
Harnessing Algorithm Bias in Classical Planning

Mark Roberts
mroberts@cs.colostate.edu

http://www.cs.colostate.edu/˜mroberts

Computer Science Department, Colorado State University
Fort Collins, CO, 80521

A planning system’s performance is biased due to many
factors related to its design. For example, the representa-
tion, decision points, search control, memory usage, heuris-
tic guidance, and stopping criteria all can have implications
for performance. Problem instance characteristics also im-
pact system performance. The interaction of the design
choices with the problem instance makes it difficult to se-
lect the most efficient system from the array of choices. It
seems natural to apply learning to aid in allocating computa-
tional resources among a portfolio of planners that may have
complementing (or competing) search technologies. Such
selection is called the portfolio strategy.

My thesis is that we can study a portfolio of planning sys-
tems for clues about why one algorithm is favored over an-
other. A secondary thesis is that we can uncover algorithmic
and problem structure dependencies by examining algorithm
performance on specific instances. This research focuses on
a series of questions, roughly addressed in the order:

1. Can we model planner performance on benchmark prob-
lems with simple features?

2. Is a portfolio based on analysis of and learning from pre-
vious performance competitive with existing planners?

3. Which portfolio strategies constitute effective selection,
ranking, and allocation?

4. What can we learn from the data and/or models that will
aid us in developing and testing specific hypotheses lead-
ing to stronger explanations of search performance in
planning?

5. Can we construct a meta-planner based on our findings?
6. How can the knowledge we have gained supplement the

current benchmark problems?
7. Do our findings hold under relaxed classic assumptions?

What follows are highlighted findings for items (1) and (2)
as well as the current state of items (3) and (4); my disserta-
tion will provide detailed analyses for all of these items.

This paper presents a several extensions to the results
presented in the 2006 Doctoral Consortium. We added 9
more planners (but two were not reliable) as well as 767
more challenging problems from the IPC5 Propositional and
IPC4 hard-typed domains. We also added 30 more advanced
learning models to our original two1. Finally, we modified
the portfolio to use a variety of ranking and allocation strate-

1Another graduate student, Landon Flom, did this work

gies (including random baselines) and the ability to run al-
gorithms either serially (in order by ranking) or in a round-
robin fashion until success or time runs out. In terms of
examining the data, we have included recent work that takes
steps toward analyzing question 4 above.

Collecting Performance Data

We have gone through several major revisions of data col-
lection. Our current configuration consists of:

4726 STRIPS PDDL Problems from 385 domains that
are taken from Hoffmann’s dataset (2004), the UCPOP Strict
benchmark, IPC sets (IPC1, IPC2, IPC3 Easy Typed, IPC4,
IPC5) plus 37 other publicly available problems from two
domains (Sodor and Stek).

27 Planners from our complete list of 86 planner in-
stances that are designed to sample the variety of historical
approaches. Each planner is allowed 30 minutes and 768
MB memory. We used 30 identically configured machines.

38 Features automatically extracted from problem and
domain definitions; we included features from (Howe et
al. 1999) plus many others. We divide the features into
three categories of increasing knowledge and computational
cost: domain specific, instance specific, action interaction.
In early work, we examined 20 features from Hoffmann’s
(2004) state space taxonomy2. But these features are very
costly and are excluded from modeling. We label the do-
main and instance-specific features as ‘fast’ and the action
interaction and topological features as ‘expensive.’

Performance Models

For each planner, we constructed two models: suc-
cess and runtime. Success models output a binary de-
cision and may also estimate the probability of find-
ing a solution given a problem instance and a plan-
ner (P (solution found|problem, planner)). Runtime models
predict computation time needed for a given planner to com-
plete a given problem instance.

We build all models with the WEKA data mining package
(Witten & Frank 2005); to start, we used two models that
worked well that we could explain: OneR and J48. OneR
selects the single feature that yields the highest prediction
value on the training set, while J48 is a decision tree method

2We thank Jörg Hoffmann for supplying the code.



based on Quinlan’s C4.5. The models are distinguished
based on the training data used to build them: preIPC4 data
(all but IPC4 and IPC5), preIPC5 (all but IPC5), and chal-
lenge3 (problems for which one to three planners succeeded
and the median completion time was over one second). Un-
less mentioned otherwise, results are reported for ten-fold
cross-validation. For these two models we found that:

• When predicting success, J48 achieved 96.7% average ac-
curacy (sd of 3.2) for preIPC4 and 96.8% average accu-
racy (sd of 2.12) for preIPC5.

• When predicting time, the average accuracy using J48 on
log binned data was 95.0% (sd of 2.49). Over all planners,
84.2% of the runs finish in less than one second and 5%
finished in greater than 1000 seconds.

• Expensive features do improve accuracy, but not enough
to justify their computational cost.

• In the success OneR models, the average number

of negations in effects was the best predictor
for nine of the planners; the predicate arity was
best for another four. The first feature may indicate where
the often used h+ heuristic may have trouble; the second
roughly influences branching in the search space.

Our most recent work extends the model set to 30 more
techniques. Some preliminary findings with respect to these
models are:
• The expanded model set improves accuracy over the ini-

tial models; especially for runtime. The most common
model was KStar – a variant of K-Nearest Neighbors.

• Models trained on preIPC4 and tested on IPC4 did not
generalize well, but models trained on preIPC5 and tested
on IPC5 generalized well.

The Portfolio Architecture

The portfolio should contain the most accurate models (that
are not overfit). We split challenge3 into an 80% training
and 20% testing sets, where the testing set included half the
problems from IPC4 and IPC5 (to further focus the learning
on the most challenging problems). We evaluated all models
on the testing data and selected the most accurate success
and runtime models.

The other three decision making components (selection,
ranking, and allocation) can be configured into many differ-
ent combinations. The components and their options are:

Selection restricts the set of possible planners to only
those needed to cover the problem set. We use a single strat-
egy that computes a “cover” from the 28 planners using a
greedy set covering approximation algorithm (Cormen et al.
2003) on the 80% challenge3 data. We excluded from the
final set any planner that only solved one unique problem
in the training set (4 planners total). The reduced “cover”
consists of 10 planners.

Ranking orders the execution of the planners. The rank-
ing strategies we have examined include:
random ranks the planners in an arbitrary order,
cover uses the set covering order,
pSuccess prunes those planners predicted to fail and orders

the rest by decreasing predicted probability of success,
predTime orders by increasing predicted time, and

SimonKadane orders in decreasing pSuccess

predTime
, which mini-

mizes expected cost of success in serial search (1975) .

Allocation determines the runtime for each planner within
one of two execution paradigms:
Serial execution runs each planner to its allocated time and

quits at the first success or after all planners have spent
their time. For serial execution we applied two allocation
strategies:

avgPlanner uses the average time to succeed for the
planner, and

predTime computes the predicted time for the problem
from the model.

Round-robin execution cycles through the queue of plan-
ners until a single planner indicates success, all planners
stop with failure, or the portfolio exceeds the experimen-
tal time limit (30 minutes). On each iteration, the planner
begins where previously left off; it does not restart from
scratch. We support one allocation strategy:

confInt uses the runtime distribution of suc-
cessful training runs to estimate the quantiles
q = {25, 50, 75, 80, 85, 90, 95, 97, 99}. For ex-
ample, if the actual successful runtimes of a
planner are {0.1, 0.2, 0.3, 0.4, 0.5, 10, 100, 1000},
then confInt will return an allocation strategy of
{0.28, 0.45, 32.5, 64.0, 95.5, 370.0, 685.0, 1000.0}.

We also implemented a random allocation scheme for both
execution models as a baseline.

How does the portfolio compare to existing
planners?

We have compared this simple portfolio to the most success-
ful and average planners and found that:
• a simple allocation strategy (paired with pSuccess) that

uses the run-time distributions can produce performance
better than the average planner performance,

• the best ranking strategies employ the extended models,
• we need even more accurate time models; under any rank-

ing strategy random allocation performed as well as any
other allocation strategy,

• performance trends suggest that round-robin allocation is
more successful than serial allocation,

• the best portfolio lags 60 seconds on average behind an
‘oracle’ selection strategy that uses perfect knowledge,

• the best portfolio is 10 seconds faster on average than the
best planner (SGPlan-2006), and

• out of 244 testing problems from challenge3, the best
portfolio solves 51 more problems than the best planner.

Learning from the Data: Hoffmann’s Taxonomy

We applied Hoffmann’s topology taxonomy to see if it helps
explain the performance of two groups of planners: Heuris-
tic Search (HS) planners and Non-heuristic search (NHS)
planners. Using statistical analyses on the challenge3 data
we have found that:
• The performance of HS and NHS planners is distinct from

one another regardless of the taxonomy,
• The performance of NHS planners appears to be insensi-

tive to the taxonomy,



• The performance of HS planners is sensitive to the taxon-
omy,

• More work needs to be done to account for problem diffi-
culty in the existing taxonomy.

The results, though limited, suggest that it is useful to mine
the data to uncover specific performance dependencies and
that this analysis can extend existing knowledge.

Summary of status

With respect to the questions posed in the introduction, we
have made the following contributions:

1. Modeling Performance We can model planner per-
formance on benchmark problems with simple features ex-
tracted from problems and planners. Feature cost and feature
selection remain important to further enhancing the portfolio
models. Given the relatively poor performance of the time
models, we may need to look into meta-learning techniques
in machine learning for better models.

2. Basic Portfolio Our proof-of-concept portfolio is com-
petitive with existing planners as of IPC4 but including prob-
lems up to the most recent IPC5.

3. Portfolio Strategies We have begun exploring the
space of portfolio strategies and found that round-robin
strategies that use Simon/Kadane ranking appear to be the
most successful. However, more work needs to be done on
modeling runtime so that the portfolio can better allocate
time. There are also many more strategies from the litera-
ture that we could employ in our study.

4. Linking Performance We have shown that both the
models and the raw performance data are rich with infor-
mation that can lead to explanations of search performance
in classical planning. The models provide some evidence
linking particular features to performance prediction. But
there remains much work to link the search bias of various
planners with their performance on specific problems. We
expect to identify new features that help explain indirect ac-
tion interactions as we perform richer domain analysis. A
reasonable place to start may be including some features
from HAP (Vrakas et al. 2005), TIM (Fox & Long 1998),
and Londex (Chen, Zhao, & Zhang 2007). A more sophisti-
cated approach would be to use the analysis structures from
(Helmert 2006) in generating features and identifying prob-
lem specific bias3.

5. The meta-planner As it is, the portfolio is unfit for
inclusion as a competition planner. But we expect to make
key insights into which components of planners are criti-
cal for successful performance and implement a planner that
combines these components. We also hope to extend our
analysis to modeling dynamic features wherein we may in-
clude sampled state-space features that may change planner
behavior on-line.

6. Extending the Benchmark Problems Generating spe-
cific problems with IPC problem generators will be useful
for testing specific hypotheses about the dependencies we
notice. We have converted (but not yet thoroughly stud-
ied) two new problem sets4, which we hope will extend the

3A thanks to David Smith for this suggestion.
4Christina Williams added these problems.

benchmarks to other realistic domains. A key issue is to ex-
pand the problem set in ways that are both challenging and
realistic (Watson et al. 1999).

7. Relaxing Assumptions Finally, this work is based in
the classical planning paradigm and numerous extensions to
PDDL relax classical assumptions. We hope to fully develop
a principled methodology for portfolio construction and then
extend it to these relaxed assumptions.

Acknowledgments The author would like to thank his ad-
visor Adele Howe, the students in the AI group at CSU, the
ICAPS community, as well as all the authors of the planning
systems.

Portions of this work appear in other venues, and the
reader is referred to these or the authors website for more
detail: (Roberts & Howe 2006), (Roberts, Howe, & Flom
2007), (Roberts & Howe 2007).

References
Chen, Y.; Zhao, X.; and Zhang, W. 2007. Long distance mu-
tual exclusion for propositional planning. In International Joint
Conference on Artificial Intelligence (IJCAI-07).

Cormen, T.; Leiserson, C.; Rivest, R.; and Stein, C. 2003. In-
troduction to Algorithms. MIT press, Cambridge, MA, second
edition.

Fox, M., and Long, D. 1998. The automatic inference of state
invariants in TIM. JAIR Volume 9:367–421.

Helmert, M. 2006. New complexity results for classical planning
benchmarks. In ICAPS 2006, 52–61.

Hoffmann, J. 2004. Utilizing Problem Structure in Planning: A
local Search Approach. Berlin, New York: Springer-Verlag.

Howe, A.; Dahlman, E.; Hansen, C.; vonMayrhauser, A.; and
Scheetz, M. 1999. Exploiting competitive planner performance.
In Proc. of ECP-99.

Roberts, M., and Howe, A. 2006. Directing a portfolio with
learning. In Ruml, W., and Hutter, F., eds., AAAI Workshop on
Learning for Search.

Roberts, M., and Howe, A. 2007. Local search topology: Impli-
cations for planner performance. In ICAPS 2007, Workshop on
Heuristics for Domain-independent Planning, to appear.

Roberts, M.; Howe, A.; and Flom, L. 2007. Learned models of
performance for many planners. In ICAPS 2007, Workshop AI
Planning and Learning, to appear.

Simon, H., and Kadane, J. 1975. Optimal problem-solving
search: All-or-none solutions. Artificial Intelligence 6:235–247.

Vrakas, D.; Tsoumakas, G.; Bassiliades, N.; and Vlahavas, I.
2005. Intelligent Techniques for Planning. Idea Group. chap-
ter Machine Learning for Adaptive Planning, 90–120.

Watson, J.; Barbulescu, L.; Howe, A.; and Whitley, L. 1999.
Algorithm performance and problem structure for flow-shop
scheduling. In Proc. of AAAI-99.

Witten, I. H., and Frank, E. 2005. Data Mining: Practical
machine learning tools and techniques. San Francisco: Morgan
Kaufmann, 2nd edition.


