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Information

. - - . M. FALDA AND M.
Information: Any organized collection of symbols or signs GIACOMIN

produced:

@ either by observing natural or artificial phenomena B
@ or by the cognitive activity of agents e
INFOR \:\ (0)

M

useful for: Wi

IMPERFECT DATA

@ understanding our world

@ support decision-making ossiu N

@ communicate with other agents

Knowledge Representation and Reasoning: Theories and
methods whose aim is to exploit all types of available
information useful for problem solving and communication
using intelligent machines
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Temporal Reasoning

M. FALDA AND M.

Time is an important aspect to be accounted for:

@ real world is dynamic

@ perceptions and human actions are characterized by TEMPORAI

. INFORMATION
time —
INFORMATIO:
M

Applications s
IMPERFECT DATA

o Medical diagnoses: which disease presents this sequence
of symptoms?

@ Planning: which temporal relation exists between the
actions A and B?

@ Temporal Databases: which is the chronological order
of a set of vases?
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Diagram of a Temporal Reasoner

= —_— = — = — — —
| assertions and queries
| Solver [
| ! solutions
|
solutions data and queries

Y

World
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Queries

A Temporal Reasoner should be able to answer to queries
about temporal information, for example:

@ s the information coherent? Which is a consistent
scenario?

@ Can the event X; happen between t; and t, instants
after X;7

Must the event X; happen t instants before X;?

In which instants t can the event X; be verified?

© 0O

happen?

ICAPS’07; Providence (RI), September 22, 2007
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Representing time

If we want to take into account the time we have to consider
several aspects

@ ontology: how we can model time?

@ representation: which hypotheses hold?

@ reasoning methods: which entities allow obtaining the
data in which we are interested?

@ algorithms: efficiency - expressiveness
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Temporal Logics

M. FALDA AND M.
GIACOMIN

Three main approaches have been proposed to deal with
time:

@ Logics with temporal parameters

@ modal temporal Logics [Prior57]

o Pd: & was true
o Fo: © will be true

@ Reified Logics

o Interval algebra (IA) [Allen83]
o Event Calculus [Kowalski86]

HoldsAt(hand _tool(box), t1)
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Temporal Reasoning using CSPs

M. FALDA AND M.
GIACOMIN

A CSP is defined as a tuple < X, D, R > where:
Q@ X is a set of variables {x1,...,x,}

© D is a finite set {d,...,d,} of values such that x; € D;

@ R is a set of relations {Ry, ..., R} which specify the
values d allowed by the constraints themselves
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Solutions of a CSP

M. FALDA AND M.

A solution of a CSP is an assignment of the variables which
simultaneously satisfies all the constraints

'EMPORAL
- - INFORMATION
It is possible to: ——
INFORMATIO:
M

@ check the existence of a solution T

IMPERFECT DATA

@ search all the solutions ‘

@ search the optimal solution. ossuTy

If at least a solution exists then the CSP is said satisfiable or
consistent

The intersection of all the solutions gives the minimal
network

ICAPS’07; Providence (RI), September 22, 2007
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Answering the queries

By representing the temporal problem using CSPs the
previous queries can be answered

@ the information is coherent: check the consistency of
the network

@ event X; can happen between t; and t, instants after
Xj: add the constraint X; — X; € [t1, to] the network
and check consistency

© event X; must happen t instants before X;: assert the
negation of that constraint and check the consistency

@ In which instants t can the event X; be verified? the
allowed instants are the minimal domain of X; — Xy

@ If the event X; happens in t; in which instants t» can X
happen? check that t, — t; € X; — X; (minimal network)

ICAPS’07; Providence (RI), September 22, 2007
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Metric and qualitative temporal information

M. FALDA AND M.
GIACOMIN

'EMPORAI

REASONING

Two types of temporal information exist: TEMPORAL

a . . . . INFORMATION

@ qualitative information (relations) Quasma
METR
“event A can happen before or during event B” LIc

IMPERFECT DATA

@ metric information (numeric data)

“from 10:30 to 11 p.m.”
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Allen’s Interval Algebra (IA)

M. FALDA
GIACC
Allen’s Interval Algebra is a Abofoe B —A 4 — B paea
o a FEMPORAI
qualitative temporal algebra PR—— , PPN - 0 NING
based on 13 atomic relations: A everoe B PN o

o mutually exclusive K s o
A duringB | F———, | B duringinv. A
@ jointly exhaustive | | e
i i IMPERFECT DATA
A starts B i PLI i Bstartsinv. A PRIEECT DAY
3 i OSSIBILITY THEORY
Example of relation A finishes B | —L i | Bfinishesiov. A T
; —
,,,,,, | S A
A{ b7 m} B A equals B 3 [ | 3 B equals A
A during B B contains A
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Operations in TA

M. FALDA AND M.
GIACOMIN

A relational algebra is a set of relations closed under certain
operations:

'EMPORAI

REASONING

Allen’s Interval Algebra is closed under TEMPORAT

@ inversion

(A{b,m}B)~! = B{bi, mi} A

@ intersection osSIBILITY

A{b,m}BNA{b}B = A{b}B
@ composition

A{b,m}B o B{b}C = A{{bo b} U{mob}}C

ICAPS’07; Providence (RI), September 22, 2007
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Transitivity table of TA

QUALITATIVE INFORMATION
METRIC INFORMATION

Composition of atomic relations is given by a transitivity
table

EMPORAI
o H b a d di o REASONING
b ? bdo b b Lo
m s NFORMATION
a |7 a adoi a ad oi Hanicinia
mi f mi f furrReT DA
d | b a d ? bdo .. o
m s B
di | bdio adioi o oi di di o fi
m fi mi si eq
dur c
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'EMPORAI

REASONING

'EMPORAL

The operations defined are
the same as IA o |

<
> :‘”‘\“HH \

VA
SIA|A
VA=) Y

Example of relation

< > =

A{<,=}B
Table: Transitivity table for PA
relations
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Convex relations of qualitative algebras

M. FALDA AND M.
GIACOMIN

'EMPORAI

REASONING

'EMPORAL

If a network has only convex relations it can be minimized
using Path Consistency algorithm:

o PA. = PA\{{<,>}}

@ the maximal tractable subalgebra of IA, called H has
been identified by Nebel; it is formed by convex relations TR

ICAPS’07; Providence (RI), September 22, 2007
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Qualitative Algebra (QA)

QUALITATIVE INFORMATION
METRIC INFORMATION

The Qualitative Algebra
between points and intervals . ,. ,  — | e P [
is given by the union of:

EMPORAI

@ Allen’s Interval Algebra Pums 1 T sani P

o the Point Algebra PA ; ‘ “‘T'

@ a set of 5 relations N ¢ crrECT DATA
between Points and . S —
Intervals (Pl relations) | ™ 1 e s RS

{b,a,d,s, f} Poaer I  ————— I afierinv. P

Figure: Pl relations and their
inverses
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Transitivity table of QA

M. FALDA AND M.
GIACO

Composition in QA involves transitivity tables for all the _
allowed combinations of relations (some do not have sense RasoNinG
and are marked with @, e.g. Pl o PI)

TIVE

o [PP_PI_IP Il

PP TPA Tl @ %) IMPERFECT DATA
PI @ @ T2 T4 'w—‘ V\‘HH [HEORY
PIT T3 o o

I @ @ T4T Tia

Table: Transitivity table of QA
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Simple Temporal Problems (STPs)

M. FALDA AND M.
GIACOMIN

A Simple Temporal Problem is defined as a tuple < V, E >
'EMPORAI
where: REASONING

- a - EMPORAI
@ V is a set of variables {vq,...,v,} representing INFORMATION
timepoints R e
METRIC
INFORMATION

o E is a set of constraints {ey, ..., e/} between the
variables in V

IMPERFECT DATA

A constraint has the form
Vi[av b]vj

and means a<v;—v; < b

ICAPS’07; Providence (RI), September 22, 2007
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Operations in STPs

There are three fundamental operations:

@ inversion
(Vi[a7 b]V_/)_l — V_I'[_b7 _a]Vi

Q intersection
(vila, blv;) N (vilc, d]v))
= (vila, b N [c, d]vj)
@ composition
(vila, blvj) o (v[c, d]v;)
= (v[a+ ¢, b+ d]v))
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The origin of complexity

M. FALDA
GIAC(C
Temporal problems are in general N'P-complete:

'EMPORAI

REASONING

@ complexity in metric constraints is due to fragmentation

'EMPORAL

[0,1,2,3]
[16,16,17,17]

[1,1,2,2] [0,1,2,3] [1,1,2,2]

[11,11,12,12] [16,16,17,17] [11,11,12,12]
[21,21,22,22] [23232424]  Path-Consistency  [21,21,22,22] [23,23,24,24]
—_—
[0,0,22,22] [23,23,33,33] [34,34,50,50] [124,5] [11,12,14,15] [17,17,19,19] OSSIBILIT

[21,21,22,22] [23,23,24,25] [24,24,26,26]
[27,27,29,29] [34,34,36,36] [37,37.39.39]
[44,44,46,46]

@ complexity in qualitative constraints is intrinsic in the
algebra

ICAPS’07; Providence (RI), September 22, 2007
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Real data are imperfect data

REASONING

ngndEmj Approximated TEMPORAL

INFORMATION

C :
\Bielieivaae‘ 'EMPORAI
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Incomplete

Inconsistent ‘ ‘ Confused ‘
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The nature of uncertainty
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GIACK

Uncertainty is a property of the belief state of an agent TEMPORAI

REASONING
>ORAL

For example a robot has to grasp a block:

@ “the block is on the table” is an imprecise fact

@ “the block is near the centre of the table” is a vague
fact

@ ‘“yesterday the block was in (10,12)" is an unreliable
fact

ICAPS’07; Providence (RI), September 22, 2007
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Linguistic Gradual Information

M. FALDA AND M.
u . 5 GIACOMIN
Categories manipulated in natural language are not always

all-or-nothing: TEnPORAT
REASONING
@ “Many Americans are tall" PEMPORAL

INFORMATION
@ John and Paul have approximately the same age” Quatmy
M

IMPERFECT DATA

Crisp sets are not sufficient!

LITY THEORY
ITY \

The set of young ages is ill-defined, vague
Vague predicates: they have not a crisp boundary

ICAPS’07; Providence (RI), September 22, 2007
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Gradual truth

M. FALDA AND M.
GIACOMIN

'EMPORAI

REASONING

A proposition involving a gradual predicate can be true to a o
degree: a bottle can be neither empty not full, a 50-year old ey BTN

person is old to some extent o
INFORMATIO!

Truth(OId(Paul)) € (0,1) DSl

LITY THEORY
ITY \

Degrees of truth can be linguistic: “somewhat old”, “rather
old", “very old”

ICAPS’07; Providence (RI), September 22, 2007
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Forms of graduality

The existence of gradual predicates is due to

@ matching a continuous observable scale and a finite
vocabulary

[0,200]cm — {short, medium, tall}

there is no infinitely precise height s* such that if
s > s* tall(s) is true otherwise s is false
It is not that this threshold is unknown: it simply does
not exist. The truth scale is continuous because the
observable is continuous

@ The notion of typicality: elements of a class of objects
can be more or less typical of that class: bird, chair, ...
An ordering typicality relation: x >f y means x is more
typically F than y

ICAPS’07; Providence (RI), September 22, 2007
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Fuzzy sets

Fuzzy set F on S: Vs, pp(s) € [0,1]
For example: F = young

A\

-
P

I

|

\

\

\ \
0 30 age O 20 40 age

A gradual representation preserves continuity and is less
sensitive to the choice of a threshold

ICAPS’07; Providence (RI), September 22, 2007
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Definitions of a Fuzzy Set

M. FALDA AND M.
GIACOMIN

@ A Fuzzy Set F is a set with gradual boundaries; can be

'EMPORAI
defined using a generalized characteristic function HEASONING
(called membership function)

'EMPORAL
INFORMATION
QUALITAT
INFORMATIO:
ur - U—[0,1] M

IMPERFECT DATA
@ Equivalently, also as a weighted nested family of sets o
F=|J Fa
a€[0,1]

where Fy, = {u: pp(u) > o}

ICAPS’07; Providence (RI), September 22, 2007
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Fuzzy Interval

A membership function is a TEMPORAI

. REASONING
fuzzy interval
A TEMPORAI

core(F)={uvu:pr(u)y=1} 1

support(F) = {u : pr(u) > 0} I I
I I _ R
@ the core includes most | “T" |
typical elements - F, .
support

@ the support includes least
typical elements

ICAPS’07; Providence (RI), September 22, 2007
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Motivation

M. FALDA AND M.
GIACOMIN

'EMPORAI

The Possibility Theory allows working with qualitative REASONING
mOdeIS: TEMPORALI

INFORMATION

@ it is more robust for modelling uncertain data (eg R

missing statistics) o

. . . .. IMPERFECT DATA
@ symbolic knowledge and numerical imprecision can be .
descri bed LITY THEORY

@ it is a generalization of crisp Classical Logics, therefore
it can represent also precise data when available

ICAPS’07; Providence (RI), September 22, 2007
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Possibility vs. Probability

Probability Measure

Membership Function

Calculates the probability
that an ill-known variable x
ranging on U hits the well-
known set A

Before an event happens

Measure Theory

Domain is 2Y (Boolean Al-
gebra)

Calculates the membership
of a well-known variable x
ranging on U hits the ill-
known set A

After it has happened
Set Theory

Domain is [0, 1] * U (Cannot
be a Boolean Algebra)

ICAPS’07; Providence (RI), September 22, 2007
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Limits of classical CSPs

'EMPORAI

REASONING

'EMPORAL

Classical CSPs:

@ are rigid, since all constraints must be satisfied
@ assign the same importance to all the constraints

@ cannot specify uncertainty in the constraints o
PROBABILITY
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Fuzzy CSPs

It is possible to map a well-ordered partition (E1, Ea, . .., Ep)
of constraints to a plausibility scale L using a possibility
distribution m

A possibility distribution 7y is the representation of a state of
knowledge: what an agent knows of the state of affairs x is
Conventions

@ my(s) =0 < x = s is impossible, totally excluded
(not expressible with >

@ my(s) =1 < x = s is expected, normal, fully plausible,
unsurprising

o 7 (s) > mx(s’) & x = s more plausible than x = s

ICAPS’07; Providence (RI), September 22, 2007
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Given the sentence “John is young”
'EMPORAI

REASONING

'EMPORAL

1 p’young

n(a) /

POSSIBILITY VS
ABILITY

\J

14 a 21

Tyoung (@) is the possibility that the age of John is a
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networks
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Motivation

CSP is a general framework:
@ A set of variables
@ A set of constraints

@ Major tasks: consistency checking, finding a solution,
compute the minimal network

Temporal reasoning: specialized constraint-based reasoning
frameworks

@ Specific variable domains
@ Restricted shape for constraints

@ Specific properties and algorithms can be exploited to
solve major tasks

ICAPS’07; Providence (RI), September 22, 2007



Motivation (2)

FCSP is a generalization of classical CSP in order to reason
with fuzzy constraints:

@ A set of variables
@ A set of fuzzy constraints
@ Major tasks: determining the consistency degree, finding
an optimal solution, compute the minimal network
@ Links and similarities between CSP and FCSP at a
general level
Idea: to what extent properties, theorems and algorithms of
specific frameworks can be generalized to corresponding
fuzzy frameworks?

ICAPS’07; Providence (RI), September 22, 2007



Fuzzy constraint network (FCN)

M. FALDA AND M.

N = (X, D, C) where: o
o X ={x1,...,xn} (a set of variables)
@ D={Dx,...,D,} (the set of relevant domains)
o C={G,...,Cn} (a set of constraints)

where each constraint has the form C; = (V(G), R;), with

o V(C:):{YI77Yk}§X
© Ri:Djx...D, —[0,1]

A graphical representation for C
binary networks (example) @

ICAPS’07; Providence (RI), September 22, 2007



Fuzzy constraint network (FCN)

M. FALDA AND M.
Degree of local consistency G

Given d (instantiation of a set of variables ) C X):

cons(d) =  min R;(Hlv(ci))
RilV(C)CY

Solutions of N/
Complete instantiations d of the variables, with consistency
degree

deg(d) = cons(d)

Solution set of N: the fuzzy set

SOL(/\/'):D1><...D,,—>[0,1]

ICAPS’07; Providence (RI), September 22, 2007



Fuzzy constraint network (FCN)

o Consistency degree of a network A consistency degree
of the "best” solutions:

sup  deg(d)
deD;x...x Dy,

e Optimal solutions of N: solutions d such as deg(d) is
equal to the consistency degree of N

@ Equivalence of fuzzy constraint networks: the same
variables, the same domanis, the same solution set

ICAPS’07; Providence (RI), September 22, 2007



Constraint propagation algorithms,
k-consistency and minimality

o Constraint propagation algorihms: maintain network
equivalence, enforce local consistency of the network
@ k-consistency:

VY = {y1,.- -, yk—1} € X,Vyx € X with y, ¢ Y,
Vd e D x ...x Dj_q,
Jdx € D;, such as cons(ddy) = cons(d)
@ Example: path-consistency is 2-consistency
@ The minimal network is the “most explicit” one:
V{X,',Xj} C X,V? € D; x Dj,
3dd € Dy x ... x D, such as cons(d) = cons(d’)

ICAPS’07; Providence (RI), September 22, 2007



Relationship between classical and fuzzy
constraint networks

A classical crisp constraint network can be seen as a fuzzy
constraint network with preference degrees in {0, 1} only.

Classical network Fuzzy network
Preference degrees: {0,1} Preference degrees: [0, 1]
Consistency Consistency degree
Solution Optimal solution

k-consistency and minimal- k-consistency and minimal-
ity: extend a consistent in- ity: extend an instantia-
stantiation to a consistent tion preserving its consis-
instantiation tency degreee

ICAPS’07; Providence (RI), September 22, 2007



Constraint-based reasoning frameworks

Scenarios of interest represented by means of (fuzzy or crisp)
constraint networks

Definition
Class of crisp (fuzzy) constraint networks HA (FN): a
possibly infinite set of crisp (fuzzy) constraint networks.

TCSP: temporal constraint satisfaction problem
@ variables: time points
@ domains: R
@ constraints: binary,

Gj:xi—xj€l,l ={(a1,b1),...(an, bn)}

this can be indicated as HN 7csp

ICAPS’07; Providence (RI), September 22, 2007




Constraint-based reasoning frameworks (2)

M. FALDA AND M.
GIACOMIN

Allen’s interval algebra (IA)

@ variables: time intervals
o domains: R2

@ constraints: binary, disjunctions of 13 basic relations

this can be indicated as FAN 4

ICAPS’07; Providence (RI), September 22, 2007



A bridge between crisp and fuzzy reasoning
frameworks

o a-cut of a fuzzy set RZ:

1l -
ol - N __

The crisp set R"Z, = {d | R"*(d) > a}
o a-cut of a fuzzy constraint C2 = (V, Rfz):
The crisp constraint C/¥Z = (V, Ré“z>

ICAPS’07; Providence (RI), September 22, 2007



A bridge between crisp and fuzzy reasoning
frameworks (2)

o a-cut of a fuzzy constraint network NZ:

The crisp constraint network

Nfuza = <X7Da{clcw"'7cmoz}>

@ a-cuts uniquely identify the original constraints
and networks
o If Vau Cla = Cza then GG = G
o If Vau Nla = Nza then N1 = Nz

ICAPS’07; Providence (RI), September 22, 2007



The key property of a-cut

Theorem
Given a fuzzy constraint network N'

[SOL(N)], = SOL(N,)

Sketch of proof.

o d € [SOL(N)],, if and only if it satisfies the worst
constraint with a degree > «

@ this can happen if and only d satisfies all constraints
with a degree > «

@ in turn, this can happen if and only if d satisfies all the
a-cuts of N, i.e. d € SOL(N,)

ICAPS’07; Providence (RI), September 22, 2007

M. FALDA AND M.
GIACOMIN




From crisp to fuzzy reasoning frameworks

M. FALDA AND M.
GIACOMIN

o Crisp projection of a class FN of fuzzy constraint
networks:

C(FN)={N, | a€[0,1],N € FN}

o Fuzzy extension of a class HN\ of crisp constraint
networks:

FN € F(HN) iff C(FN) C HN

@ We consider the proper fuzzy extension, i.e. that
including all fuzzy networks satisfying the condition
above

ICAPS’07; Providence (RI), September 22, 2007



Examples

M. FALDA AND M.
GIACOMIN

FN rcsp: Fuzzy extension of TCSP
@ variables: time points
@ domains: R

@ constraints: binary, of the form Cj : (/, f), where
f:l— [07 1] and | = {(al, bl), 500 (a,,, bn)}

IAfZ: Fuzzy extension of Interval Algebra
@ variables: time intervals
o domains: R?
@ constraints: binary, of the kind /(b6[0.3], m[0.5])k

ICAPS’07; Providence (RI), September 22, 2007



Syntax and semantics of /A™?

Syntax: IA™Z is defined on the set Bl I0bisn) 0 WYL

I = {bla], a[az], m[as], mi[aa], d[as]di[as], o[az],
oi[ag], s[ag], sioo], floua], filasz], eqlans]}
where o; € [0,1],i=1,...,13

Semantics

o Atomic relation: fuzzy subset of :#? x R?
@ Generic relation: union of fuzzy subsets
@ Example:

13(b[0.5], m[0.7])1,

ICAPS’07; Providence (RI), September 22, 2007



Extending tractable classes

@ Tractable class of crisp networks: there is a polynomial
algorithm

_ [ d:deSOL(N) if SOL(N) # 0
SOLALGrv(N) = { FAILED otherwise

@ Tractable class of fuzzy networks: there is a polynomial
algorithm able to find an optimal solution (thus also to
compute the consistency degree of the network)

Theorem

Let HN be a tractable class of crisp networks. If FN is a
fuzzy extension of HN such that VN € FN the number of
preference degrees is at most exponential in the number of
variables, then FN is tractable.

ICAPS’07; Providence (RI), September 22, 2007

M. FALDA AND M.
GIACOMIN




Fuzzy TEMPORAL
REASONING

Sketch of proof.

o Given a network N € FN, the set of the optimal
solutions is [SOL(N)] 5, where 3 is the maximum «
such that [SOL(N)], # 0

o By the key property, [SOL(N)]; = SOL(Nj): we can
work on crisp networks

@ Thus, we can perform a binary search (logarithmic
complexity) on the preference degrees of N, exploiting
SOLALGy s to check consistency of SOL(AN,) for
different values of «

ICAPS’07; Providence (RI), September 22, 2007



Fuzzy extension of simple temporal problems

STP (Simple Temporal Problem) : HN s1p M Taon b AL
@ variables: time points
@ domains: R
@ constraints: binary, of the form Cji : x; — x; € |[aj, bj]

@ HN st1p is tractable

FN stp: the fuzzy extension of HN stp
@ variables: time points
@ domains: R

@ constraints: binary, of the form Cj : ([aj, bj], f) where
f : [ai, bj] — [0,1] and f is semi-convex, i.e.
Vy {x | f(x) > y} forms an interval

@ FNstp is tractable

ICAPS’07; Providence (RI), September 22, 2007



Tractable subclasses of IA™?

Tractable subalgebras of classical /A R

@ SA(: IA-relations that can be expressed by PA.-relations
between endpoints, i.e. PA-relations without #

@ SA: [A-relations that can be expressed by PA-relations
between endpoints

@ H: maximal tractable subalgebra introduced by Nebel,
including so-called pre-convex relations of /A

Tractable subalgebras of /A™Z

o SA.MZ (and similarly SA™# and H#) can be defined as
the set of relations {R € IA"? | Va R, € SA:}

@ All these subalgeras are tractable

@ More on this later

ICAPS’07; Providence (RI), September 22, 2007
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Fuzzy extension of properties

o Specific properties can be exploited by algorithms (e.g. N e
path consistency entails minimality in some subclasses)

o Property of a class G\ of crisp or fuzzy constraint
networks:

P:GgN — {0,1}

@ Given a property P defined on a crisp class HA and a
fuzzy class FN € F(HN)

1ifVa e [0,1] P(N,) =1
0 otherwise

o) - §

o It can be shown that if P17 and P,# are the fuzzy
extensions of P; and P, respectively, then
(P12 A Py1U7) is the fuzzy extension of (Py A Py)




Fuzzy extension of important properties

Theorem
Given a crisp class HN and a fuzzy class FN € F(HN),

k-consistency on FN is the fuzzy extension of k-consistency
on HN

Sketch of proof.

@ By definition, we have to prove that for any N € FN,
N is k-consistent iff Vo € [0,1] N, is k-consistent
@ Assume N is k-consistent; consider a € [0, 1] and N:

@ any consistent instantiation d of k — 1 variables in AV,
belongs to SOL(NVX™1) = (SOL(N*~1)), (key prop.)
o by k-consistency of N, d can be extended to any

additional variable maintaining the consistency degree «
o ddy € (SOL(N¥)), = SOL(NX) (key prop.)

ICAPS’07; Providence (RI), September 22, 2007
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Fuzzy extension of important properties (2)

M. FALDA AND M.

SketCh Of pI‘OOf (2)_ GIACOMIN

o Assume Va € [0,1] N, is k-consistent; we have to
prove that \ is k-consistent:
o any instantiation d of k — 1 variables with cons(d) = 3
belongs to (SOL(N*~1))5 = SOL(Ng_l) (key prop.)
o by k-consistency of N3, d can be extended to any
additional variable maintaining consistency

o ddy € SOL(Nf) = (SOL(NV¥))s (key prop.)

Corollary

Fuzzy path-consistency is the fuzzy extension of classical
path-consistency.

ICAPS’07; Providence (RI), September 22, 2007



Fuzzy extension of important properties (3)

Theorem

Fuzzy minimality is the fuzzy extension of classical
minimality.

Proof.

@ We have to prove that, given N' € FN, N is minimal if
and only if Va € [0,1] N, is minimal.

@ The proof proceeds in a similar way as the one for
k-consistency, exploiting the key property of a-cuts.

ICAPS’07; Providence (RI), September 22, 2007
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Extending theorems from crisp to fuzzy

Theorem
If we have a theorem in a crisp class HN of the form

VYN € HN Pl(N) = Pz(./\/)
then the following theorem holds in FN € F(HN):

VN € FN P(N) = P=(N)

Proof.

o If Pfu2(N\), then by definition Ya € [0,1] Py(N,) holds.
@ By the theorem in HN Va € [0,1] P2(N,) holds.
@ Then Pf¥Z2(N) holds by definition.

ICAPS’07; Providence (RI), September 22, 2007
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Some direct results

M. FALDA AND M.
GIACOMIN

@ As for classical simple temporal problems, in FN s7p
path-consistency entails minimality

o As for classical SAc, in SA.f? path-consistency entails
minimality

@ As for classical SA, in SAfuz minimality of
4-subnetworks entails minimality

ICAPS’07; Providence (RI), September 22, 2007



Extending algorithms from crisp to fuzzy

@ Algorithms that compute transformation of networks:
given a class GN of fuzzy/crisp networks

GN-T-ALG A:GN — GN
such that A((X, D, C)) = ((X, D, Cout))

@ GN-T-ALG equivalence preserving conditioned on P
(P-EQ)

VYN € GN P(N) — SOL(A(N)) = SOL(N)
@ GN-T-ALG enforcing P, conditioned on P; (Pi-to-P5)

VYN € GN P1(N) — P2(A(N))

ICAPS’07; Providence (RI), September 22, 2007



Extending algorithms from crisp to fuzzy (2)

M. FALDA AND M.
GIACOMIN

o Fuzzy extension of a HAN-T-ALG A to FN, where
FN € F(HN):

FN-T-ALG A™Z such that
VYN € FN Vo €[0,1], (A"2(N))a = ANL)

@ Results:

o A7 is guaranteed to exist provided any network has a
finite number of preference degrees

o If Ais P-EQ, then Az is Pfiz_EQ

o If Ais Pi-to-Py, then A"Z is Pfuz_to-pfiz

ICAPS’07; Providence (RI), September 22, 2007



Conclusions

@ The methodology also holds using other operators
besides min, provided idempotency holds

@ Main message: some classical results can be directly
extended to a fuzzy framework

ICAPS’07; Providence (RI), September 22, 2007
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S CHOCKAERT, DE COc¢

Fuzzy qualitative temporal reasoning

The algebra IA™?

Dubois, HadjAli & Prade approach
Nagypal and Motik approach
Ohlbach’s approach

Schockaert, De Cock & Kerre approach
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Outline
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GIACOMIN

The algebra IAfuz ITAF}:;ZALGHHRA

, HADJALI

MOTIK APPROACH

OHLBACH’S
APPROACH

SCHOCKAERT, DE
Cocr KERRE
APPROACH
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THE ALGEBRA IA™Z?
DuBois, HADJALI & PRADI
NAGYPAL & MOTIK APE H

OHLI JACH

S CHOCKAERT, DE CoCK & KERRE APPROACH

Dutta’s and Guesgen’s approaches

M. FALD!
Dutta’s approach Gac
@ A set of precise and disjoint intervals assumed as T ALcesa
background

DuBols, HADJALI
o Initial representation about events: p;(e) = degree of
possibility that interval /i contains event e

@ Infer the possibility degree that a relation in {b, a, m} R
holds between two events

SCHOCKAERT, DE
Coc KERRE
APPROACH

Guesgen et al.
@ Focus in imprecise spatial descriptions

@ Imprecision of observations expressed by fuzzy values
associated to Allen’s atomic relations

Both approaches can be expressed by.a fragment of. [AfZ

ICAPS’07; Providence (RI), September 22, 2007




THE ALGEBRA IA™Z?
& PRADE

S CHOCKAERT, DE COc¢

Syntax and semantics of /A™?

M. FALDA AND M.

Syntax: [A®7 is defined on the set GracoMIN
. . THE ALGEBRA
I = {bla1], a[az], m[as], mi[aa], d[as]di[as], o[az], A
Of[ag], S[Ozg], Si[alo], f[an], ﬁ[alg], eq[a13]} ‘I\nIx‘:[:ru\;.wll\m\u
where a; € [0,1],i=1,...,13 .
MOTIK APPROACH
semantics (:l:][I“\L’H”\
o Atomic I’e|ati0n: fUZZy 11(b[0.5],m[0.7])I SCHOCKAERT, DE
subset of R? x R? 07

0.5 ‘

@ Generic relation: union of
fuzzy subsets

Intended meaning Preference between /A-relations, e.g. A;
should be disjoint w.r.t. As, and it's better A; before A

ICAPS’07; Providence (RI), September 22, 2007



SCHOC

Local consistency in

DE COCK ¢

)ACH

IA™Z networks

o Singleton labeling (assignment): choice of an atomic
relation for every pair of intervals

@ Degree of local consistency:

degn(s) = {

Example:

0

min(,-J-) R,J(S,J)

if s is not consistent
otherwise

(/1 m 12, /2 m /3, /1 b /3) :0.5
(/1 m /2,/2 m /3,/1 m /3) :0

ICAPS’07; Providence (RI), September 22, 2007

M. FALDA AND M.
GIACOMIN

THE ALGEBRA
,Afuz

Dusois, HADJALI

KAERT, DE
;. KERRE
OACH




THE ALGEBRA IA™Z?
DuBois, HADJALI & PRADI
NAGYPAL & MOTIK APE 1

OHLI JACH

SCHOCKAERT, DE CocK & KERRE APPROACH

Operations of the algebra /A"?

M. FALD!
GIACK

@ Inversion

THE ALGEBRA

R_l = (re/l_l[al], ey re/13_1[a13]) .

@ Conjunctive combination R = R’ @ R”

OHLBACH’S

R = (re/l[al], 6000 re/13[a13]) PPROACH
ajp = min {O/,', a”i} i € {1, 550 ) 13} SCHOCKAERT, DE

CocK KERRE

APPROACH

@ Disjunctive combination R = R’ & R”

R = (rell[a1]7 6000 re/13[a13])
o; = max {O/,’, O//,'} I € {1, soag 13}

ICAPS’07; Providence (RI), September 22, 2007



THE ALG EBRA IA uz
A

SCHOCKAERT, DE Co

Operations of the algebra IATZ (2)

Composition M. FALDA AND M.

GIACO

@ Atomic relations:
TF}}«} ALGEBRA
|Afuz

rel1[aq] o relp[ag] = (reli[a], relb[al, . . ., relj[a]) e ——
& PRADE
where rel: € {rely o rel,} and a = min {1, s} N
MOTIK "ROACH

@ Generic relations: by distributivity property

OHLBACH’S
APPROACH

R o R" = (rel1[aa], ..., rel13[aa3])

. / "
p — max min{a/q, "/}
q,r:relp€{relqorel, }

p,q,r€{1,...,13}

@ Intuitively: a, is the degree through which rel, can be
extended to a labeling involving R” and R”

ICAPS’07; Providence (RI), September 22, 2007



ke b)),

| S N I | b[0.7]],

R; = (0[0.5], m[0.7])
Rj = (b[0.9])

RjoRj = (0[0.5], m[0.7])o(b[0.9]) = (b[0.5]&5[0.7]) = b[0.7]

ICAPS’07; Providence (RI), September 22, 2007
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SCHOCKAERT, DE Co

Interesting reasoning tasks in /A™?

M. FALDA AND M.

o Determining the consistency degree of an IA™Z-network GracomIN
o Finding an optimal solution (i.e. singleton labeling) A
o Computing the minimal network Do AL
@ Equivalent under polynomial Turing-reduction ‘
Algorithms
o Constraint propagation algorithms: mainly related to s
minimality, e.g. SCHOCKAERT, Di

CocK & KERRE

o PCf7: enforces path-consistency APPROACH
o AACTZ: enforces minimality of 4-subnetworks

Extend classical algorithms, but with specific
improvements

@ Branch & Bound algorithm: computes an optimal
solution

ICAPS’07; Providence (RI), September 22, 2007



SCHOCKAERT, DE COCK & KERRE Al

Path-consistency algorithm

o Path consistency enforced if and only if
V(i,j, k) Rij < (Rik o Ryj)

rel; [a;

@ Basic idea: applying transitivity rules

@ Since IA™Z operations generalize the classical ones, the
classical PC-algorithm is still valid.

ICAPS’07; Providence (RI), September 22, 2007
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S CHOCKAERT, DE COc¢

The original path-consistency algorithm

PC™2(N)

1. Qe {(ij)|1<i<j<n)

2. while (Q #0)

Sk select and delete (i,j) from Q
4. for k—1 to n, k#i and k#j
5 t<—R,'k®(R,'jORjk)

6. if (t # Ri)

7. then Ry «— t

8. Rk,' — t_l

9. Q— QU{(i,k)}

10. t — Rkj®(Rk,'OR,'j)

11. if (t# Ry)

12. then Rkj — t

13. Ry — t™*

14. Q — QU{(k,))}

ICAPS’07; Providence (RI), September 22, 2007
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S CHOCKAERT, DE COCK ¢

Improvements

M. FALDA AND M.

o Not labeled edges GracoMIN
@ ‘Tr—}r; ALGEBRA
- L, — * 1A%z
R"l“ . ij ij DuBoIS, HADJALI
af =max{af,...,af; & PRADE

' ij
O a0

o Con-Sup = min(; ;) {a";}
o When Con-Sup decreases V(i,j) Rj < R; ® I[Con-Sup]

KAERT, DE

e However, it's the same to apply this truncation to edges Cloer [ Toaris
involved in Ry — Rix ® (Rj o Rix) + final truncation rescH

@ Ry — Ry ® (RU o jk) only if
minj; < Con-Sup and min}, < Con-Sup

@ Insert an edge into @ only if a preference degree strictly
lower than Con-Sup has been modified

ICAPS’07; Providence (RI), September 22, 2007



SCHOCKAERT, DE Cock & KER YOACH

improved path-consistency algorithm

M. FALDA AND M.

PC2f”z(N) GIACOMIN
1. Q—{(i,j) |1 <i<j< n,minj < ConsSup} THE ALGEBRA
2. while (Q # 0) 1Afuz

o select and delete (/,j) from Q -
4. if (minj < ConsSup)

5. then for k< 1 to n, k#i and k #j

6. if (minj < ConsSup)

7. then t — R,‘k®(R;jORjk)

8. if (3relp : deg,(relp) < min {ConsSup, degg, (relp)})

S then Ry «—t BN
10. R — t 1 e s e
11. Q— QU{(i,k)} \PPROACH

12. ConsSup = min {ConsSup, max }

13. if (ming; < ConsSup)

14. then ...

20. V(i,j) Rj < Rj ® I[ConsSup]
21. return ConsSup

ICAPS’07; Providence (RI), September 22, 2007



THE ALGEBRA IA uz
MH IS H \DJALI & P

SCHOCKAERT, D mm.,"luu \PPROA

Branch & Bound Algorlthm

M. FALDA AND M.

@ Application of PC2Z Algorithm; GIACOMIN
ainf = 0, asup = Con-Sup.

THE ALGEBRA

fuz
@ If Con-Sup > 0, consider every edge "
. . DuBois, HADJALI
in a fixed order. & PRADE
@ For the current (I,_]) MOTIK APPROACH
Choose IBU | pref(/@lj) > inf, OHLBACH'S
RIJ - /Bu[pref(ﬁu)], APPROACH

P.C. Algorithm. Jmoca D
@ If Con-Sup < ains then choose another 3 or backtrack -
to the precedent edge.
@ Complete assignment:

If Con-Sup > «jnf, best current solution,
inf < Con-Sup, test ajnf = asyp.

ICAPS’07; Providence (RI), September 22, 2007



SCHOCKAERT, DE COCK & \PPROACH

Pointizable algebras: SA™? and SA™Z

M. FALDA AND M.
GIACO

Fuzzy extensions of classical PA and PA.

THE ALGEBRA

o PAfZ algebra: relations between points of the form afuz
{< [Oé]_], = [OZ2], > [O[3]} Dusois, HADJALI
& PRADE
° PAE”Z algebra: PA™Z relations with a; > min {a1, a3}

NAGYPAL &
MOTIK APPROACH

Fuzzy extensions of classical SA and SA.

OHLBACH’S

o SAfz: |AfuZ yelations that can be expressed as PAfZ \PPROACH
relations between endpoints

o SAMZ: relations that can be expressed as PA®Z relations

All of these sets are algebras (can be proved by exploiting
the relationships between classical and fuzzy operations by
means of a-cuts).

ICAPS’07; Providence (RI), September 22, 2007



SCHOCKAERT, DE CocK & KERR

Example of SA™=

M. FALDA AND M.
o The IA®Z relation (b[0.7], m[0.3]) can be translated into o

the following PA-network Tug aLcesia

Dusois, HADJALI

—_—
b:0.7 [ I L
2 e
h b 0.70.3
—_—

m: 03 { KAERT, DE
'K & KERRE

OACH

@ Since point relations belong to PAfZ,
(b[0.7], m[0.3]) € SAf=

ICAPS’07; Providence (RI), September 22, 2007



THE ALG EBRA IA uz
IA

SCHOCKAERT, DE Co

Tractability of SA™Z and SAluz

M. FALDA AND M.
GIACO

o Main properties: a%rlzr\LGHHRA

Dusois, HADJALI

R € SA™Z iff Va R, € SA & Prane
E\I‘:mr.‘\ "ROACH

R € SA™Z iff Vo R, € SA. s

and

o SA™z: path-consistency entails minimality, thus the
minimal network can be computed in O(kn3)

o SAfuz. minimality of 4-subnetworks entails minimality,
thus the minimal network can be computed in O(kn*)

ICAPS’07; Providence (RI), September 22, 2007



S CHOCKAERT, DE COc¢

A maximal tractable subalgebra of /A"?

@ Nebel's H C /A is a maximal tractable algebra:
o path-consistency entails A consistent iff Vi,j Rj # 0.
Thus, consistency can be checked in O(n?)
o if N is path-consistent, a solution can be computed
without backtrack in O(n?) (Ligozat, 98)

o Definition: R € Hfz iff Yo R, € H

@ Properties:
o If NV is path-consistent, max; for any edge ij gives the
consistency degree, Ligozat's algorithm applied to
Nmax,.j gives an optimal solution
o ™7 is the unique maximal tractable subalgebra of /A=
which includes all the relations of
B = {rely[a] | rel, € IA, o € [0,1]}

ICAPS’07; Providence (RI), September 22, 2007
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['HE ALGEBRA /A’
Dusois, HADJALI & PRADE

\GYPAL ¢ Y ROACH

SCHOCKAERT, DE COCK &

Outline

M. FALDA A
GIACOMIN

I'HE ALGEBRA

Dubois, HadjAli & Prade approach

MOTIK APPROACH

OHLBACH’S
APPROACH

SCHOCKAERT, DE
Cocr KERRE
APPROACH
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SCHOCKAERT, DE COCK ¢

Modeling fuzzy Allen relations

Motivation

The relations holding between intervals may not be
described in precise terms: need to express relations of the
kind “approximately equal”, “much before” etc. in order to
avoid brutal discontinuities.

Basis of the modeling
@ Definition of the fuzzy counterparts of classical relations
between points:
e < becomes “much smaller”
e = becomes “approximately equal”
@ > becomes “much greater”
@ Definition of the fuzzy counterparts of classical Allen
relations on the basis of fuzzy relations between their
endpoints

ICAPS’07; Providence (RI), September 22, 2007
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['HE ALGEBR
DUP()I\ HapJALl &

Modellng approx1mate equality and graded
inequalities between points

I'HE ALGEBRA
Afuz

DuBois, HADJALI

e L Le

-5—p -0 d otp X-y
e St

Vd e (d) + p(d) + pue (d) =1

@ Fuzzy counterparts of classical relations:
e a < breplaced by a S(L) b
o a= breplaced by a E(L) b
e a> breplaced by a G(LS) b
@ Parameters: ¢ and p (if 6 =0 and p — 0 classical
relations are recovered)

ICAPS’07; Providence (RI), September 22, 2007



['HE A
Dusois, HADJ

OHLBACH’S A}
ScHOCKAERT, DE Cock & KERRE AP

Fuzzy Allen relations

Fuzzy Allen relation | Label | Definition

A fuzz-before(L) B fb(L) || b G(LS) &

A fuzz-meets(L) B fm(L) || @ E(L) b

A fuzz-overlaps(L) B || fo(L) || b G(LS) ana’ G(LS) bA
b G(LS)

A fuzz-during(L) B fd(L) || a G(LS) bAb G(LS) &

(
A fuzz-starts(L) B fs(L) | a E(L) bAb G(LS) &
A fuzz-finishes(L) B fF(L) | @ E(L) b ANa G(LS) b
A fuzz-equals(L) B fe(L) | a E(L) bAb E(L) &

where a = [a, 4], b= [b, V']
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Dusois, HAD

Composition of relations G(K) and E(L) between points:

vszIU’G(K)OE(L)(sz) — supmin{,uG(X,y),,uE(y,z)}
y
= pkeL(x —2)

where i (X) = SUPs s min {11k (), 11 (£))

Example

If a is approximately equal
to b and b is much greater 1
than ¢ then a is much i
greater than c:

KL /|

oL Y ; K
aE(L) bAb G(K) c = e b 5 ove I ap Xy
A-5-¢ A+p-3
aGKel)c EAP
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SCHOCKAERT, DE CocK & KERRE APPROACH

Reasoning with fuzzy Allen relations

M. FALDA AND M.
GIACOMIN

@ By composition, inference rules between points, e.g.

I'HE ALGEBRA

a E(L) b /\ b G(K) C # a G(K @ L) C ]/;\:IB:OIS HADJALI

aGK)b AN bGK)c = aG(KaK')c CAATIS
NAGYPAL &

a E(L) b = a—+c¢ E(L) b+ C Mo >PROACH

OHLBACH’S
APPROACH

@ By these rules (and the fact that fuzzy Allen relations

SCH KAERT, DE

can be expressed as rules between endpoints), ocK & KERRE
transitivity rules between fuzzy Allen relations, e.g. \

A fb(Ly) BA B fb(Ly) C = A fb(Ly & Ly) C

@ A 13 x 13 composition table is defined.
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SCHOCKAERT, DE COCK &

Complete vs. uncertain information

@ Available temporal information (i.e. about time points
and relative positions of intervals) is complete, but we
are interested in evaluating fuzzy statements (i.e.
approximate equality or proximity) in order to avoid
discontinuities.

@ Available temporal information is imprecise, vague or
uncertain, and we are interested in evaluating crisp or
fuzzy statements.
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Example: evaluation of fuzzy Allen relations
between crisp intervals

I'HE ALGEBRA
Afuz

DuBois, HADJALI

0 56 605 905

o A fb(L) B satisfied with degree 1 (since b — a’ = 0.4)

e A fb(L) C and A fm(L) C satisfied with degree 0.5
(since b — a’ = 0.45)
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Given a variable x with associated possibility distribution
m(x) and a crisp set A:

o Possibility of x ¢ A: —
I_I(A7X) = SUPxcA TI'(X) o.ei

o Necessity of x€ At
NAx)=1-NAx) =
infygam(x) M(A, x)

If Ais a fuzzy set:
@ Possibility of x is A:
M(A, x) = sup, min {ua(x), 7(x)}
@ Necessity of x is A:
N(A,x) =1—TM(A, x) = infy max {ua(x),1 — m(x)}
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Dusois, HADJALI &

SCHOCKAERT, DE CoOc¢

Possibility and necessity measures: basic
properties

I'HE ALGEBRA
Afuz

DuBois, HADJALI

It is easy to verify that, for all A and B: & PRADE
o N(AUB,x) =max{M(A, x),N(B,x)}
o N(ANB,x) =min{N(A, x),N(B,x)}
while it holds that
e N(AN B, x) < min{MN(A,x),N(B,x)}
o N(AUB,x) > max{N(A,x), N(B,x)}
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Uncertain relations between points

Given information about the possible location of dates a and M B avn AL
b expressed by m, and 7, respectively, it turns out that:
o N(a>b) =1—sups<, min{ma(s), ms(t)} e
o N(a G(K) b)
infs s max{pg(s
o N(a E(L) b) § ’
infs r max {p(s,t),1 —ma(s),1 — mp(t)} e

DuBois, HADJALI

 £), 1= ma(s), 1 —mp(t)}

SCH

For instance, by the formula of the necessity of x is A
N(a G(K) b) = |nf max {pg(s, t),1 = p)(s; t)}

= |sr]f max {pg(s,t),1 — min(ma(s), mp(t))}
= isr]f max{pg(s,t),1 —ma(s),1 — mp(t)}
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SCHOCKAERT, DE Cock & KERRE APP

Certainty degrees of Allen relations

Recalling that N(AN B, x) = min {N(A, x), N(B, x)}, the
necessity degrees of ordinary Allen relations can be expressed
w.r.t. the necessity of endpoints relations, e.g.:

o N(a before b) = N(b > &)
o N(a overlaps b) =
min {N(b > a), N(a’ > b), N(b' > a')}

Similarly for fuzzy Allen relations, e.g.
o N(A fb(L) B) = N(b G(LS) &)
e N(A fo(L) B) =
min {N(b G(LS) a), N(a’ G(LS) b), N(b' G(LS) a')}
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Patterns of inference with fuzzy Allen relations

M. FALDA AND M.
GIACOMIN

By transitivity rules of N() and the above definitions, several  [EEFREEEE
reasoning patterns can be derived, e.g.

DuBois, HADJALI
& PRADE

Mo PPROACH

N(A fm(L1) B) > a
N(C fS(I_2) B) 2 ﬁ (n’m;\f !‘x\
N(C fm(Ll ® L2) A) > min {a7/8} SCHOCKAERT, DE

CocK & KERRE
APPROACH

This way, it is possible to handle and reason with statements
of the kind “It is certain to the degree o that A fuzzily
meets B"
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Outline

Nagypal and Motik approach
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SCHOCKAERT, DE Cock & K

Context and mo

M. FALDA AND M.
GIACOMIN

I'HE ALGEBRA

@ Modeling information about historical events: uncertain e
(e.g. contradictory documents), subjective (unclear Do A
definitions, e.g. “the industrial revolution”) and vague LR

. . . 5 . . NAGYPA

@ Main requirement: given a number of possibly imprecise  BYtiis

temporal specifications using absolute dates (events),

deduce Allen relations between events [no general ,
. KAERT, E

;. KERRE

reasoning capability required] ocK &

@ When applied to traditional (i.e. non vague)
specifications, the same results as in classical temporal
models should be obtained
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Time intervals as

@ An event i is modeled as a time interval corresponding

M. FALDA AND M.
GIACOMIN

I'HE ALGEBRA

to a fuzzy set /, where 1i5(t) expresses the confidence 1A%
level that t is in i (due to uncertainty, subjectivity and Dusors, HapsAu
& PRADE
vagueness) s
@ Example: Russian Revolution Mot
l 7777777777777 KAERT, DE
; KERRE
06 ,,,,,,,,,,,, OACH
03| !
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SCHOCKAERT, DE COCK &

Fuzzy temporal relatlons

M. FALDA AN |x\l.
GIAC(C

I'HE ALGEBRA

© Meaning: given two events i and j (modeled by the Atz
fuzzy sets | and J respectively) and a fuzzy temporal Dupors, HADJALL
relation 9 corresponding to a crisp Allen relation 0, " h
f takes | and J and produces a number ¢ € [0, 1] Motk

expressing the confidence that 6 holds between / and j

@ Definition in two steps: R
o express classical Allen relations without reference to e & e
endpoints (claimed to be meaningless with fuzzy

intervals)
e fuzzify the obtained relations

ICAPS’07; Providence (RI), September 22, 2007



OCKAERT, DE CoOc

First step

M. FALDA AND M.
GIACOMIN

Consider e.g. i starts j

I'HE ALGEBRA

<o >y _ e
‘ SHi) _ I Starts_j = ‘]\\HI\‘:['I\‘*. HADJALI
> _(I) n < _(J) = @ A NAGYPAL &
I > _(J) n < —(I) — Q) A MOTIK APPROACH
- , >+() N < +() A0 T
- <H1) | Sonoc
<oy >0 _

Auxiliary operators (< —, < —, > —, > —, < 4, < +, > +,
> +) are defined

ICAPS’07; Providence (RI), September 22, 2007
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SCHOCKAERT, DE Coc

Second step

M. FALDA AND M.
GIACOMIN

I'HE ALGEBRA

sy = STARTS(I,J) = min{

> —(I.) n < —(j) =0 A et s {7< (t) J> (t)} Ln m»."n\m\l,.

;82 :E};;gA infemax (L (), J<— (1)}, et
sup, min {/~(t), J<+( )} omscr's

where
o the confidence that a N b # ) is sup, min {A(t), B(t)}

o the confidence that an b = 0 is _ _
1 — sup, min {A(t), B(t)} = infr max{A°(t), B(t)}

ICAPS’07; Providence (RI), September 22, 2007



OCKAERT, DE CoOc

Extending auxiliary operators

M. FALDA AND M.

o Meaning of  extending 0: 6(/)(t) gives the confidence Gracommy
that t is in 0() .
@ The operator > — : [ — [
, HADJALI
|f t < S-i & PRADE
sz(t) = Ssu ps<t (S) If t e Si lltlgT\IIfA-\LI?ROA(H
|f t> 57+ OHLBACH’S
o Example: SCHOCKARRT, D
[ I, ()
09— ‘
0.6|--- i
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Outline

M. FALDA A
GIACOMIN

I'HE ALGEBRA
Afuz

, HADJALI

MOTIK APPROACH

SCHOCKAERT, DE

Cocr KERRE

Ohlbach’s approach \PPROACH

ICAPS’07; Providence (RI), September 22, 2007



S CHOCKAERT, DE COCK ¢

Motivation

M. FALDA AND M.
GIACOMIN

o Similarly to Nagypal & Motik approach, represent fuzzy THE ALGEBRA
. . 1AT
time intervals

Dusois, HADJALI

& PRADE

o Differently from Nagypal & Motik (but similarly to
Dubois et al.), represent fuzzy relations even in case of N
crisp intervals (e.g. consider the DB query “give me all OB
performances ending before midnight”) ArPROACH

KAERT, DE

@ Similarly to Nagypal & Motik, no general reasoning: o0 & K

OACH

from known (possibly fuzzy) time intervals to fuzzy
relations between them

@ Customizable relations (operator-based)

ICAPS’07; Providence (RI), September 22, 2007



SCHOCKAERT, DE COCK ¢

Background: general operations

Complement n:
@ n(0)=1and n(1)=0

@ n is non-increasing

Triangular norm T and
conorm S:

@ commutative, associative
and monotone

e Vx T(x,1) = x and
S5(x,0) = x

A-@mgl ement(A\=2)

Hamacher intersection and union

ICAPS’07; Providence (RI), September 22, 2007
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SCHOCKAERT, DE Cock & K

Point-Interval relations

M. FALDA AND M.
GIACOMIN

@ Given a point and a (possibly fuzzy) interval, return a S
value ¢ € [0, 1] e

OO0 . . DuBois, HADJALI
@ Definitions parametric w.r.t. operations on fuzzy sets & Pr
o Example: beforey g+ (i) with i finite

OHLBACH’S

beforeN’E+(i) = N(E+(l)) APPROACH

KAERT, DE

;. KERRE

where N is a complement function and E™ is a rising PEROACH
operator, i.e. returns an interval such that

EY(i)=1forall t > i™

ICAPS’07; Providence (RI), September 22, 2007
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APPROACH
AERT, DE CoCK & "PROACH

beforey g+: examples

I'HE ALGEBRA
JAfuz

T — J Dusois, HADJALI

\ & PRADE

: NAGYPAL
\ MoTIK

OHLBACH’S
APPROACH

@ a more fuzzy before exploiting a gaussian operator

ICAPS’07; Providence (RI), September 22, 2007



SCHOCKAERT, DE Cock & K

Interval-Interval

2 - 5 . M. FALDA AND M.
o Requirements: work for fuzzy time intervals, give a Gracomiy

fuzzy value even for crisp intervals, operator-based

I'HE ALGEBRA
. . . . . . AUz
o Main idea: integrate a point-interval relation over the
Dusois, HADJALI

interval’'s membership function & Pi
@ Before relation:

[ i(x) - BU)(x)dx cmnicas

APPROACH

’I’ h KAERT, DE

;. KERRE

(additional complications for non-finite intervals) oA

beforeg(i,j) =

e Example (with B as in previous slide):

i j

ICAPS’07; Providence (RI), September 22, 2007



\L ¢
OHLI
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Outline

M. FALDA A
GIACOMIN

I'HE ALGEBRA
Afuz

, HADJALI

MOTIK APPROACH

OHLBACH’S
APPROACH

ScHC
©

Schockaert, De Cock & Kerre approach
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SCHOCKAERT, DE Cock &

The basic idea

@ Major aim: reasoning with fuzzy time intervals
@ Reasoning concerns endpoints

@ Yet a different family of fuzzy relations, e.g. from
(3Ix)(x € [a*, a+] A (Yy)(y € [bf, b+] =x<y))
to

bb=<(A, B) = sup Tu (A(x), inf h(B(y), L=<(x,¥)))

o Similar definitions for ee<<, be<<, eb<<, bb=, ee=,
be=, and eb™

@ Reduce to classical relations with crisp intervals
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['HE ALGEBRA
DuBois, HADJALI & | F

\I MOTIK APPROACH
OH I'S PPROACH
SCHOCKAERT, DE Cock & KERRE APPROACH

The reasoning task

I'HE ALGEBRA

Given a set of formulas of the kind Atz

bb<<(X1,X2) >a V be<<(X3’X4) > 3 ‘I\\“I\‘:[:rl\:‘.wlluw\u
eb<<(X1’ X2) 2 ")/ Voo, ?1‘:[;Alw

OHLBACH’S
APPROACH

o decide satisfiability (i.e. 3 an assignment of fuzzy
intervals to X; satisfying all the constraints)

APPROACH

@ checking entailment

ICAPS’07; Providence (RI), September 22, 2007



SCHOCKAERT, DE Cock &

Main result

@ A maximal tractable class of formulas where
satisfiability and entailment can be checked in
polynomial time

@ The proof exploits the restriction that values belong to
a finite set (reduction to classical point algebra)

@ Involved reasoning is substantially different from e.g.
constraint propagation
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['HE ALGEBRA
DuBois, HADJALI &
NAGY MOTIK AP
SACH’S
SCHOCKAERT, DE Cock & KERRE APPROACH

Overall view: a tentative classification

‘ Modeling of intervals

Couples of Vague events (fuzzy sets)

points
Relations |Non |Fuzzy Non fuzzy Fuzzy OnLBACH'S

fuzzy N
Approaches| IA™Z | Dubois |Nagypal |[Schockaert|Ohlbach [ Rensn

et al. et al. et al. b

Reasoning |As in|Compos. | Not con-|Special Not con-

IA table sidered | kind sidered

ICAPS’07; Providence (RI), September 22, 2007



SCHOCKAERT, DE Cock &

Conclusions

M. FALDA AND M.
GIACOMIN

I'HE ALGEBRA
Afuz

@ A number of approaches based on different ideas and
definitions DuBois, HADJALI

@ Links between each other not yet formally investigated

o Difficult to say whether one definition is better than the
other

@ Mainly depends on the considered application context Coa & K
(e.g. scheduling, annotations of historical events, DB
queries, ...)
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Reasoning with Qualitative and
Metric Temporal Information

APPLICATIONS

EXTENSIONS
CTPP
FDTPc

ICAPS’07; Providence (RI), September 22, 2007



Reasoning with Fuzzy Qualitative

and Metric

Temporal Information

Background
Extension of QAfZ
Fuzzy Metric Constraints
Transformation functions
Tractable problems
Fuzzy metric constraints
Fuzzy qualitative constraints
Applications
Medicine
Extensions
Conditional Temporal Problems with Preferences
(CTPPs)
Fuzzy Disjoint Temporal Problems with Classes
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BACKGROUND
['RACTABILITY

CATIONS

Fuzzy Point Interval Set (P/™?)

M. FALDA AND M.

Classical Point Interval relations can be extended by adding
preference degrees in analogy with PA™Z

A Fuzzy Point Interval relation can be written as
(blaa], alaz], d[as], s[aa], flas])

where o; € [0,1],/ =1,...,5 are the preference degrees

ICAPS’07; Providence (RI), September 22, 2007



Fuzzy Qualitative Algebra QA"™?

The Fuzzy Qualitative Algebra between points and intervals
is given by the union of:

o | Afuz
o PAfuz

@ Fuzzy PI relations

ICAPS’07; Providence (RI), September 22, 2007
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BACKGROUND
['RACTABILITY

CATIONS

Operations in QAfuz

M. FALDA AND M.
o Inversion and intersection operations of a relation RfZ
rely on the operations of the belonging algebras or sets

(in the case of Fuzzy PI)

@ In composition operation preference degrees are
computed as in JA7Z:

. o
O = maXu,v:relkE(reluorel\,)m’n{aw Oév}

where rel, o rel, are the classical operations defined
according to QA composition tables (see Table 1 on
Slide 19)

ICAPS’07; Providence (RI), September 22, 2007



How many relations has a fuzzy qualitative
algebra?

For a given algebra with n elements there are
Ex

—1PGl O

nr=n S XPOR(P() e
; ; e(Pi(j))
unique full relations to be checked for tractability and

X(Pi)) = Cloly

APPLICATIONS

1(P;j(j)) is the multinomial of |P;(j)| elements in j — 1 groups of M

EXTENSIONS
Cpi() (k) = [{xn : xp = Pin() A Pip(G) = k, h = 1. [Pi(/)[}] cTep
FDTP

elements and
1P ()
e(Pi() = [I (Px()+1)!

k=1

counts the equivalent relations

ICAPS’07; Providence (RI), September 22, 2007



EXTENSION OF QAFUZ
M 7 (C

B C INTS
TRANSFORMATION FUNCTIONS

Examples

M. FALDA AND M.
GIACO

Table: Cardinality of fuzzy full algebras

alg. || classic rel. fuzzy rel.
PAfuz 3 13 Mo
Pz 5 541 S
IAfuz 13 526 858 348 381 APPIGATIONS

A relation in QA™Z belongs to PA™z, PIfuz (PJfuz)=1 or
IAfZ therefore QA™Z has 526 858 349 476 relations

ICAPS’07; Providence (RI), September 22, 2007



EXTENSION OF QAFUZ
Fuz ET STRAINTS
TRANSFORMATION FUNCTIONS

Fuzzy Metric constraints

M. FALDA AND M.
Fuzzy Metric constraints can be extended to deal with

preferences by associating them a possibility distribution to
model preference degrees

The possibility distributions
adopted are trapezoidal:

ONSTRAINTS
Fu UALITA

da, b, c,d > [a]

EXTENSIONS
CTPP
FDTPc

a,beRU {—OO}, Cr,dy ERU {—I—OO}
ak € (0,1]
< is either (‘or [, > is either ) or ]

ICAPS’07; Providence (RI), September 22, 2007



BACKGROUND

EXTENSION OF QAFUZ
C CONSTRAINTS
TRANSFORMATION FUNCTIONS

“In disease di the symptom my occurs always after about a MDA AND AL
day. The symptom my follows my rather commonly; it uses

to last between 2 to 4 days, though other less possible cases
range from 1 day as the lowest bound to a week as the top

EXTENSIONS

[}
1
1
1
1 CTPP
1
1 FDTPc
1
1
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BACKGROUND

EXTENSION 0O
Fuzzy METR

Modelling imperfect data

Fuzzy constraints can express many kinds of imperfection:

===
o o
a

i
1
1
i
c d a b

a b
vagueness imprecision
a;=b,=c,=d, a,=b,=c,=d, .a i) tl: d -
indetermination unreliability

ICAPS’07; Providence (RI), September 22, 2007



BACKGROUND . A .
Ex QAFUZ

ILITY ;
Fuzzy METRIC CONSTRAINTS
TRANSFORMATION FUNCTIONS

CATIONS
SIONS

Correspondence with Natural Language

expressions

case a J; case b A;

atb (b) at about b (about b)
after about b... /i A\ ...before about ¢
(not less than about b...) : ; (...not more than about c)
ab cd
not before b ... ...not after ¢
(not less than b...) (...not more than c)
a=b c=d
aftera ... ... before d
(more than a...) (...less than d)
a d

SAPS’07; Providence (RI), September 22, 2007




M. FALDA AND M.
GIACOMIN

@ A qualitative relation is
mapped on a semi-axis <[o]
(or a point)

@ A trapezoid (metric) that
lies across the y axis is CONSTRAINTS
partitioned in three o
regions and then mapped

n (at most) three
qualitative relations

EXTENSIONS

FDTPc

ICAPS’07; Providence (RI), September 22, 2007



BACKGROUND
F\IP\I\I()\ OF QAFUZ

TRANSFORM ATION FUN( TIONS

Definition of QUANZ

QUANTZ function transforms a qualitative fuzzy relation
into a fuzzy metric constraint

METRIC
TRAINTS
ORMATION
NCTIONS

Only point-point relations can be transformed

TRACTABILITY

(0; 0, +OO, +OO)[O(] |f < [Oé] c R APPLICATIONS
0 [ [a] € R
(=00, —00,0,0)[a] if >[a]ER

=)
=)
(e]
N—r
L.
=
I
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BACKGROUND
['RACTABILITY

CATIONS

Definition of QUAL™=

M. FALDA AND M.
GIACOMIN

QUAL™Z function transforms a fuzzy metric constraint into
a qualitative point-point fuzzy relation

METRIC
INSTRAINTS
NSFORMATION

QUAL™ = | ] QUALp=
k={<,=>}

where
QUAL™Z(R) =< [maxi1,..nh]]

QUAL™(R) == [maxi—1... nh?]

90

QUAL™M?(R) => [maxi—1, _,h;]

5.

ICAPS’07; Providence (RI), September 22, 2007



BACKGROUND

EXTENSION OF QAFUZ
Fuzzy METRIC CONSTRAINTS
TRANSFORMATION FUNCTIONS

Operations between mixed constraints

Let C' be metric and C" be qualitative:
@ disjunction

C'uC” = C'UQUAN™=(C")
@ conjunction

C'NC" = C'N QUAN™(C")
@ composition (C” € PP)

C'o C" = C' o QUANTZ(C")
@ qualitative composition (C” € PI)

C'o C" = QUAL™M*(C) o C’

ICAPS’07; Providence (RI), September 22, 2007
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CONSTRAINTS
/ QUALITATIVE CONSTRAINTS

Outline

Tractable problems
Fuzzy metric constraints BTy
Fuzzy qualitative constraints

STRAINTS
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METRIC CONSTRAINTS
Fuzzy QUALITATIVE CONSTRAINTS

Dealing with complexity

M. FALDA AND M.
GIACOMIN

@ complexity in metric constraints is due to fragmentation

= reduce fragmentation (ULT, LPC, ...)

TRACTABILITY

@ complexity in qualitative constraints is intrinsic in the
algebra

=> identify new tractable sub-algebras

ICAPS’07; Providence (RI), September 22, 2007
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METRIC CONSTRAINTS
\TIONS Fuzzy QUALITATIVE CONSTRAINTS

SIONS

Fuzzy Upper-Lower Tightening (ULT %)

M. FALDA A
GIACOMIN

PLICATIONS
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FUzzy QUALITATIVE CONSTRAINTS

Basic principles

M. FALDA AND M.
GIACOMIN

For complexity considerations, the concept of a-cut is useful, ‘
in fact: Fp———

@ A set of fuzzy relations is tractable if all its a-cuts are
classic tractable relations

@ if all the classic sets coming from the a-cuts are
algebras then also the original fuzzy set is an algebra

ICAPS’07; Providence (RI), September 22, 2007



METRIC CONSTRAINTS
FUzzy QUALITATIVE CONSTRAINTS

A direct application

There are 72 tractable QA fragments identified by Jonsson
and Krokhin: JK

o by building the tractable fragment of QA™Z in such a
way that their a-cuts are in JK, the tractability can be
achieved in the fuzzy case

JK’_/fuz _ {Rfuz : Rguz e JK;, },j =1...72

ICAPS’07; Providence (RI), September 22, 2007
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M. FALDA A
GIACOMIN

QUALITATIVE
STRAINTS

PLICATIONS
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A more general definition

M. FALDA A
GIACOMIN

QUALITATIVE
STRAINTS

PLICATIONS
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FUzzy QUALITATIVE CONSTRAINTS

{f,s[0.5], b[0.5]}

CPD/\ Solution: P1|1 =
[
@ {f, s[0.5], si[0.5]}

To build an algebra in JK2\ JK'fuz Then we complete them

we start with two a-cuts with

Rz = {f,s,si} € A1 but ¢ &, Rfe = {f,s,b} € Vs
and and

Rftz) = {f} ¢ A1 but €&, RitZ) = {f} € Ve

ICAPS’07; Providence (RI), September 22, 2007
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Characterization of new diseases

M. FALDA AND M.
GIACOMIN

@ Start from physician data concerning common
symptoms from patients affected by an unknown disease

SFORMATIO!

© represent such data in a fuzzy constraint temporal
network

ONSTRAINTS

© abstract general temporal features characterizing the APPLICATIONS

MEDI

disease
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The SARS case

Patiort |

78 year-old woman)

o | 1
{43-year an) [
Patient § | L) - 4
18 year-old woman) |
Pati 4
24.yesr-old we L —
e —
(B4-yea
- L H 1l
Patient 6 - — — - . — YVV
(#9-year-old man) - 1 p—
i gt Hioupen APPLICATIONS
ati ¥ } & N R
37 year-old wor > MEDICINE
F ¥
Patient § | | R N0 5 2 6
76-year-old manj [ = 8
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Events considered

M. FALDA AND M.
GIACOMIN

Our aim is to characterize the incubation period. To do this,
we take into account:

@ the period during which the disease could have been got
(contagion period or CP) and its bounds

ONSTRAINTS
Fu QUALITATIVE

@ the start of the fever
APPLICATIONS

@ the start of the cough ——
@ the death
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e.g.: Patient 1:

APPLICATIONS
EXTENSIONS

@ in travel from February 13

MEDICINE

to February 23 (origin t0) T F C D |Tuwd Ddean
— e . e | Fifever  V:visit
C:cough  R: discharge
@ 2 days later, fever S L o P
@ 2 days later, cough . o 5
@ 3 days later, death bt
13 23 25 27 2 6 7 8 910 1314 15
\% F C APPLICATIONS
Mepic
1325 25 27 2 678 910 131415
H R F D
1325 25 27 2 678 910131415
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The vertices

M. FALDA AND M.
GIACOMIN

Po: to, the “origin of
time”
P1: begin of incubation

SFORMATIO!

P>: end of incubation

ONSTRAINTS
Fu UALITATIVE

Py: cough
Ps: death ArPHCATons

MEDI

°
°
o P3: fever
°
°
°

lé: incubation period

@ P7: actual contagion

P;" stands for Point, “/;" for
interval
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The constraints

M. FALDA AND M.
GIACOMIN

The constraints that refer to a patient have been defined as

in the following example, where we assume an uncertainty of
half a day:

@ about -10 days from Py to Py
Po{[-11,-10.5,—10,—-9.5]} P1

@ the contagion is contained in the incubation; “s” is less
plausible because the disease first has to spread in the
organism

ls{d,s[0.5], f} P;

ICAPS’07; Providence (RI), September 22, 2007
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Results

M. FALDA AND M.
GIACO

Here the hatched rectangle represents the contagion period,
the interval the incubation (it ends when the first symptom
appears)

'ONSTRAINTS
FUZZY QUALITATIVF
CONSTRAINTS

4
%, A,,A, 12 14770, 4%/% APPLICATIONS
-10

7 MEDICINE

%
-5 0 5 10 15 20 EXTENS

CTPP
FDTPc

about 1 to 12 days
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MEDICINE

Results

M. FALDA AND M.
GIACOMIN

Here the hatched rectangle represents the contagion period,
the interval the incubation (it ends when the first symptom
appears)

ACKGROUND

'ONSTRAINTS
V‘V%"?/V/A"V‘V" 7 ‘V‘/V/r///V%‘ APPLICATIONS
Z MEDICINE
-10 -5 0 5 10 15 20

about 0 to 4 days
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MEDICINE

Results

M. FALDA AND M.
GIACOMIN

Here the hatched rectangle represents the contagion period,
the interval the incubation (it ends when the first symptom
appears)

ACKGROUND

ONSTRAINTS
Fu QUALITATIVE

APPLICATIONS
MEDICINE

7
-10 -5 0 5 10 15 20

about 2 to 4 days
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MEDICINE

Results

Here the hatched rectangle represents the contagion period, M Taon b AL
the interval the incubation (it ends when the first symptom
appears)

ACKGROUND

'ONSTRAINTS
FUZZY QUALITATIVF
CONSTRAINTS

7 L
-10 -5 0 5 10 15 20 APPLICATIONS

MEDICINE

about 2 to 4 days

Incubation: about 2 to 4 days
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Outline

M. FALDA AND M.
GIACOMIN

SFORMATIO!

ONSTRAINTS
Fu UALITA

. EXTENSIONS
Extensions CTPP
FDTPc
Conditional Temporal Problems with Preferences
(CTPPs)

Fuzzy Disjoint Temporal Problems with Classes
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Other temporal reasoning frameworks

Many extensions have been proposed, for example:

@ Simple Temporal Problems with Uncertainty
@ Labelled Temporal Networks
@ Conditional Temporal Problems

@ Simple Temporal Problems with Classes

ICAPS’07; Providence (RI), September 22, 2007
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Conditional Planning

M. FALDA AND M.
GIACOMIN

In real world a planning agent is not omniscient:

@ plans cannot be generated off-line

@ reactive approach is usually too restrictive (real-time RANSFORMATIO
requirements cannot be guaranteed)

Conditional planning adds observations actions and
conditional branching

@ actions are still atomic

ICAPS’07; Providence (RI), September 22, 2007
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FDTPc

Classical CTPs

A CTP is a tuple < V,E,L, OV, O,P > where

@ P is a set of Boolean atomic propositions A, B, . ..

@ V is a set of variables

@ E is a set of temporal constraints between variables
vievVv

L:V — QF is a function attaching conjunctions of
literals in @ to each variable v; € V

OV C V is the set of observation variables

O : P — OV is a bijective function that associates an
observation variable to a proposition. The node O(A)
provides the truth value for A

A variable is executed only if its associated label, i.e. a
conjunction of literals, is true; once executed, it gives the

truth value of the variables it observes
ICAPS’07; Providence (RI), September 22, 2007
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Consistency notions

There are three notions of consistency

o Strong Consistency (SC): there is a fixed way to
assign values to all the variables that satisfies all
projections

@ Weak Consistency (WC): the projection of each
scenario is consistent

e Dynamic Consistency (DC): the current partial
consistent assignment can be consistently extended
independently of the upcoming observations

SC — DC — WC

ICAPS’07; Providence (RI), September 22, 2007



BACKGROUND
TABILITY CTPP
\TIONS FDTPc

NSIONS

Introducing Fuzzy Rules

M. FALDA AND M.

Labels, associated to variables, act as rules that select
different execution paths

IF L(v) THEN EXECUTE(v)

Degrees can be added
@ to the premise (pt : L(V) — A): truth level

@ the consequence (cp: V — A): preference

ICAPS’07; Providence (RI), September 22, 2007
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Formal definition of a Fuzzy CTPP

A CTPP is a tuple < V,E,L,0OV, O, P > where

@ P is a finite set of fuzzy atomic propositions

@ E is a set of soft temporal constraints between pairs of
variables v; € V

@ L:V — QF is a function attaching conjunctions of
fuzzy literals Q = {p; : pi € P} U {-p; : pi € P} to
each variable v; € V

@ R:V — FR is a function attaching a fuzzy rule
r(aj, cp) to each variable v; € V

@ O:P — OV is a bijective function that associates an
observation variable to each fuzzy atomic proposition.
Variable O(A) provides the truth degree for A.

ICAPS’07; Providence (RI), September 22, 2007
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Example of Fuzzy CTPP

M. FALDA AND M.
GIACOMIN

3ACKGROUND

r,(0.8, cp) r,(0.8, cp)

[0, +x) 2, 2] 0, 1, 1 ‘ . |
° { QUALITATIVE
r2(05 Cp) I (05 Cp) }1'!‘[\“\11(11\‘
r;,(0.3, Cp r,(0.3, Cp

[1 1]
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Meta-scenarios

M. FALDA AND M.
GIACOMIN

Scenarios in CTPPs depend not only on propositions but
also on threshold levels

= possibly infinite NOTIONE

@ Two scenarios are equivalent is they have the same
projection

@ Partition scenarios in equivalence classes

@ Minimal set of meta-scenarios: only one representative
for each equivalence class

ICAPS’07; Providence (RI), September 22, 2007
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Fuzzy metric c-constraints

Sometimes disjunctive constraints are used to model distinct
scenarios which can be considered independently and which
often share common parts

ANSFORMATIO

A fuzzy constraint with classes, or fuzzy c-constraint, is a Fuzzy quat

constraint of the form APPLICATIONS
MEDIC

e = {<ax, by, ¢k, dk > [ak]<«ks, k € N}

FDTPc

where k are distinct classes
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FDTPs with classes (FSTP¢)

M. FALDA AND M.
GIACOMIN

A Fuzzy STP€ is a tuple < V, E, M, VC, EC > where

@ V is a set of variables
@ E is a set of constraints between variables v; € V
o C is a finite set

o VC:V x C—<2%0,1] > is a function that
associates to a pair variable-class a preference

@ EC: E x C —<2¢,[0,1] > is a function that

EXTENSIONS

associates to a pair constraint-class a pair of temporal crep

FDTPc

bounds and a preference
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Solution of a FTDP¢

M. FALDA AND M.
GIACOMIN

A solution of a FDTPE€ is a set of triples < ¢, S, @ > where:

SFORMATIO!

@ cis a class

@ S:V — Ris an assignment of the variables in V that
satisfies all fuzzy constraints with class ¢

@ « is the degree of satisfaction of the FSTP associated
to class ¢

FDTPc

ICAPS’07; Providence (RI), September 22, 2007
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Consistencies

There are three notions of consistency:

O A FDTP€ is “a-class consistent in ¢” (a-CC,) if the
FSTP associated with class c is consistent with a
satisfaction degree equal to «

© A FDTP€ is a-existentially consistent (a-EC) if exists
a class whose associated FSTP is consistent with a
satisfaction degree equal to «

@ A FDTP€ is a-universally consistent (a-UC) if the
FSTPs of any class are consistent with a satisfaction
degree not lower than «

ICAPS’07; Providence (RI), September 22, 2007
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. . M. FALDA AND M.
Various diseases can be HACOMIN

marked with classes

The vertices represent
temporal symptoms evolutions
of three diseases

@ |: incubation

o F: fever

@ E: exanthemata

o C: contagion FDTPC

C=<1><K2>K3>
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Conclusions
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Towards an user-friendly integrated system

Natural Language

KB
query(time, ...).

KB

! Knowledge Base Management
fact(time, ...).

uUiL

User Interface Language
(Controlled lang.)

Symbolic Representation
A

XML

<vertex subj=...> Constraint solver
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