
SELFPLA��ER: An Intelligent Web-based Calendar Application

Ioannis Refanidis and Anastasios Alexiadis

University of Macedonia, Dept. of Applied Informatics, Thessaloniki, Greece

54006, Thessaloniki, Greece

E-mails: yrefanid@uom.gr, talex@java.uom.gr

Abstract

This paper presents SELFPLANNER, a web-based intelligent
calendar application that plans a user's tasks. The user enters
her tasks along with task details, i.e. duration, release time
and deadline, location, unary and binary constraints and
preferences, and the application schedules the tasks and
presents the resulting plan using Google's Calendar
application. Whenever new tasks arrive, the user may ask
for incremental replanning, whereas attention is paid to keep
the original plan as unchanged as possible. SELFPLANNER
supports both non-preemptive and preemptive tasks, with
additional types of constraints over the preemptive ones. It
also assigns location references to the tasks, whereas travel
times are taken into account while scheduling. The user may
impose ordering constraints among the tasks. Unary
preferences assign utilities to the tasks' domains, whereas
binary preferences concern minimizing or maximizing the
distance between pairs of tasks. SELFPLANNER solves the
planning problem using an adaptation of the Squeaky Wheel
Optimization framework.

Introduction

Modern electronic organizers, such as MS-Outlook 2007,
Google Calendar and Yahoo Calendar, do not provide for
automatic scheduling of users’ tasks. Users have to
manually place their tasks into the calendar, as well as to
arrange meetings with others. These applications provide
various functionalities to assist the user to put her tasks
into the calendar, detect conflicts, merge calendars, assign
tasks to other users, arrange meetings, share and publish
her calendar. The need for intelligent assistance to
schedule a user's tasks has already been identified
(Refanidis, McCluskey and Dimopoulos, 2004). It is a
general impression that most of the effort in developing
new editions of office applications is towards personal time
management simplification. However, current status still
remains behind automatic scheduling abilities (not to speak
about planning) being incorporated into these programs.
 This paper concerns an intelligent web-based calendar
application, called SELFPLANNER, that automates task
scheduling in the presence of time constraints and
preferences. The user enters her tasks, together with a set
of accompanying attributes for each task. In particular,
each task is characterized by the following attributes:
• Duration: A reasonable upper bound for the overall

duration of the task.

• Domain: The allowed time windows when the task can
be scheduled.

• Location: The location where the user must be in order
to perform the task.

• Preemptive: Whether the task is preemptive or not.
Preemptive tasks can be executed in parts.

• Part min duration: For preemptive tasks, the minimum
allowed duration for each part of it.

• Part max duration: For preemptive tasks, the maximum
allowed duration for each part of it.

• Part min distance: For preemptive tasks, the minimum
allowed temporal distance between each pair of parts of
the task.

• Unit preference: A function over the task's domain that
assigns utility values to each possible time unit where
the task can be scheduled.

 In addition, the following information constitutes part of
the scheduling problem:
• Travel times: The time needed for the user to travel

between every pair of locations.
• Binary temporal constraints: Some tasks must be

executed before other tasks.
• Binary preferences: There may exist preferences over

the distance between pairs of tasks, e.g. we might
prefer two tasks to be scheduled as close (or as far) to
each other as possible.

 SELFPLANNER facilitates the entry of the task details.
Perhaps the most tedious part of the data entry is the
definition of the domain of each task. A domain may
consist of several time intervals, distributed among many
days/weeks. In order to facilitate domain definition,
SELFPLANNER supports an implicit definition through the
use of unary constraint templates. A constraint template is
a set of allowed time windows with a predetermined
makespan (e.g. a day or a week), without an absolute time
reference. For example, a constraint template with a week's
duration may define the office working hours. Another
constraint template with a day's duration may define the
sleeping time. Each constraint template may be used in two
ways: Either positively, i.e. in order to include time slots
into a task's domain, or negatively, in order to exclude time
slots from a task's domain. SELFPLANNER provides several
constraint templates, however the user may define her own
ones. So, in order to define a task's domain, the user must
provide a release date, a deadline, and combine several

constraint templates, either positively, other negatively, in
order to include/exclude time windows.

 SELFPLANNER is a web based application running on a
dedicated web/planning server (Figure 1). All user's data
are stored in the web/planning server, so the user can
access SELFPLANNER from any networked computer. The
user enters/edits task data using user-friendly forms. The
web/planning server solves the scheduling problem and
inserts suitable entries in the user's Google Calendar
account, using Google's API. Finally, the user watches her
calendar directly into Google Calendar. Currently
SELFPLANNER does not support editing the calendar
directly on Google's pages; however we plan to give this
option in the future.

Figure 1: SELFPLANNER overall architecture

 In order to solve the planning problem, SELFPLANNER
uses a heuristic search algorithm based on an adaptation of
the Squeaky Wheel Optimization framework (Joslin and
Clements, 1999; Refanidis, 2007). The algorithm is
incomplete, so it does not guarantee to solve the problem,
even if a solution exists. However, extensive experimental
results have shown that the algorithm is quite effective and
efficient wrt complete search algorithms. The algorithm
implemented in SELFPLANNER is suitable for incremental
scheduling, i.e. tasks are scheduled as they arrive.
Attention is paid to not incur significant changes to the
existing schedule each time a new task arrives, however in
case of tight schedules changes may be unavoidable.
 SELFPLANNER has been developed in Java. In particular,
the interface consists of a Java applet with a main window
and several dialog boxes, whereas the core of the
application runs on the web/planning server and is
responsible for communicating with the user, the data base
(mySQL) and Google calendar. The planning engine, i.e.
the subroutine that solves the planning problem, has been
developed in C++.

Use Case Scenario

After the necessary login phase, the main application
window appears (Figure 2). This window displays the
current list of task and supports five functions:
• Inserting a new task by clicking the New Task button.
• Editing an existing task by double clicking the task

name in the list of tasks.

• Editing the table of locations and their mutual distances
by clicking the button Locs.

• Editing the binary constraints and preferences by
clicking the button Prefs.

• Editing several parameters of the SWO algorithm by
clicking the button Params.

 By clicking the New Task button/double clicking a
task in the task list, the window New/Edit Task
appears (Figure 3). In the New Task tab the user can
enter the main task details, i.e. the task's name, duration,
location and whether the task is preemptive (i.e.
interruptible) or not. In case of interruptible tasks, the user
has to enter the minimum and maximum duration for each
part of the task, as well as the minimum temporal distance
for each pair of parts of the task.

 In tab Domain the user has to define the domain of the
task, i.e. when the task can be scheduled (Figure 4). Apart
from determining the release time and the deadline for the
task, the user may define the domain using a combination
of general templates, such as weekly working hours, daily
sleeping hours etc. Currently, SELFPLANNER provides a set

User

data

Web/planning

server

User's

browser

Google

calendar

Figure 2: SELFPLANNER main window.

Figure 3: The New Task window.

of predetermined templates; however we plan to give the
user the possibility to create new templates. Of course the
user has the possibility to define the domain by
determining directly on a calendar the allowed time slots.
Determining the domain of a task is the most critical part
of SELFPLANNER interface, so we are working hard to
make it as functional and user-friendly as possible.

In tab Preferences the user can assign utilities in the
various time slots of a task's domain (Figure 5). Currently,
five different utility functions are supported: constant
function, linear ascending/descending and step
ascending/descending functions. Depending of the type of
the utility function, the user has to enter the minimum and
maximum utility of the domain, and the position of the
step.

 Figure 2 displays four tasks in the user's task list. By
clicking the Prefs button the user can define binary
constraint and preference relations between the tasks
(Figure 6). Concerning constraints, currently only ordering
constraints are supported. For example, in Figure 6 we
show that tasks "Preparing ICAPS Presentation" and
"Writing paper" have to be executed before task "Week
shopping". Concerning binary preferences, only proximity

preferences are supported. In particular, for any pair of
tasks the user can state that the two tasks must be
scheduled either as close or as far to each other as possible.
For example, "Writing paper" should be executed as far as
possible to the task "Class CS101", since it is expected that
immediate before or after teaching a class is not the best
period to think and write papers.

Each time the user enters a new task, SELFPLANNER
solves the planning problem and presents the results
directly on the user's account in Google calendar (Figure
7).

Conclusion and Future Work

SELFPLANNER is an ongoing work. The version described
in this paper is an initial prototype with many limitations.
Future extensions of SELFPLANNER include:
• Alternative locations for each task. Currently, a specific

location is assigned to each task, whereas there is a
special anywhere possibility (e.g. I can prepare a
presentation anywhere, provided that I have my laptop
at hand). However, for some tasks, more than one
location could be used. For example, for the week
shopping somebody could use several alternative malls
or supermarkets and the final choice may depend on the
proximate tasks. So, we foresee to enhance
SELFPLANNER with classes of locations (actually, an
ontology of locations) and give the user the possibility
to select either a specific location or a class of locations
for each task.

• Meeting arrangement. Currently SELFPLANNER does
not support automatic meeting arrangement. We
foresee to enhance SELFPLANNER with an automatic
meeting arrangement function, where one user invites
other users to a meeting, with the meeting time and
location being not fully determined, and this initiates a
fully- or semi-automatic negotiation phase between the
users that results in specifying the meeting details.

Figure 4: Determining a task's domain.

Figure 5: Defining unary preferences.

Figure 6: Defining binary constraints and preferences.

• �ew types of constraints and preferences: Apart from
the unary constraints and preferences, currently only
binary ordering constraints and binary proximity
preferences are supported. New types of constraints and
preferences could be added to SELFPLANNER, such as
non-monotonic unary preferences, proximity
constraints, ordering preferences and higher order
constraints and preferences as well. Of course, for any
new type of constraints and preferences, the underlying
scheduling problem needs to be solved; however, the
proposed SWO scheduling framework is very flexible
and easily extensible and we believe that many of these
new functionalities will be incorporated smoothly.

• Resource management: Apart for managing a user's
time, SELFPLANNER could be used for managing
resources. Such resources may include halls (e.g. a
meeting room), equipment (e.g. a video projector) etc.
A task may require specific resources, so the
availability of these resources will affect the task's
domain. Due to the incremental nature of this problem,
resources could be reserved on a first-come-first-served
basis.

• Maintenance of the user's status: Currently,
SELFPLANNER knows only the user's location as well as
her upcoming tasks. In a more elaborated version of
SELFPLANNER, the system should possess more
information about the user, such as whether she carries
her laptop, she drives her car or travels with the bus etc.

• Action schemas: Maintaining a user's status gives the
possibility to transform the scheduling problem into a
planning one. Tasks are enhanced with preconditions
and effects, thus inserting a task A with preconditions
prec(A) into the task list may result in the automated
insertion of other tasks into the task list, in order to
support the open preconditions of prec(A). Of course,
suitable planning algorithms should be used to solve
the planning problem in this case.

References

Joslin, D.E. and Clements, D.P. "Squeaky Wheel"
Optimization. Journal of Artificial Intelligence Research,
vol. 10 (1999), 375-397.

Refanidis, I., McCluskey, and T.L., Dimopoulos, Y.:
Planning Services for Individuals: A New Challenge for
the Planning Community. Workshop on Connecting
Planning Theory with Practice, Whistler, British Columbia,
Canada, 2004.

Refanidis, I.: Managing Personal Tasks with Time
Constraints and Preferences. In Procs. of 17th International
Conference on Automated Planning and Scheduling
Systems (ICAPS-2007). Providence, Rhode Island, 2007.

Figure 7: User's plan is displayed at Google calendar.

