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Information

Information: Any organized collection of symbols or signs
produced:

either by observing natural or artificial phenomena

or by the cognitive activity of agents

useful for:

understanding our world

support decision-making

communicate with other agents

Knowledge Representation and Reasoning: Theories and
methods whose aim is to exploit all types of available
information useful for problem solving and communication
using intelligent machines
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Temporal Reasoning

Time is an important aspect to be accounted for:

real world is dynamic

perceptions and human actions are characterized by
time

Applications

Medical diagnoses: which disease presents this sequence
of symptoms?

Planning: which temporal relation exists between the
actions A and B?

Temporal Databases: which is the chronological order
of a set of vases?
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Queries

A Temporal Reasoner should be able to answer to queries
about temporal information, for example:

1 Is the information coherent? Which is a consistent
scenario?

2 Can the event Xi happen between t1 and t2 instants
after Xj?

3 Must the event Xi happen t instants before Xi?

4 In which instants t can the event Xi be verified?

5 If the event Xi happens in t1 in which instants t2 can Xj

happen?
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Representing time

If we want to take into account the time we have to consider
several aspects

ontology: how we can model time?

representation: which hypotheses hold?

reasoning methods: which entities allow obtaining the
data in which we are interested?

algorithms: efficiency - expressiveness

ICAPS’07; Providence (RI), September 22, 2007
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Temporal Logics

Three main approaches have been proposed to deal with
time:

Logics with temporal parameters

modal temporal Logics [Prior57]

PΦ: Φ was true
F Φ: Φ will be true

Reified Logics

Interval algebra (IA) [Allen83]
Event Calculus [Kowalski86]

HoldsAt(hand tool(box), t1)
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Temporal Reasoning using CSPs

A CSP is defined as a tuple < X ,D,R > where:

1 X is a set of variables {x1, . . . , xn}
2 D is a finite set {d1, . . . , dn} of values such that xi ∈ Di

3 R is a set of relations {R1, . . . ,Rk} which specify the
values d allowed by the constraints themselves
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Solutions of a CSP

A solution of a CSP is an assignment of the variables which
simultaneously satisfies all the constraints

It is possible to:

check the existence of a solution

search all the solutions

search the optimal solution.

If at least a solution exists then the CSP is said satisfiable or
consistent
The intersection of all the solutions gives the minimal
network
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Answering the queries

By representing the temporal problem using CSPs the
previous queries can be answered

1 the information is coherent: check the consistency of
the network

2 event Xi can happen between t1 and t2 instants after
Xj : add the constraint Xj − Xi ∈ [t1, t2] the network
and check consistency

3 event Xi must happen t instants before Xi : assert the
negation of that constraint and check the consistency

4 In which instants t can the event Xi be verified? the
allowed instants are the minimal domain of Xi − X0

5 If the event Xi happens in t1 in which instants t2 can Xj

happen? check that t2− t1 ∈ Xj −Xi (minimal network)
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Metric and qualitative temporal information

Two types of temporal information exist:

qualitative information (relations)

“event A can happen before or during event B”

metric information (numeric data)

“from 10:30 to 11 p.m.”
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Allen’s Interval Algebra (IA)

Allen’s Interval Algebra is a
qualitative temporal algebra
based on 13 atomic relations:

mutually exclusive

jointly exhaustive

Example of relation

A{b,m}B
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Fuzzy Temporal
Reasoning

M. Falda and M.
Giacomin

Temporal
Reasoning

Temporal
Information

Qualitative
Information

Metric
Information

Imperfect data

Types

Possibility Theory

Possibility vs.
Probability

Temporal Reasoning
Temporal Information

Imperfect data

Qualitative Information
Metric Information

Operations in IA

A relational algebra is a set of relations closed under certain
operations:

Allen’s Interval Algebra is closed under

inversion

(A{b,m}B)−1 = B{bi ,mi}A

intersection

A{b,m}B ∩ A{b}B = A{b}B

composition

A{b,m}B ◦ B{b}C = A{{b ◦ b} ∪ {m ◦ b}}C

ICAPS’07; Providence (RI), September 22, 2007
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Transitivity table of IA

Composition of atomic relations is given by a transitivity
table

◦ b a d di o ...

b b ? b d o
m s

b b ...

a ? a a d oi
mi f

a a d oi
mi f

...

d b a d ? b d o
m s

...

di b di o
m fi

a di oi
mi si

o oi
eq
dur c

di di o fi ...

... ... ... ... ... ... ...

ICAPS’07; Providence (RI), September 22, 2007
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Point Algebra (PA)

If events are points, only three relations are possible:

{<,=, >}

The operations defined are
the same as IA

Example of relation

A{<,=}B

◦ < > =

< < ? <

> ? > >

= < > =

Table: Transitivity table for PA
relations
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Convex relations of qualitative algebras

If a network has only convex relations it can be minimized
using Path Consistency algorithm:

PAc = PA\{{<,>}}
the maximal tractable subalgebra of IA, called H has
been identified by Nebel; it is formed by convex relations
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Qualitative Algebra (QA)

The Qualitative Algebra
between points and intervals
is given by the union of:

Allen’s Interval Algebra

the Point Algebra PA

a set of 5 relations
between Points and
Intervals (PI relations)

{b, a, d , s, f }

Figure: PI relations and their
inverses
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Transitivity table of QA

Composition in QA involves transitivity tables for all the
allowed combinations of relations (some do not have sense
and are marked with �, e.g. PI ◦ PI)

◦ PP PI IP II

PP TPA T1 � �
PI � � T2 T4

IP T T
1 T3 � �

II � � T T
4 TIA

Table: Transitivity table of QA
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Simple Temporal Problems (STPs)

A Simple Temporal Problem is defined as a tuple < V ,E >
where:

V is a set of variables {v1, . . . , vn} representing
timepoints

E is a set of constraints {e1, . . . , er} between the
variables in V

A constraint has the form

vi [a, b]vj

and means a ≤ vj − vi ≤ b
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Operations in STPs

There are three fundamental operations:

1 inversion
(vi [a, b]vj)

−1 = vj [−b,−a]vi

2 intersection

(vi [a, b]vj) ∩ (vi [c , d ]vj)

= (vi [a, b] ∩ [c , d ]vj)

3 composition

(vi [a, b]vj) ◦ (v [c , d ]vj)

= (v [a + c , b + d ]vj)
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The origin of complexity

Temporal problems are in general NP-complete:

complexity in metric constraints is due to fragmentation

complexity in qualitative constraints is intrinsic in the
algebra
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Real data are imperfect data
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The nature of uncertainty

Uncertainty is a property of the belief state of an agent

For example a robot has to grasp a block:

“the block is on the table” is an imprecise fact

“the block is near the centre of the table” is a vague
fact

“yesterday the block was in (10,12)” is an unreliable
fact
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Linguistic Gradual Information

Categories manipulated in natural language are not always
all-or-nothing:

“Many Americans are tall”

John and Paul have approximately the same age”

Crisp sets are not sufficient!

The set of young ages is ill-defined, vague
Vague predicates: they have not a crisp boundary
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Gradual truth

A proposition involving a gradual predicate can be true to a
degree: a bottle can be neither empty not full, a 50-year old
person is old to some extent

Truth(Old(Paul)) ∈ (0, 1)

Degrees of truth can be linguistic: “somewhat old”, “rather
old”, “very old”

ICAPS’07; Providence (RI), September 22, 2007



Fuzzy Temporal
Reasoning

M. Falda and M.
Giacomin

Temporal
Reasoning

Temporal
Information

Qualitative
Information

Metric
Information

Imperfect data

Types

Possibility Theory

Possibility vs.
Probability

Temporal Reasoning
Temporal Information

Imperfect data

Types
Possibility Theory
Possibility vs. Probability

Forms of graduality

The existence of gradual predicates is due to

matching a continuous observable scale and a finite
vocabulary

[0, 200]cm→ {short,medium, tall}

there is no infinitely precise height s∗ such that if
s > s∗ tall(s) is true otherwise s is false
It is not that this threshold is unknown: it simply does
not exist. The truth scale is continuous because the
observable is continuous

The notion of typicality: elements of a class of objects
can be more or less typical of that class: bird, chair, ...
An ordering typicality relation: x >F y means x is more
typically F than y
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Fuzzy sets

Fuzzy set F on S : ∀s, µF (s) ∈ [0, 1]
For example: F = young

A gradual representation preserves continuity and is less
sensitive to the choice of a threshold
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Definitions of a Fuzzy Set

1 A Fuzzy Set F is a set with gradual boundaries; can be
defined using a generalized characteristic function
(called membership function)

µF : U → [0, 1]

2 Equivalently, also as a weighted nested family of sets

F =
⋃

α∈[0,1]

Fα

where Fα = {u : µF (u) ≥ α}
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Fuzzy Interval

A membership function is a
fuzzy interval

core(F ) = {u : µF (u) = 1}

support(F ) = {u : µF (u) > 0}

the core includes most
typical elements

the support includes least
typical elements
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Motivation

The Possibility Theory allows working with qualitative
models:

it is more robust for modelling uncertain data (eg
missing statistics)

symbolic knowledge and numerical imprecision can be
described

it is a generalization of crisp Classical Logics, therefore
it can represent also precise data when available
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Possibility vs. Probability

Probability Measure Membership Function

Calculates the probability
that an ill-known variable x
ranging on U hits the well-
known set A

Calculates the membership
of a well-known variable x
ranging on U hits the ill-
known set A

Before an event happens After it has happened

Measure Theory Set Theory

Domain is 2U (Boolean Al-
gebra)

Domain is [0, 1]∗U (Cannot
be a Boolean Algebra)
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Limits of classical CSPs

Classical CSPs:

are rigid, since all constraints must be satisfied

assign the same importance to all the constraints

cannot specify uncertainty in the constraints
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Fuzzy CSPs

It is possible to map a well-ordered partition (E1,E2, . . . ,En)
of constraints to a plausibility scale L using a possibility
distribution π

A possibility distribution πx is the representation of a state of
knowledge: what an agent knows of the state of affairs x is
Conventions

πx(s) = 0⇔ x = s is impossible, totally excluded
(not expressible with ≥π
πx(s) = 1⇔ x = s is expected, normal, fully plausible,
unsurprising

πx(s) > πx(s ′)⇔ x = s more plausible than x = s

ICAPS’07; Providence (RI), September 22, 2007
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Example

Given the sentence “John is young”

πyoung (a) is the possibility that the age of John is a
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Part II

From crisp to fuzzy constraint
networks
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Motivation

CSP is a general framework:

A set of variables

A set of constraints

Major tasks: consistency checking, finding a solution,
compute the minimal network

Temporal reasoning: specialized constraint-based reasoning
frameworks

Specific variable domains

Restricted shape for constraints

Specific properties and algorithms can be exploited to
solve major tasks
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Motivation (2)

FCSP is a generalization of classical CSP in order to reason
with fuzzy constraints:

A set of variables

A set of fuzzy constraints

Major tasks: determining the consistency degree, finding
an optimal solution, compute the minimal network

Links and similarities between CSP and FCSP at a
general level

Idea: to what extent properties, theorems and algorithms of
specific frameworks can be generalized to corresponding
fuzzy frameworks?

ICAPS’07; Providence (RI), September 22, 2007
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Fuzzy constraint network (FCN)

N = 〈X ,D,C 〉 where:

X = {x1, . . . , xn} (a set of variables)

D = {D1, . . . ,Dn} (the set of relevant domains)

C = {C1, . . . ,Cm} (a set of constraints)

where each constraint has the form Ci = 〈V (Ci ),Ri 〉, with

V (Ci ) = {y1, . . . , yk} ⊆ X

Ri : D ′1 × . . .D ′k → [0, 1]

A graphical representation for
binary networks (example) 1

13C  :

23C

12C
3x2x

1x

ICAPS’07; Providence (RI), September 22, 2007
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Fuzzy constraint network (FCN)

Degree of local consistency
Given d (instantiation of a set of variables Y ⊆ X ):

cons(d) = min
Ri |V (Ci )⊆Y

Ri (d
↓V (Ci ))

Solutions of N
Complete instantiations d of the variables, with consistency
degree

deg(d) = cons(d)

Solution set of N : the fuzzy set

SOL(N ) : D1 × . . .Dn → [0, 1]

ICAPS’07; Providence (RI), September 22, 2007
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Fuzzy constraint network (FCN)

Consistency degree of a network N : consistency degree
of the “best” solutions:

sup
d∈D1×...×Dn

deg(d)

Optimal solutions of N : solutions d such as deg(d) is
equal to the consistency degree of N
Equivalence of fuzzy constraint networks: the same
variables, the same domanis, the same solution set
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Constraint propagation algorithms,
k-consistency and minimality

Constraint propagation algorihms: maintain network
equivalence, enforce local consistency of the network

k-consistency:

∀Y = {y1, . . . , yk−1} ⊆ X ,∀yk ∈ X with yk /∈ Y ,

∀d ∈ D ′1 × . . .× D ′k−1,

∃dk ∈ D ′k such as cons(ddk) = cons(d)

Example: path-consistency is 2-consistency

The minimal network is the “most explicit” one:

∀{xi , xj} ⊆ X ,∀d ′ ∈ Di × Dj ,

∃d ∈ D1 × . . .× Dn such as cons(d) = cons(d ′)
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Relationship between classical and fuzzy
constraint networks

A classical crisp constraint network can be seen as a fuzzy
constraint network with preference degrees in {0, 1} only.

Classical network Fuzzy network

Preference degrees: {0, 1} Preference degrees: [0, 1]

Consistency Consistency degree

Solution Optimal solution

k-consistency and minimal-
ity: extend a consistent in-
stantiation to a consistent
instantiation

k-consistency and minimal-
ity: extend an instantia-
tion preserving its consis-
tency degreee
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Constraint-based reasoning frameworks

Scenarios of interest represented by means of (fuzzy or crisp)
constraint networks

Definition
Class of crisp (fuzzy) constraint networks HN (FN ): a
possibly infinite set of crisp (fuzzy) constraint networks.

TCSP: temporal constraint satisfaction problem

variables: time points

domains: <
constraints: binary,
Cij : xi − xj ∈ I , I = {(a1, b1), . . . (an, bn)}

this can be indicated as HNTCSP
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Constraint-based reasoning frameworks (2)

Allen’s interval algebra (IA)

variables: time intervals

domains: <2

constraints: binary, disjunctions of 13 basic relations

this can be indicated as FN IA
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A bridge between crisp and fuzzy reasoning
frameworks

α-cut of a fuzzy set R fuz :

1

α

The crisp set R fuz
α = {d | R fuz(d) ≥ α}

α-cut of a fuzzy constraint C fuz =
〈
V ,R fuz

〉
:

The crisp constraint C fuz
α =

〈
V ,R fuz

α

〉
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A bridge between crisp and fuzzy reasoning
frameworks (2)

α-cut of a fuzzy constraint network N fuz :

1

α
1

α

The crisp constraint network
N fuz

α = 〈X ,D, {C1α, . . . ,Cmα}〉

α-cuts uniquely identify the original constraints
and networks

If ∀α C1α = C2α then C1 = C2

If ∀α N1α = N2α then N1 = N2
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The key property of α-cut

Theorem
Given a fuzzy constraint network N

[SOL(N )]α = SOL(Nα)

Sketch of proof.

d ∈ [SOL(N )]α if and only if it satisfies the worst
constraint with a degree ≥ α
this can happen if and only d satisfies all constraints
with a degree ≥ α
in turn, this can happen if and only if d satisfies all the
α-cuts of N , i.e. d ∈ SOL(Nα)
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From crisp to fuzzy reasoning frameworks

Crisp projection of a class FN of fuzzy constraint
networks:

C(FN ) = {Nα | α ∈ [0, 1] ,N ∈ FN}

Fuzzy extension of a class HN of crisp constraint
networks:

FN ∈ F(HN ) iff C(FN ) ⊆ HN

We consider the proper fuzzy extension, i.e. that
including all fuzzy networks satisfying the condition
above
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Examples

FNTCSP : Fuzzy extension of TCSP

variables: time points

domains: <
constraints: binary, of the form Cij : 〈I , f 〉, where
f : I → [0, 1] and I = {(a1, b1), . . . (an, bn)}

IAfuz : Fuzzy extension of Interval Algebra

variables: time intervals

domains: <2

constraints: binary, of the kind I1(b [0.3] ,m [0.5])I2
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Syntax and semantics of IAfuz

Syntax: IAfuz is defined on the set

I = {b[α1], a[α2],m[α3],mi [α4], d [α5]di [α6], o[α7],
oi [α8], s[α9], si [α10], f [α11], fi [α12], eq[α13]}

where αi ∈ [0, 1], i = 1, . . . , 13

Semantics

Atomic relation: fuzzy subset of <2 ×<2

Generic relation: union of fuzzy subsets

Example:

0.5

I (b[0.5],m[0.7])I21

XR  R
22b m

0.7
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Extending tractable classes

Tractable class of crisp networks: there is a polynomial
algorithm

SOLALGHN (N ) =

{
d : d ∈ SOL(N ) if SOL(N ) 6= ∅
FAILED otherwise

Tractable class of fuzzy networks: there is a polynomial
algorithm able to find an optimal solution (thus also to
compute the consistency degree of the network)

Theorem
Let HN be a tractable class of crisp networks. If FN is a
fuzzy extension of HN such that ∀N ∈ FN the number of
preference degrees is at most exponential in the number of
variables, then FN is tractable.
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Sketch of proof.

Given a network N ∈ FN , the set of the optimal
solutions is [SOL(N )]β, where β is the maximum α
such that [SOL(N )]α 6= ∅
By the key property, [SOL(N )]β = SOL(Nβ): we can
work on crisp networks

Thus, we can perform a binary search (logarithmic
complexity) on the preference degrees of N , exploiting
SOLALGHN to check consistency of SOL(Nα) for
different values of α
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Fuzzy extension of simple temporal problems

STP (Simple Temporal Problem) : HN STP

variables: time points

domains: <
constraints: binary, of the form Cij : xj − xi ∈ [ai , bj ]

HN STP is tractable

FN STP : the fuzzy extension of HN STP

variables: time points

domains: <
constraints: binary, of the form Cij : 〈[ai , bj ] , f 〉 where
f : [ai , bj ]→ [0, 1] and f is semi-convex, i.e.
∀y {x | f (x) ≥ y} forms an interval

FN STP is tractable
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Tractable subclasses of IAfuz

Tractable subalgebras of classical IA

SAc : IA-relations that can be expressed by PAc -relations
between endpoints, i.e. PA-relations without 6=
SA: IA-relations that can be expressed by PA-relations
between endpoints

H: maximal tractable subalgebra introduced by Nebel,
including so-called pre-convex relations of IA

Tractable subalgebras of IAfuz

SAc
fuz (and similarly SAfuz and Hfuz) can be defined as

the set of relations {R ∈ IAfuz | ∀α Rα ∈ SAc}
All these subalgeras are tractable

More on this later
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Fuzzy extension of properties

Specific properties can be exploited by algorithms (e.g.
path consistency entails minimality in some subclasses)

Property of a class GN of crisp or fuzzy constraint
networks:

P : GN → {0, 1}

Given a property P defined on a crisp class HN and a
fuzzy class FN ∈ F(HN )

P fuz(N ) =

{
1 if ∀α ∈ [0, 1] P(Nα) = 1
0 otherwise

It can be shown that if P1
fuz and P2

fuz are the fuzzy
extensions of P1 and P2 respectively, then
(P1

fuz ∧ P2
fuz) is the fuzzy extension of (P1 ∧ P2)
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Fuzzy extension of important properties

Theorem
Given a crisp class HN and a fuzzy class FN ∈ F(HN ),
k-consistency on FN is the fuzzy extension of k-consistency
on HN

Sketch of proof.

By definition, we have to prove that for any N ∈ FN ,
N is k-consistent iff ∀α ∈ [0, 1] Nα is k-consistent

Assume N is k-consistent; consider α ∈ [0, 1] and Nα:

any consistent instantiation d of k − 1 variables in Nα

belongs to SOL(N k−1
α ) = (SOL(N k−1))α (key prop.)

by k-consistency of N , d can be extended to any
additional variable maintaining the consistency degree α
ddk ∈ (SOL(N k))α = SOL(N k

α) (key prop.)
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Fuzzy extension of important properties (2)

Sketch of proof (2).

Assume ∀α ∈ [0, 1] Nα is k-consistent; we have to
prove that N is k-consistent:

any instantiation d of k − 1 variables with cons(d) = β
belongs to (SOL(N k−1))β = SOL(N k−1

β ) (key prop.)

by k-consistency of Nβ , d can be extended to any
additional variable maintaining consistency
ddk ∈ SOL(N k

β ) = (SOL(N k))β (key prop.)

Corollary

Fuzzy path-consistency is the fuzzy extension of classical
path-consistency.
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Fuzzy extension of important properties (3)

Theorem
Fuzzy minimality is the fuzzy extension of classical
minimality.

Proof.

We have to prove that, given N ∈ FN , N is minimal if
and only if ∀α ∈ [0, 1] Nα is minimal.

The proof proceeds in a similar way as the one for
k-consistency, exploiting the key property of α-cuts.
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Extending theorems from crisp to fuzzy

Theorem
If we have a theorem in a crisp class HN of the form

∀N ∈ HN P1(N )⇒ P2(N )

then the following theorem holds in FN ∈ F(HN ):

∀N ∈ FN P fuz
1 (N )⇒ P fuz

2 (N )

Proof.

If P fuz
1 (N ), then by definition ∀α ∈ [0, 1] P1(Nα) holds.

By the theorem in HN ∀α ∈ [0, 1] P2(Nα) holds.

Then P fuz
2 (N ) holds by definition.
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Some direct results

As for classical simple temporal problems, in FN STP

path-consistency entails minimality

As for classical SAc , in SAc
fuz path-consistency entails

minimality

As for classical SA, in SAfuz minimality of
4-subnetworks entails minimality

ICAPS’07; Providence (RI), September 22, 2007



Fuzzy Temporal
Reasoning

M. Falda and M.
Giacomin

Extending algorithms from crisp to fuzzy

Algorithms that compute transformation of networks:
given a class GN of fuzzy/crisp networks

GN -T-ALG A : GN → GN
such that A(〈X ,D,C 〉) = (〈X ,D,Cout〉)

GN -T-ALG equivalence preserving conditioned on P
(P-EQ)

∀N ∈ GN P(N )→ SOL(A(N )) = SOL(N )

GN -T-ALG enforcing P2 conditioned on P1 (P1-to-P2)

∀N ∈ GN P1(N )→ P2(A(N ))
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Extending algorithms from crisp to fuzzy (2)

Fuzzy extension of a HN -T-ALG A to FN , where
FN ∈ F(HN ):

FN -T-ALG Afuz such that

∀N ∈ FN , ∀α ∈ [0, 1] , (Afuz(N ))α = A(Nα)

Results:

Afuz is guaranteed to exist provided any network has a
finite number of preference degrees
If A is P-EQ, then Afuz is P fuz -EQ
If A is P1-to-P2, then Afuz is P fuz

1 -to-P fuz
2
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Conclusions

The methodology also holds using other operators
besides min, provided idempotency holds

Main message: some classical results can be directly
extended to a fuzzy framework
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The algebra
IAfuz

Dubois, HadjAli
& Prade

Nagypál &
Motik approach

Ohlbach’s
approach

Schockaert, De
Cock & Kerre
approach

The algebra IAfuz

Dubois, HadjAli & Prade
Nagypál & Motik approach

Ohlbach’s approach
Schockaert, De Cock & Kerre approach

Part III

Fuzzy qualitative temporal reasoning
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Ohlbach’s approach
Schockaert, De Cock & Kerre approach

Outline

The algebra IAfuz

Dubois, HadjAli & Prade approach

Nagypál and Motik approach

Ohlbach’s approach

Schockaert, De Cock & Kerre approach
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Dutta’s and Guesgen’s approaches

Dutta’s approach

A set of precise and disjoint intervals assumed as
background

Initial representation about events: µi (e) ≡ degree of
possibility that interval i contains event e

Infer the possibility degree that a relation in {b, a,m}
holds between two events

Guesgen et al.

Focus in imprecise spatial descriptions

Imprecision of observations expressed by fuzzy values
associated to Allen’s atomic relations

Both approaches can be expressed by a fragment of IAfuz
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The algebra IAfuz

Dubois, HadjAli & Prade
Nagypál & Motik approach

Ohlbach’s approach
Schockaert, De Cock & Kerre approach

Syntax and semantics of IAfuz

Syntax: IAfuz is defined on the set

I = {b[α1], a[α2],m[α3],mi [α4], d [α5]di [α6], o[α7],
oi [α8], s[α9], si [α10], f [α11], fi [α12], eq[α13]}

where αi ∈ [0, 1], i = 1, . . . , 13

Semantics

Atomic relation: fuzzy
subset of <2 ×<2

Generic relation: union of
fuzzy subsets

0.5

I (b[0.5],m[0.7])I21

XR  R
22b m

0.7

Intended meaning Preference between IA-relations, e.g. A1

should be disjoint w.r.t. A2, and it’s better A1 before A2
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Local consistency in IAfuz networks

Singleton labeling (assignment): choice of an atomic
relation for every pair of intervals

Degree of local consistency:

degN (s) =

{
0 if s is not consistent
min(i ,j) Rij(sij) otherwise

Example:

b[0.9],m[0.2]

m[0.5],o[0.7]m[0.6]

I2

31 II

(I1 m I2, I2 m I3, I1 b I3) : 0.5
(I1 m I2, I2 m I3, I1 m I3) : 0
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Operations of the algebra IAfuz

Inversion

R−1 = (rel1
−1[α1], . . . , rel13

−1[α13])

Conjunctive combination R = R ′ ⊗ R ′′

R = (rel1[α1], . . . , rel13[α13])

αi = min {α′i , α′′i} i ∈ {1, . . . , 13}

Disjunctive combination R = R ′ ⊕ R ′′

R = (rel1[α1], . . . , rel13[α13])

αi = max {α′i , α′′i} i ∈ {1, . . . , 13}
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Operations of the algebra IAfuz (2)

Composition

Atomic relations:

rel1[α1] ◦ rel2[α2] = (rel ′1[α], rel ′2[α], . . . , rel ′l [α])

where rel ′i ∈ {rel1 ◦ rel2} and α = min {α1, α2}

Generic relations: by distributivity property

R ′ ◦ R ′′ = (rel1[α1], . . . , rel13[α13])

αp = max
q,r :relp∈{relq◦rel r}

min {α′q, α′′r}

p, q, r ∈ {1, . . . , 13}

Intuitively: αp is the degree through which relp can be
extended to a labeling involving R ′ and R ′′
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Example of composition

kI

kIIi b[0.7]

Ii b[0.5]kIjI
Ii

kIjIIi

Rij = (o[0.5],m[0.7])
Rjk = (b[0.9])

Rij◦Rjk = (o[0.5],m[0.7])◦(b[0.9]) = (b[0.5]⊕b[0.7]) = b[0.7]
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Interesting reasoning tasks in IAfuz

Determining the consistency degree of an IAfuz -network

Finding an optimal solution (i.e. singleton labeling)

Computing the minimal network

Equivalent under polynomial Turing-reduction

Algorithms

Constraint propagation algorithms: mainly related to
minimality, e.g.

PC fuz : enforces path-consistency
AAC fuz : enforces minimality of 4-subnetworks

Extend classical algorithms, but with specific
improvements

Branch & Bound algorithm: computes an optimal
solution
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Path-consistency algorithm

Path consistency enforced if and only if
∀(i , j , k) Rij ≤ (Rik ◦ Rkj)

ii

vv

rel [   ]α

αrel [   ]αu urel [   ]

iαvα ≥
iαuα ≥

i

k

j

Basic idea: applying transitivity rules

k

ji

RjkRik

Rij

Since IAfuz operations generalize the classical ones, the
classical PC -algorithm is still valid.
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The original path-consistency algorithm

PC fuz(N )
1. Q ← {(i , j) | 1 ≤ i < j ≤ n}
2. while (Q 6= ∅)
3. select and delete (i , j) from Q
4. for k ← 1 to n, k 6= i and k 6= j
5. t ← Rik ⊗ (Rij ◦ Rjk)
6. if (t 6= Rik)
7. then Rik ← t
8. Rki ← t−1

9. Q ← Q ∪ {(i , k)}
10. t ← Rkj ⊗ (Rki ◦ Rij)
11. if (t 6= Rkj)
12. then Rkj ← t
13. Rjk ← t−1

14. Q ← Q ∪ {(k, j)}
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Improvements

Not labeled edges

k

ji

Rik

Rij

Rij ◦ Rjk = I [α∗ij ]

α∗ij = max {αij
1 , . . . , α

ij
13}

Con-Sup = min(i ,j) {α∗ij}
When Con-Sup decreases ∀(i , j) Rij ← Rij ⊗ I [Con-Sup]
However, it’s the same to apply this truncation to edges
involved in Rik ← Rik ⊗ (Rij ◦ Rjk) + final truncation

Rik ← Rik ⊗ (Rij ◦ Rjk) only if
min∗ij < Con-Sup and min∗jk < Con-Sup

Insert an edge into Q only if a preference degree strictly
lower than Con-Sup has been modified
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The improved path-consistency algorithm

PC2fuz (N )
1. Q ← {(i , j) | 1 ≤ i < j ≤ n,minij < ConsSup}
2. while (Q 6= ∅)
3. select and delete (i , j) from Q
4. if (minij < ConsSup)
5. then for k ← 1 to n, k 6= i and k 6= j
6. if (minjk < ConsSup)
7. then t ← Rik ⊗ (Rij ◦ Rjk )
8. if (∃relp : degt(relp) < min {ConsSup, degRik

(relp)})
9. then Rik ← t
10. Rki ← t−1

11. Q ← Q ∪ {(i , k)}
12. ConsSup = min {ConsSup,max ik}
13. if (minki < ConsSup)
14. then ...

...

20. ∀(i , j) Rij ← Rij ⊗ I [ConsSup]
21. return ConsSup
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Branch & Bound Algorithm

1 Application of PC 2fuz Algorithm;
αinf = 0, αsup = Con-Sup.

2 If Con-Sup > 0, consider every edge
in a fixed order.

3 For the current (i , j):
choose βij | pref(βij) > αinf ;
Rij ← βij [pref(βij)];
P.C. Algorithm.

4 If Con-Sup ≤ αinf then choose another βij or backtrack
to the precedent edge.

5 Complete assignment:
If Con-Sup > αinf , best current solution,
αinf ← Con-Sup, test αinf = αsup.
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Pointizable algebras: SAfuz and SAfuz
c

Fuzzy extensions of classical PA and PAc

PAfuz algebra: relations between points of the form
{< [α1],= [α2], > [α3]}
PAfuz

c algebra: PAfuz relations with α2 ≥ min {α1, α3}
Fuzzy extensions of classical SA and SAc

SAfuz : IAfuz relations that can be expressed as PAfuz

relations between endpoints

SAfuz
c : relations that can be expressed as PAfuz

c relations

All of these sets are algebras (can be proved by exploiting
the relationships between classical and fuzzy operations by
means of α-cuts).
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Example of SAfuz
c relation

The IAfuz relation (b[0.7],m[0.3]) can be translated into
the following PA-network

+
I2

-
I2

-
I1

I2

I2I1

I1

0.30.7

b: 0.7

m: 0.3

+I1
-I1

2
-I +I2

<[0.7] =[0.3]

<[0.7]
<[0.7]<[0.7]

<[0.7]

<[0.7]

1

2

b[0.7],m[0.3]

I

I

Since point relations belong to PAfuz
c ,

(b[0.7],m[0.3]) ∈ SAfuz
c
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Tractability of SAfuz and SAfuz
c

Main properties:

R ∈ SAfuz iff ∀α Rα ∈ SA

and
R ∈ SAfuz

c iff ∀α Rα ∈ SAc

SAfuz
c : path-consistency entails minimality, thus the

minimal network can be computed in O(kn3)

SAfuz : minimality of 4-subnetworks entails minimality,
thus the minimal network can be computed in O(kn4)
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A maximal tractable subalgebra of IAfuz

Nebel’s H ⊆ IA is a maximal tractable algebra:

path-consistency entails N consistent iff ∀i , j Rij 6= ∅.
Thus, consistency can be checked in O(n3)
if N is path-consistent, a solution can be computed
without backtrack in O(n2) (Ligozat, 98)

Definition: R ∈ Hfuz iff ∀α Rα ∈ H
Properties:

If N is path-consistent, maxij for any edge ij gives the
consistency degree, Ligozat’s algorithm applied to
Nmaxij gives an optimal solution
Hfuz is the unique maximal tractable subalgebra of IAfuz

which includes all the relations of
B = {relp[α] | relp ∈ IA, α ∈ [0, 1]}
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Modeling fuzzy Allen relations

Motivation
The relations holding between intervals may not be
described in precise terms: need to express relations of the
kind “approximately equal”, “much before” etc. in order to
avoid brutal discontinuities.

Basis of the modeling
Definition of the fuzzy counterparts of classical relations
between points:

< becomes “much smaller”
= becomes “approximately equal”
> becomes “much greater”

Definition of the fuzzy counterparts of classical Allen
relations on the basis of fuzzy relations between their
endpoints
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Modeling approximate equality and graded
inequalities between points

ρρ

c
-L c

+L

x-y

1

−δ δ δ+ρ−δ−ρ

L

∀d µLc
−

(d) + µL(d) + µLc
+

(d) = 1

Fuzzy counterparts of classical relations:
a < b replaced by a S(Lc

−) b
a = b replaced by a E (L) b
a > b replaced by a G (Lc

+) b

Parameters: δ and ρ (if δ = 0 and ρ→ 0 classical
relations are recovered)
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Fuzzy Allen relations

Fuzzy Allen relation Label Definition

A fuzz-before(L) B fb(L) b G (Lc
+) a′

A fuzz-meets(L) B fm(L) a′ E (L) b

A fuzz-overlaps(L) B fo(L) b G (Lc
+) a∧a′ G (Lc

+) b∧
b′ G (Lc

+) a′

A fuzz-during(L) B fd(L) a G (Lc
+) b ∧ b′ G (Lc

+) a′

A fuzz-starts(L) B fs(L) a E (L) b ∧ b′ G (Lc
+) a′

A fuzz-finishes(L) B ff (L) a′ E (L) b′ ∧ a G (Lc
+) b

A fuzz-equals(L) B fe(L) a E (L) b ∧ b′ E (L) a′

where a = [a, a′], b = [b, b′]
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Composition of fuzzy relations between points

Composition of relations G (K ) and E (L) between points:

∀x , z µG(K)◦E(L)(x , z) = sup
y

min {µG (x , y), µE (y , z)}

= µK⊕L(x − z)

where µK⊕L(x) ≡ sups,t:x=s+t min {µK (s), µL(t)}

Example

If a is approximately equal
to b and b is much greater
than c then a is much
greater than c:

a E(L) b ∧ b G(K) c ⇒
a G(K ⊕ L) c

L K

K+L

λ+ρ−δλ−δ−ε
λ+ρλδ+ε−δ−ε δ−δ

1

x-y
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Reasoning with fuzzy Allen relations

By composition, inference rules between points, e.g.

a E (L) b ∧ b G (K ) c ⇒ a G (K ⊕ L) c

a G (K ) b ∧ b G (K ′) c ⇒ a G (K ⊕ K ′) c

a E (L) b ⇒ a + c E (L) b + c

By these rules (and the fact that fuzzy Allen relations
can be expressed as rules between endpoints),
transitivity rules between fuzzy Allen relations, e.g.

A fb(L1) B ∧ B fb(L2) C ⇒ A fb(L2 ⊕ L1) C

A 13× 13 composition table is defined.
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Complete vs. uncertain information

Available temporal information (i.e. about time points
and relative positions of intervals) is complete, but we
are interested in evaluating fuzzy statements (i.e.
approximate equality or proximity) in order to avoid
discontinuities.

Available temporal information is imprecise, vague or
uncertain, and we are interested in evaluating crisp or
fuzzy statements.
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Example: evaluation of fuzzy Allen relations
between crisp intervals

0.5

9.056.05
C

0.45

5.6

0 5.6
A

0.4

BA
960

0.50.4-0.4-0.5

L

1

x-y

L+
cL-

c

A fb(L) B satisfied with degree 1 (since b − a′ = 0.4)

A fb(L) C and A fm(L) C satisfied with degree 0.5
(since b − a′ = 0.45)
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Background: possibility and necessity measures

Given a variable x with associated possibility distribution
π(x) and a crisp set A:

Possibility of x ∈ A:
Π(A, x) = supx∈A π(x)

Necessity of x ∈ A:
N(A, x) = 1− Π(A, x) =
infx /∈A π(x)

xπ
A

0.6

0.4

1

Π(A, x) = 1,N(A, x) = 0.6

If A is a fuzzy set:

Possibility of x is A:
Π(A, x) = supx min {µA(x), π(x)}
Necessity of x is A:
N(A, x) = 1− Π(A, x) = infx max {µA(x), 1− π(x)}
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Possibility and necessity measures: basic
properties

It is easy to verify that, for all A and B:

Π(A ∪ B, x) = max {Π(A, x),Π(B, x)}
N(A ∩ B, x) = min {N(A, x),N(B, x)}

while it holds that

Π(A ∩ B, x) ≤ min {Π(A, x),Π(B, x)}
N(A ∪ B, x) ≥ max {N(A, x),N(B, x)}
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Uncertain relations between points

Given information about the possible location of dates a and
b expressed by πa and πb respectively, it turns out that:

N(a > b) = 1− sups≤t min {πa(s), πb(t)}
N(a G (K ) b) =
infs,t max {µG (s, t), 1− πa(s), 1− πb(t)}
N(a E (L) b) =
infs,t max {µL(s, t), 1− πa(s), 1− πb(t)}

For instance, by the formula of the necessity of x is A

N(a G (K ) b) = inf
s,t

max {µG (s, t), 1− π(a,b)(s, t)}

= inf
s,t

max {µG (s, t), 1−min (πa(s), πb(t))}

= inf
s,t

max {µG (s, t), 1− πa(s), 1− πb(t)}
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Certainty degrees of Allen relations

Recalling that N(A ∩ B, x) = min {N(A, x),N(B, x)}, the
necessity degrees of ordinary Allen relations can be expressed
w.r.t. the necessity of endpoints relations, e.g.:

N(a before b) = N(b > a′)

N(a overlaps b) =
min {N(b > a),N(a′ > b),N(b′ > a′)}

Similarly for fuzzy Allen relations, e.g.

N(A fb(L) B) = N(b G (Lc
+) a′)

N(A fo(L) B) =
min {N(b G (Lc

+) a),N(a′ G (Lc
+) b),N(b′ G (Lc

+) a′)}
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Patterns of inference with fuzzy Allen relations

By transitivity rules of N() and the above definitions, several
reasoning patterns can be derived, e.g.

N(A fm(L1) B) ≥ α
N(C fs(L2) B) ≥ β
N(C fm(L1 ⊕ L2) A) ≥ min {α, β}

This way, it is possible to handle and reason with statements
of the kind “It is certain to the degree α that A fuzzily
meets B”
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Context and motivation

Modeling information about historical events: uncertain
(e.g. contradictory documents), subjective (unclear
definitions, e.g. “the industrial revolution”) and vague

Main requirement: given a number of possibly imprecise
temporal specifications using absolute dates (events),
deduce Allen relations between events [no general
reasoning capability required]

When applied to traditional (i.e. non vague)
specifications, the same results as in classical temporal
models should be obtained

ICAPS’07; Providence (RI), September 22, 2007



Fuzzy Temporal
Reasoning

M. Falda and M.
Giacomin

The algebra
IAfuz

Dubois, HadjAli
& Prade

Nagypál &
Motik approach

Ohlbach’s
approach

Schockaert, De
Cock & Kerre
approach

The algebra IAfuz

Dubois, HadjAli & Prade
Nagypál & Motik approach

Ohlbach’s approach
Schockaert, De Cock & Kerre approach

Time intervals as fuzzy sets

An event i is modeled as a time interval corresponding
to a fuzzy set Ĩ , where µ

Ĩ
(t) expresses the confidence

level that t is in i (due to uncertainty, subjectivity and
vagueness)

Example: Russian Revolution

1

0.6

0.3

193019171905
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Fuzzy temporal relations

Meaning: given two events i and j (modeled by the
fuzzy sets Ĩ and J̃ respectively) and a fuzzy temporal
relation θ̃ corresponding to a crisp Allen relation θ,
θ̃ takes Ĩ and J̃ and produces a number c ∈ [0, 1]
expressing the confidence that θ holds between i and j

Definition in two steps:

express classical Allen relations without reference to
endpoints (claimed to be meaningless with fuzzy
intervals)
fuzzify the obtained relations
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First step

Consider e.g. i starts j

>< (i)

(j)(j) ><

(i)

<+(j)

j

i

>+(i) i starts j ≡
> −(i) ∩ < −(j) = ∅ ∧
> −(j) ∩ < −(i) = ∅ ∧
> +(i) ∩ < +(j) 6= ∅

Auxiliary operators (< −, ≤ −, > −, ≥ −, < +, ≤ +, > +,
≥ +) are defined

ICAPS’07; Providence (RI), September 22, 2007



Fuzzy Temporal
Reasoning

M. Falda and M.
Giacomin

The algebra
IAfuz

Dubois, HadjAli
& Prade

Nagypál &
Motik approach

Ohlbach’s
approach

Schockaert, De
Cock & Kerre
approach

The algebra IAfuz

Dubois, HadjAli & Prade
Nagypál & Motik approach

Ohlbach’s approach
Schockaert, De Cock & Kerre approach

Second step

i starts j ≡
> −(i) ∩ < −(j) = ∅ ∧
> −(j) ∩ < −(i) = ∅ ∧
> +(i) ∩ < +(j) 6= ∅

STARTS (̃I , J̃) ≡ min{
inft max {Ĩ≤−(t), J̃≥−(t)},
inft max {Ĩ≥−(t), J̃≤−(t)},
supt min {Ĩ>+(t), J̃<+(t)}}

where

the confidence that a ∩ b 6= ∅ is supt min {Ã(t), B̃(t)}
the confidence that a ∩ b = ∅ is
1− supt min {Ã(t), B̃(t)} = inft max {Ãc(t), B̃c(t)}
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Extending auxiliary operators

Meaning of θ̃ extending θ: θ̃(̃I )(t) gives the confidence
that t is in θ(i)

The operator ≥ − : Ĩ → Ĩ

Ĩ≥−(t) =


0 if t < S−

Ĩ

sups≤t Ĩ (s) if t ∈ S
Ĩ

1 if t > S+

Ĩ

Example:

>=I    (t)

I(t)

0.9
1

0.6
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Motivation

Similarly to Nagypál & Motik approach, represent fuzzy
time intervals

Differently from Nagypál & Motik (but similarly to
Dubois et al.), represent fuzzy relations even in case of
crisp intervals (e.g. consider the DB query “give me all
performances ending before midnight”)

Similarly to Nagypál & Motik, no general reasoning:
from known (possibly fuzzy) time intervals to fuzzy
relations between them

Customizable relations (operator-based)
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Background: general operations on fuzzy sets

Complement n:

n(0) = 1 and n(1) = 0

n is non-increasing

Triangular norm T and
conorm S :

commutative, associative
and monotone

∀x T (x , 1) = x and
S(x , 0) = x

-complement(  =2)λ λ1

1
Hamacher intersection and union
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Point-Interval relations

Given a point and a (possibly fuzzy) interval, return a
value c ∈ [0, 1]

Definitions parametric w.r.t. operations on fuzzy sets

Example: beforeN,E+(i) with i finite

beforeN,E+(i) = N(E+(i))

where N is a complement function and E+ is a rising
operator, i.e. returns an interval such that

E+(i) = 1 for all t > i fm

ICAPS’07; Providence (RI), September 22, 2007



Fuzzy Temporal
Reasoning

M. Falda and M.
Giacomin

The algebra
IAfuz

Dubois, HadjAli
& Prade

Nagypál &
Motik approach

Ohlbach’s
approach

Schockaert, De
Cock & Kerre
approach

The algebra IAfuz

Dubois, HadjAli & Prade
Nagypál & Motik approach

Ohlbach’s approach
Schockaert, De Cock & Kerre approach

beforeN,E+: examples

before with standard negation and E+ = extend+

i j

a more fuzzy before exploiting a gaussian operator

i
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Interval-Interval relations

Requirements: work for fuzzy time intervals, give a
fuzzy value even for crisp intervals, operator-based

Main idea: integrate a point-interval relation over the
interval’s membership function

Before relation:

beforeB(i , j) =

∫
i(x) · B(j)(x)dx

|i |

(additional complications for non-finite intervals)

Example (with B as in previous slide):

ji
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The basic idea

Major aim: reasoning with fuzzy time intervals

Reasoning concerns endpoints

Yet a different family of fuzzy relations, e.g. from

(∃x)(x ∈
[
a−, a+

]
∧ (∀y)(y ∈

[
b−, b+

]
⇒ x < y))

to

bb<<(A,B) ≡ sup
x

Tw (A(x), inf
y

Iw (B(y), L<<(x , y)))

Similar definitions for ee<<, be<<, eb<<, bb�, ee�,
be�, and eb�

Reduce to classical relations with crisp intervals
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The reasoning task

Given a set of formulas of the kind

bb<<(X1,X2) ≥ α ∨ be<<(X3,X4) ≥ β
eb<<(X1,X2) ≥ γ ∨ . . .
. . .

decide satisfiability (i.e. ∃ an assignment of fuzzy
intervals to Xi satisfying all the constraints)

checking entailment
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Main result

A maximal tractable class of formulas where
satisfiability and entailment can be checked in
polynomial time

The proof exploits the restriction that values belong to
a finite set (reduction to classical point algebra)

Involved reasoning is substantially different from e.g.
constraint propagation
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Overall view: a tentative classification

Modeling of intervals

Couples of
points

Vague events (fuzzy sets)

Relations Non
fuzzy

Fuzzy Non fuzzy Fuzzy

Approaches IAfuz Dubois
et al.

Nagypál
et al.

Schockaert
et al.

Ohlbach

Reasoning As in
IA

Compos.
table

Not con-
sidered

Special
kind

Not con-
sidered
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Conclusions

A number of approaches based on different ideas and
definitions

Links between each other not yet formally investigated

Difficult to say whether one definition is better than the
other

Mainly depends on the considered application context
(e.g. scheduling, annotations of historical events, DB
queries, ...)
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Fuzzy Point Interval Set (PI fuz)

Classical Point Interval relations can be extended by adding
preference degrees in analogy with PAfuz

A Fuzzy Point Interval relation can be written as

(b[α1], a[α2], d [α3], s[α4], f [α5])

where αi ∈ [0, 1], i = 1, . . . , 5 are the preference degrees
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Fuzzy Qualitative Algebra QAfuz

The Fuzzy Qualitative Algebra between points and intervals
is given by the union of:

IAfuz

PAfuz

Fuzzy PI relations
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Operations in QAfuz

Inversion and intersection operations of a relation R fuz

rely on the operations of the belonging algebras or sets
(in the case of Fuzzy PI)

In composition operation preference degrees are
computed as in IAfuz :

αk = maxu,v :relk∈(relu◦relv )min{α′u, α′v}

where relu ◦ relv are the classical operations defined
according to QA composition tables (see Table 1 on
Slide 19)
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How many relations has a fuzzy qualitative
algebra?

For a given algebra with n elements there are

nr = n!
n−1∑
j=0

|P(j)|∑
i=1

1

ϕ(Pi (j))
χ(Pi (j))µ(Pi (j))

unique full relations to be checked for tractability and

χ(Pi (j)) = C
n−j
|Pi (j)|

,

µ(Pi (j)) is the multinomial of |Pi (j)| elements in j − 1 groups of

ζPi (j)
(k) = |{xh : xh = Pih(j) ∧ Pih(j) = k, h = 1 . . . |Pi (j)|}|

elements and

ϕ(Pi (j)) =

|Pi (j)|∏
k=1

(Pik (j) + 1)!

counts the equivalent relations
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Examples

Table: Cardinality of fuzzy full algebras

alg. classic rel. fuzzy rel.
PAfuz 3 13

PI fuz 5 541

IAfuz 13 526 858 348 381

A relation in QAfuz belongs to PAfuz , PI fuz , (PI fuz)−1 or
IAfuz , therefore QAfuz has 526 858 349 476 relations

ICAPS’07; Providence (RI), September 22, 2007



Fuzzy Temporal
Reasoning

M. Falda and M.
Giacomin

Background

Extension of
QAfuz

Fuzzy Metric
Constraints

Transformation
functions

Tractability

Metric
constraints

Fuzzy qualitative
constraints

Applications

Medicine

Extensions

CTPP

FDTPc

Background
Tractability
Applications

Extensions

Extension of QAfuz
Fuzzy Metric Constraints
Transformation functions

Fuzzy Metric constraints

Fuzzy Metric constraints can be extended to deal with
preferences by associating them a possibility distribution to
model preference degrees

The possibility distributions
adopted are trapezoidal:

Ca, b, c, d B [α]

a, b ∈ R ∪ {−∞}, ck , dk ∈ R ∪ {+∞}
αk ∈ (0, 1]
C is either ( or [, B is either ) or ]
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The expressiveness of trapezoidal distributions

“In disease d1 the symptom m1 occurs always after about a
day. The symptom m2 follows m1 rather commonly; it uses
to last between 2 to 4 days, though other less possible cases
range from 1 day as the lowest bound to a week as the top
one.”

2 4

1

1 7

0.7

mm
1 2
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Modelling imperfect data

Fuzzy constraints can express many kinds of imperfection:

vagueness imprecision

indetermination unreliability
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Correspondence with Natural Language
expressions
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Intuitions behind the transformation functions

A qualitative relation is
mapped on a semi-axis
(or a point)

A trapezoid (metric) that
lies across the y axis is
partitioned in three
regions and then mapped
on (at most) three
qualitative relations
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Definition of QUAN fuz

QUAN fuz function transforms a qualitative fuzzy relation
into a fuzzy metric constraint

Only point-point relations can be transformed


(0, 0,+∞,+∞)[α] if < [α] ∈ R
(0, 0, 0, 0)[α] if = [α] ∈ R
(−∞,−∞, 0, 0)[α] if > [α] ∈ R
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Definition of QUALfuz

QUALfuz function transforms a fuzzy metric constraint into
a qualitative point-point fuzzy relation

QUALfuz =
⋃

k={<,=,>}

QUALfuz
k

where
QUALfuz

< (R) =< [maxi=1,...,nh+
i ]

QUALfuz
= (R) == [maxi=1,...,nh0

i ]

QUALfuz
> (R) => [maxi=1,...,nh−i ]
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Operations between mixed constraints

Let C’ be metric and C” be qualitative:

disjunction

C ′ ∪ C ′′ = C ′ ∪ QUAN fuz(C ′′)

conjunction

C ′ ∩ C ′′ = C ′ ∩ QUAN fuz(C ′′)

composition (C ′′ ∈ PP)

C ′ ◦ C ′′ = C ′ ◦ QUAN fuz(C ′′)

qualitative composition (C ′′ ∈ PI )

C ′ ◦ C ′′ = QUALfuz(C ′) ◦ C ′
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Dealing with complexity

complexity in metric constraints is due to fragmentation

⇒ reduce fragmentation (ULT, LPC, ...)

complexity in qualitative constraints is intrinsic in the
algebra

⇒ identify new tractable sub-algebras
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Basic principles

For complexity considerations, the concept of α-cut is useful,
in fact:

A set of fuzzy relations is tractable if all its α-cuts are
classic tractable relations

if all the classic sets coming from the α-cuts are
algebras then also the original fuzzy set is an algebra
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A direct application

There are 72 tractable QA fragments identified by Jonsson
and Krokhin: JK

by building the tractable fragment of QAfuz in such a
way that their α-cuts are in JK , the tractability can be
achieved in the fuzzy case

JK ′fuz
i = {R fuz : R fuz

α ∈ JKi , }, i = 1 . . . 72
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Graphical sketch
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Example of an algebra in JK fuz\JK ′fuz

To build an algebra in JK fuz\JK ′fuz
we start with two α-cuts

R fuz
i |0.5 = {f , s, si} ∈ A1 but /∈ Ep

and

R fuz
i |1.0 = {f } /∈ A1 but ∈ Ep

Then we complete them
with

R fuz
j |0.5 = {f , s, b} ∈ Vs

and

R fuz
j |1.0 = {f } ∈ VE

observing that
A1Vs = JK ′62 and
EpVE = JK ′54
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Characterization of new diseases

1 Start from physician data concerning common
symptoms from patients affected by an unknown disease

2 represent such data in a fuzzy constraint temporal
network

3 abstract general temporal features characterizing the
disease
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The SARS case
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Events considered

Our aim is to characterize the incubation period. To do this,
we take into account:

the period during which the disease could have been got
(contagion period or CP) and its bounds

the start of the fever

the start of the cough

the death
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Timelines

e.g.: Patient 1:

in travel from February 13
to February 23 (origin t0)

2 days later, fever

2 days later, cough

3 days later, death

15

13 23 25 27 2 6 7 8 9 10 13 14 15

13 23 25 27 2 6 7 8 9 10 13 14 15

13 23 25 27 2 6 7 8 9 10 13 14 15

H R F D

V F C

HCF D

13 23 25 27 2 6 8 9 10 13 14

T CF D T: travel D: death
F: fever V: visit
C: cough R: discharge
H: hospital
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The vertices

P0: t0, the “origin of
time”

P1: begin of incubation

P2: end of incubation

P3: fever

P4: cough

P5: death

I6: incubation period

P7: actual contagion

“Pi” stands for Point, “Ij” for
interval
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The constraints

The constraints that refer to a patient have been defined as
in the following example, where we assume an uncertainty of
half a day:

about -10 days from P0 to P1

P0{[−11,−10.5,−10,−9.5]}P1

the contagion is contained in the incubation; “s” is less
plausible because the disease first has to spread in the
organism

I6{d , s[0.5], f }P7
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Results

Here the hatched rectangle represents the contagion period,
the interval the incubation (it ends when the first symptom
appears)

about 1 to 12 days
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Results

Here the hatched rectangle represents the contagion period,
the interval the incubation (it ends when the first symptom
appears)

about 0 to 4 days
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Results

Here the hatched rectangle represents the contagion period,
the interval the incubation (it ends when the first symptom
appears)

about 2 to 4 days
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Results

Here the hatched rectangle represents the contagion period,
the interval the incubation (it ends when the first symptom
appears)

about 2 to 4 days

Incubation: about 2 to 4 days
ICAPS’07; Providence (RI), September 22, 2007
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Other temporal reasoning frameworks

Many extensions have been proposed, for example:

Simple Temporal Problems with Uncertainty

Labelled Temporal Networks

Conditional Temporal Problems

Simple Temporal Problems with Classes
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Conditional Planning

In real world a planning agent is not omniscient:

plans cannot be generated off-line

reactive approach is usually too restrictive (real-time
requirements cannot be guaranteed)

Conditional planning adds observations actions and
conditional branching

actions are still atomic
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Example of Conditional Temporal Problem
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Classical CTPs

A CTP is a tuple < V ,E , L,OV ,O,P > where

P is a set of Boolean atomic propositions A,B, . . .

V is a set of variables

E is a set of temporal constraints between variables
vi ∈ V

L : V → Q∗ is a function attaching conjunctions of
literals in Q to each variable vi ∈ V

OV ⊆ V is the set of observation variables

O : P → OV is a bijective function that associates an
observation variable to a proposition. The node O(A)
provides the truth value for A

A variable is executed only if its associated label, i.e. a
conjunction of literals, is true; once executed, it gives the
truth value of the variables it observes
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Consistency notions

There are three notions of consistency

Strong Consistency (SC): there is a fixed way to
assign values to all the variables that satisfies all
projections

Weak Consistency (WC): the projection of each
scenario is consistent

Dynamic Consistency (DC): the current partial
consistent assignment can be consistently extended
independently of the upcoming observations

SC → DC →WC

ICAPS’07; Providence (RI), September 22, 2007



Fuzzy Temporal
Reasoning

M. Falda and M.
Giacomin

Background

Extension of
QAfuz

Fuzzy Metric
Constraints

Transformation
functions

Tractability

Metric
constraints

Fuzzy qualitative
constraints

Applications

Medicine

Extensions

CTPP

FDTPc

Background
Tractability
Applications

Extensions

CTPP
FDTPc

Introducing Fuzzy Rules

Labels, associated to variables, act as rules that select
different execution paths

IF L(v) THEN EXECUTE(v)

Degrees can be added

to the premise (pt : L(V )→ A): truth level

the consequence (cp : V → A): preference
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Formal definition of a Fuzzy CTPP

A CTPP is a tuple < V ,E , L,OV ,O,P > where

P is a finite set of fuzzy atomic propositions

E is a set of soft temporal constraints between pairs of
variables vi ∈ V

L : V → Q∗ is a function attaching conjunctions of
fuzzy literals Q = {pi : pi ∈ P} ∪ {¬pi : pi ∈ P} to
each variable vi ∈ V

R : V → FR is a function attaching a fuzzy rule
r(αi , cp) to each variable vi ∈ V

O : P → OV is a bijective function that associates an
observation variable to each fuzzy atomic proposition.
Variable O(A) provides the truth degree for A.
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Example of Fuzzy CTPP
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Meta-scenarios

Scenarios in CTPPs depend not only on propositions but
also on threshold levels

⇒ possibly infinite

Two scenarios are equivalent is they have the same
projection

Partition scenarios in equivalence classes

Minimal set of meta-scenarios: only one representative
for each equivalence class
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Fuzzy metric c-constraints

Sometimes disjunctive constraints are used to model distinct
scenarios which can be considered independently and which
often share common parts

A fuzzy constraint with classes, or fuzzy c-constraint, is a
constraint of the form

e = {Cak , bk , ck , dk B [αk ]�k�, k ∈ N}

where k are distinct classes
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FDTPs with classes (FSTPc)

A Fuzzy STPc is a tuple < V ,E ,M,VC ,EC > where

V is a set of variables

E is a set of constraints between variables vi ∈ V

C is a finite set

VC : V × C →< 2C , [0, 1] > is a function that
associates to a pair variable-class a preference

EC : E × C →< 2C , [0, 1] > is a function that
associates to a pair constraint-class a pair of temporal
bounds and a preference
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Solution of a FTDPc

A solution of a FDTPc is a set of triples < c ,S , α > where:

c is a class

S : V → R is an assignment of the variables in V that
satisfies all fuzzy constraints with class c

α is the degree of satisfaction of the FSTP associated
to class c
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Consistencies

There are three notions of consistency:

1 A FDTPc is “α-class consistent in c” (α-CCc) if the
FSTP associated with class c is consistent with a
satisfaction degree equal to α

2 A FDTPc is α-existentially consistent (α-EC) if exists
a class whose associated FSTP is consistent with a
satisfaction degree equal to α

3 A FDTPc is α-universally consistent (α-UC) if the
FSTPs of any class are consistent with a satisfaction
degree not lower than α
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Example

Various diseases can be
marked with classes

The vertices represent
temporal symptoms evolutions
of three diseases

I: incubation

F: fever

E: exanthemata

C: contagion

C =� 1�,� 2�,� 3�
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