting macro-actions. The achievements of Wizard over
existing work are manifold. It readily works with arbitrary
planners or domains without exploiting any explicitly spe-
cific knowledge about them. It learns both individual macro-
actions and their combinations. It explores macro-actions
that are observable from examples and also that are not. It
can learn various types of macro-actions that cover differ-
ent system aspects. Future work includes experimenting on
more domains, speeding up learning by tuning different pa-

 0.01

 0.1

 1

 10

 100

 1000

 0 10 20 30 40

ti
m

e
 (

s
e

c
)

problems

original-domain
bunch-domain
evolved-chunk-domain
observed-chunk-domain

⋆ S% problems are solved only with the augmented domain and s% only with the original domain.

⋆ T% problems take less time with the augmented domain and t% with the original domain.

⋆ L% problems have less plan length with the augmented domain and l% with the original domain.

⋆ (P%, p%) is (mean, dispersion) of plan time (T) performance (TOrig − TAug)/TOrig
⋆ (Q%, q%) is (mean, dispersion) of plan length (L) quality (LOrig − LAug)/LOrig

macros +S -s +T -t P ± p +L -l Q ± q

Bunch of 2 chunks +10 -0 +100 -0 64 ± 1 +100 -0 53 ± 1

Chunk-Evolved +10 -0 +98 -0 60 ± 1 +96 -0 30 ± 1

Chunk-Observed +10 -0 +90 -0 47 ± 2 +88 -0 21 ± 1

Total Learning Time: 62 mins

Figure 2: Macro-Actions: Planner - LPG, Domain - Blocks

rameters, and learning macro-actions from simple domains
to apply on complex domains.

Acknowledgement
This research is supported by the Commonwealth Scholar-
ship Commission in the United Kingdom.

References
Aler, R.; Borrajo, D.; and Isasi, P. 2001. Learning to solve problems efficiently by

means of genetic programming. Evolutionary Computation 9(4):387–420.

Borrajo, D., and Veloso, M. 1997. Lazy incremental learning of control knowledge

for efficiently obtaining quality plans. AI Review 11(1–5):371–405.

Botea, A.; Enzenberger, M.; Müller, M.; and Schaeffer, J. 2005. Macro-FF: Improv-

ing AI planning with automatically learned macro-operators. JAIR 24:581–621.

Coles, A., and Smith, A. 2004. MARVIN: Macro-actions from reduced versions of

the instance. In IPC4 Booklet. ICAPS.

Dawson, C., and Siklóssy, L. 1977. The role of preprocessing in problem solving

systems. In Proceedings of the IJCAI, 465–471.

Fikes, R. E.; Hart, P. E.; and Nilsson, N. J. 1972. Learning and executing generalized

robot plans. Artificial Intelligence 3(4):251–288.

Iba, G. A. 1989. A heuristic approach to the discovery of macro-operators. Machine

Learning 3:285–317.

Korf, R. E. 1985. Macro-operators: A weak method for learning. Artificial Intelli-

gence 26:35–77.

Levine, J., and Humphreys, D. 2003. Learning action strategies for planning do-

mains using genetic programming. In Applications of Evolutionary Computing,

EvoWorkshops2003, volume 2611, 684–695.

Minton, S. 1985. Selectively generalising plans for problem-solving. In Proceedings

of the International Joint Conference on Artificial Intelligence.

Muslea, I. 1998. A general purpose AI planning system based on the genetic pro-

gramming paradigm. In Proceedings of the World Automation Congress.

Newton, M. A. H.; Levine, J.; Fox, M.; and Long, D. 2007. Learning macro-actions

for arbitrary planner and domains. In Proceedings of the ICAPS.

Spector, L. 1994. Genetic programming and AI planning system. In Proceedings of

the Twelfth National Conference on Artificial Intelligence, AAAI-94, 1329–1334.

Veloso, M.; Carbonell, J.; Perez, A.; Borrajo, D.; Fink, E.; and Blythe, J. 1995. Inte-

grating planning and learning: The PRODIGY architecture. Journal of Experimental

and Theoretical Artificial Intelligence 7:81–120.

Westerberg, C. H., and Levine, J. 2000. GenPlan: Combining genetic programming

and planning. In 19th Workshop of the UK PLANSIG.

