
Learning Recursive HTN-Method Structures for planning
Qiang Yang and Rong Pan and Sinno Jialin Pan

Dept. of Comp. Sci. & Eng., Hong Kong University of Science & Technology, Kowloon, Hong Kong

Abstract

HTN planning is one of the most effective planning methods
in AI. However, designing the HTN-decomposition methods
is a very difficult task which has been achieved mainly by hu-
mans. It would therefore be desirable to design automated
learning methods to acquire these decomposition methods
from observed action sequences. In this work, we explore
how to apply model-based clustering in order to construct
task decomposition hierarchies and summarize a database of
action sequences. We present a probabilistic model for un-
supervised learning of HTN methods from action sequences.
Based on this model, we introduce a novel two-pronged ap-
proach by simultaneously learning a Markov model for action
segment clusters from action sequences and then learning an
action parameter model for recognizing tasks. These mod-
els are integrated together to construct action clusters. Then,
an abstraction algorithm is applied to extract variables from
the action parameters in each cluster to obtain succinct HTN
methods. We introduce evaluation metrics for this approach,
and test the algorithm in a logistics planning domain.

Introduction

HTN planning applies a divide-and-conquer strategy by
taking advantage of the inherently hierarchical structure
in planning tasks and application domains (Wilkins 1988;
Currie & Tate 1991; Nauet al. 2003). Theoretical studies
(Erol, Hendler, & Nau 1994) have been conducted on the
formalization of HTN planning systems. A key compo-
nent of a HTN planning system is a set of decomposition
methods, whereby a high-level task is reduced to a set of
ordered lower level subtasks. HTN methods, consisting of
task descriptions as well as how tasks can be decomposed
into sequences of subtasks and actions, embody much do-
main knowledge that encodes the designers’ vast problem
solving experience. In the past, much of this knowledge has
been provided by humans. In this paper, we explore how to
automatically acquire the decomposition structure of HTN
methods from observed action sequences.

There are three critical learning problems in acquir-
ing HTN methods. Thefirst problem is how to acquire
the logical relationship between a high-level task and
its low-level actions for a task decomposition method
in terms of preconditions and goals. This problem
has been addressed in part by novel machine learning
methods given in (Ilghamiet al. 2005), which learn

Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

preconditions and goals of a method from experts’ ex-
ecution traces. Asecond problemis how to learn the
preconditions and post-conditions of primitive actions
in STRIPS or more sophisticated PDDL action models.
Several learning-based techniques have been developed for
solving this problem (Amir 2005; Wang 1995; Gil 1994;
Blytheet al. 2001; McCluskey, Liu, & Simpson 2003;
Yang, Wu, & Jiang 2005). The third problem in HTN-
method learning is how to acquire thedecomposition
structuresof HTN methods from observed action traces
when each input example consists ofmultiple subse-
quences of actions formultiple tasks. Our objective is
to determine which subsequence should belong to which
task, a problem of segmentation. This problem is sel-
dom addressed in literature (Reddy & Tadepalli 1997;
Nejati, Langley, & Könik 2006), and is the focus of this
paper. To make the problem description more realistic,
we further assume that we do not have the observed
states achieved by the low-level actions. To simplify our
discussion, in this paper we refer to this problem as one
of learning HTN-method structures. When no ambiguity
exists, we simply refer to it as the HTN-method learning
problem. The output of our solution is a set of pairs,
consisting of action sequences and high-level tasks achieved
by these sequences in a hierarchical structure.

The HTN-method learning problem can be stated as
follows. As input, we are given a set of observed plan traces
that consist of sequences of action names and the associated
parameters. We are also given a set of high-level tasks or
goals that each of these plans are aimed at achieving. We
do not assume that we know the states that hold between
these actions; in fact, knowing some of these states (partial
observation) can help us in improving the accuracy and
efficiency of learning, but we do not assume that they must
exist. Our objective is to learn a set of HTN methods, where
each decomposition method specifies a task and a sequence
of low-level actions that can achieve this task. These
decomposition methods can also be recursive in nature, so
that one can repeatedly apply them to give rise to finer and
finer action specifications. As an example, from a collection
of plan traces for learning a decomposition method of
a non-primitive tasktransport-person(?person ?city2),
such as board(John, p, c1), transport-aircraft(p, c2),
debark(John, p, c2). . . ., we wish to learn a disjunctive and
recursive HTN-method structure, as shown in Figure1.

HTN-method learning is a challenging problem. First, we
do not make observable intermediate-state requirements. To
be sure, the learning problem would be easier if we knew the
states just before and after each action, because we can draw

board(?person,?plane,?city1)

transport-person(?person,?city)

fly(?plane,?city1,?city)

debark(?person,?plane,?city)transport-aircraft(?plane,?city)

refuel(?plane,?fuel1,?fuel2) transport-aircraft(?plane,?city)

PT1 NT2

NT2

NT1

PT4

PT2

PT3

Figure 1: An HTN method example.

upon such strong constraints to relate actions and tasks to-
gether. However, in reality, what is observed before and after
each action may just be partially known, or even unknown.
For example, this may be the case when we were to auto-
mate the operation of a Web service by recording the data
processing operations of human operators. In our method-
ology, the training plans can be obtained through monitor-
ing devices such as sensors and cameras, or through a se-
quence of recorded commands through a computer system
such as UNIX domain. Second, the possible assignment
of subsequences of actions to high-level tasks constitute a
huge search space due to the uncertainty in assigning ac-
tions to tasks. In each plan trace, any action such as board-
plane(plane0 city1) may be related to any of a set of tasks. It
is this uncertainty that causes difficulties for a naive enumer-
ation of potential subsequences for the methods. Finally, an
HTN methods may be recursive in nature. How to learn a re-
cursive task-network structure is a challenging problem, be-
cause it involves both the recursive decomposition structure
and the parameters that are part of the action specification.

It is thus intriguing to ask whether we can approximately
learn an HTN-decomposition method model if we are given
a set of recorded action signatures and task specifications.
In this paper, we take a first step towards answering this
question by presenting an algorithm known asHLS(HTN
Learning System).HLS proceeds in two phases. In phase
one,HLS applies model-based clustering algorithms to find
subsequences of actions from the example plan traces for
each high-level task. In doing so a set of domain constraints
are applied, as well as a statistical learning algorithm that is
based on the expectation-maximization (EM). In phase two,
HLS learns a set of recursive methods from the clusters. The
generated HTN methods can then be passed on to human de-
signers for fine-tuning.

Background and Objective

In this paper, we follow the terminology of
(Erol, Hendler, & Nau 1994) which defines Ordered
Task Decompositionin which, at each point in the planning
process, the planner has a totally ordered list of tasks to
accomplish. An HTN domain consists of the following:

• T is a list of tasks. Each task, which has a name and zero
or more arguments (variable symbols), can be eitherprim-
itive (PT) or non-primitive (NT). A non-primitive task

must be decomposed into a list of subtasks while a primi-
tive task can be carried out directly.

• M is a collection of methods, each of which is a triple
m = (NT, DEC, P), whereNT is a non-primitive task,
DEC is a totally-ordered list of tasks called a decompo-
sition, andP is the precondition of the decomposition.

• O is a collection of operators, each of which is also a triple
o = (PT, DEL, ADD), wherePT is a primitive task,
DEL and ADD are the deleting list and adding list of state
after taking the operationo.

An HTN planning process decomposes high-level tasks in an
initial task networkinto smaller and smaller subtasks until
the task network contains onlyprimitive tasks(operators).
The decomposition of each task into subtasks uses amethod
from domain description.

In this paper, we focus on learning theDEC component
of the HTN methods. Suppose we are given the following
input:

• A set of plan tracesPLANS, each of which is represented
by a sequence of actionsplani = (ai1 , ai2 , . . . , ain

),
wherein is the length of the plan traceplani. For dif-
ferent plan trace,in could be different.

• An initial task network of each plan trace.
(Lotem, Nau, & Hendler 1999), given as an ordered
list of non-primitivetasks decomposed at the top level of
the task network,NTi1 , NTi2 , . . . , NTim

. These are also
the high-level goals to be achieved.

HLS : HTN Learning System

Learning the method structure is a two-phase process. In
thefirst phase, we perform clustering on the given plan ex-
amples. In particular, for each action sequence and its as-
sociated non-primitive tasks, we predict a subsequence of
actions in the plan example, that can achieve a task. We do
this for all plan examples, after which we obtain a cluster of
action subsequences for each task. In thesecond phase, we
build a succinct summary for each cluster. This summary
corresponds to a task signature and HTN method, consisting
of a task name and parameter list, and a sequence of sub-
tasks used to accomplish the high-level task. The collection
of tasks and their methods is the HTN method structure.

Phase 1: Clustering to Associate Action
Subsequences with Tasks

The objective for the first phase of the algorithm is that
for each task, we shall induce an HTN Task Cluster Model
(HTCM) T from the training examples. At each level of the
tree structure, a non-primitive task is represented as a hid-
den variable, while the actions are considered as observa-
tions. These structures can be used to decompose the action

sequences into clusters, each of which is associated with a
set of subsequences of actions.

. . .ak1
ak2

akm

. . .vk1
vk2

vkm

Tk

. . .

Φ

. . .Tk Tk+1

A

V

Figure 2: The HTN Task Cluster Model (HTCM).

One example of an HTCM is shown in Figure2. To fully
represent the HTCM, we need to know the joint probability
of the hidden factorTk that represents a task, an action se-
quenceA, and a set of parametersV . The joint probability
corresponding to HTCM can be computed as follows.

P (Tk, A, V) = P (Tk) × P (ak1
|Tk) × P (vk1

|ak1
)×

∏m

i=2

{

P (vki
|aki

) × P
(

aki
|aki−1

, Tk

)}

.
(1)

According to Eq.(1), in order to represent the HTCM
structure and the probabilities, we need to know three com-
pute the joint probability for the tree. In the following, we
present two models based on EM algorithm to learn them.
We first build Markov models for the action sequences to
learn the probabilitiesP (ak1

|Tk) andP (aki
|aki−1

, Tk) of
Eq.(1). We then build parameter models for the actions and
task parameters to learnP (vki

|aki
) and applying an EM al-

gorithm to learnP (Tk) and parameters of the two models
mentioned above. Finally, we show an HTN-method gener-
ator based on the learned models.

In the input data, each training example plan is associ-
ated with a set of tasks to start with. A difficulty associated
with the clustering phase is that, for each action or subse-
quence of actions in an example plan, we do not know which
task is its associated task. No label information is given to
us up front. For example, this is equivalent to the follow-
ing problem: given a sequence of symbolsa1, a2, . . . an and
its associated task labelst1, t2, associatet1 with a subse-
quence ofai’s with a task labeltj . The problem is difficult
because we do not know which subsequence should belong
to t1 and which other should belong tot2. Fortunately, for
our planning problem, we have two sources of information.
One source is the parameter list, which gives us indication
on which subsequences are more likely to be associated with
a task. Another source is the order information inherent in
both action sequences and the tasks in each example.

To build the clusters, we apply an
expectation-maximization (EM) algorithm
(Dempster, Laird, & Rubin 1977) as shown in Table1.
In this algorithm, initialization is done in Steps 1-3, where
the algorithm assigns actions in each plan example to a
task by matching the parameters between the actions and

the task. Subsequently, in Steps 4-11, the EM algorithm
enters a loop consisting of an M-step and an E-step. In the
M-Step (Steps 5-7), we re-build the Markov model and the
parameter model. In the E-Step (Steps 8-10), we re-assign
actions to tasks based the mixture models obtained so far
that consist of the Markov models and parameter models.
The stop criterion is when the sum of the differences
between the current Markov models and the ones in the
previous loop is less than a pre-defined threshold.

Algorithm 1 EM Algorithm for HTCM(PLANs, T)

Input:
PLANs is a set of plan traces{plani, i = 1, 2, . . . , N}.
Each plan trace is an action sequenceplani =

(a
(i)
1 , a

(i)
2 , . . . , a

(i)
ni

) which achieves a set of tasks

{t
(i)
1 , t

(i)
2 , . . . t

(i)
mi

}.;
T = {t1, t2, . . . , tM} is a set of task names.

Output:
The Markov ModelM of each tasktk in T .

Steps:
1: for all plani do
2: Initially assign actiona(i)

j to a task in light of the
number of matches of their parameters, and the out-
put is an action subsequence (keep the order of the
original plan trace) of each task;

3: end for
4: repeat
5: for all tk ∈ T do
6: collect all the subsequences belonging to it (the

output of step 1) and build the Markov model and
the parameter model;

7: end for
8: for all plani do
9: assign actiona(i)

j to a task in light of the Markov
Markov model and the parameter model of the cor-
responding task;

10: end for
11: until a stop condition is satisfied
12: Return the final Markov Model of each task .

Building the Markov Models In Steps (1-3) and Steps
(5-7) of the EM algorithm, we model an action subsequence
for a task using a Markov model. This model consists of the
following components

• A set ofQ states,S = {S1, S2, . . . , SQ}, whereQ is the
number of actions in the domain;

• The initial state probability distribution isπ = {πi},
whereπi = P (q1 = Si), 1 ≤ n ≤ Q.

• The state transition probability isMat = {mij}, where
mij = P (qt+1 = Sj |qt = Si), 1 ≤ i, j ≤ Q.

In the notations above,Si denotes an action name in the do-
main.qt indicates the action state at thet-th action of a task.

Based on these definitions, a Markov model is a pair
(π, Mat). We can build such a Markov model for each task.
We follow (Rabiner 1989) to build the Markov models.

Example 1 An example plan trace is given below,
where the initial task is decomposed into three totally
ordered non-primitive subtasks:transport-aircraft(plane1,city1),
transport-person(person1,city2) andtransport-person(person2,city1).
For each subtask, we don’t know which sub-action-sequence
can achieve it. We will use this example through the paper to
explain our algorithm. The action sequence in this example
is: fly(plane1,city3,city1,fl2,fl1), board(person1,plane1,city1),
fly(plane1,city1,city2,fl1,fl0), debark(person1,plane1,city2),
board(person2,plane1,city2), refuel(plane1,fl0fl1),
fly(plane1,city2,city1,fl1,fl0), debark(person2,plane1,city1).

Now consider the transport-person method in this exam-
ple. In this problem, the action states are board, fly, debark
and refuel. It’s easy to computeπ = (0.4, 0.2, 0, 0.4) and

Mat =







0 0.67 0 0.33
0.3 0 0.7 0
0 0 0 0
0 1 0 0







Hereπ1 = 0.4 means the task begins with the actionboard
with probability40% . a12 = 0.67 anda14 = 0.33 mean
that the action fly more likely follows action board than the
actionrefueldoes because0.67 > 0.33; a13 = 0 means no
probability is fromboard to debark. End of Example 1

Building Parameter Models Step 6 of the HTCM al-
gorithm builds a parameter model for the probability
P (vki

|aki
) of Eq. (1). We use parameter-matching as

a heuristic to strengthen our prediction that an action be-
longs to a task cluster, and use a Naive Bayes (NB) clas-
sifier trained on each task to determine whether an action
belongs to the task, although other classifiers can also be
used. To do this, we generate training examples with input
attributes and class labels. First, we construct input features
for the classifier. In this problem, there are many meth-
ods to extract features for the classifier. Here we present
a simple and effective approach. If the action achieves the
task, the class label is one. Otherwise, it is zero. For ex-
ample, given the tasktransport-person(x1, x2) and the ac-
tion debark(y1, y2, y3), we construct six featuresX(x1? =
y1, x1? = y2, x1? = y3, x2? = y1, x2? = y2, x2? = y3).
“? =” is a boolean operator which outputs 1 if its left hand
side equals to its right hand side, and output 0 in the oppo-
site case. Second, we construct class labels for the feature
vectors according to relation between the action and the task.

Consider an example for generating train-
ing samples from the training sample inExam-
ple 1, which corresponds to a “transport-person–
debark” classifier. The feature vector of the pair
(transport-person(person2, city1), debark(person2,
plane5, city1)) is (1, 0, 0, 0, 0, 1) and class label is 1
as thedebark action achieves the task. Another pair
(transport-person(person2, city1),
debark(person4, plane5, city3)) is (0, 0, 0, 0, 0, 0)

and class label is zero for thedebark action does
not achieve the task, which achieving task is
transport-person(person4, city3) (see Example 1). We can
also see that the first and sixth constructed features can tell
whether the two actions achieve thetransport-person task
or not although they have the same action name “debark”.

The Markov model and the parameter models are then
used together in Step 6 to determine whether each subse-
quence of actions belongs to the cluster of a particular task.
Once the clusters are determined in Step 7, the algorithm re-
assigns each actionaj to a task that maximizes the probabil-
ity P (Tk, A, V) in Eq. (1). As an example, each action se-
quence in the training data is partitioned into subsequences
that are associated with tasks. For example, Figure3 shows
a partition induced from Example 1. This process iterates
till the assigned clusters converge to a stable state.

board fly debark refuelfly board fly debark
(p1,pl1,c1) (p1,pl1,c2) (pl1,fl0,fl1)(p2,pl1,c2) (p2,pl1,c1)

transport-persontransport-person
(pl1,c1)

transport-aircraft
(p2,c1)(p1,c2)

root

(pl1,c3,c1,
fl2,fl1)

(pl1,c2,c1,
fl1,fl0)

(pl1,c1,c2,
fl1,fl0)

Figure 3: A partitioning of an action sequence by the tasks
accomplished by the plan.

Phase 2: HTN-Method Structure Generator

Once the clusters are built using the EM algorithm, we ob-
tain different Markov models for different tasks. In this
subsection we present an algorithm to abstract the recursive
methods for each task based on its Markov model. The in-
tuition of our algorithm is that in each iteration we find the
most frequent action subsequences as a pattern, and treat the
pattern as a candidate for an HTN method. We then gener-
ate a new non-primitive action to represent the method and
replace the “old” action subsequence in the entire training
data by the non-primitive action. After obtaining a “new”
subplan trace for each task, we rebuild the Markov models
respectively. Applying this method repeatedly, we can ex-
tract hierarchical HTN methods.

Consider the following example on how to extract the
method of the subtask “transport person”. The subplan
traces for achieving the subtask are shown in Figure4.

board(person2,p1,c2) refuel(p1,fl0,fl1) fly(p1,c2,c1,fl1,fl0)

debark(person2,p1,c1)

board(person1,p1,c1) fly(p1,c1,c2,fl1,fl0)

debark(person1,p1,c2)

subsequence2:

subsequence1:

Figure 4: Example plan traces for achieving the task “trans-
port person.”

Initially, based on the Markov probability tran-
sition matrix learnt from HTCM, we found that

P (Action(fly)|Action(refuel, T ask(transport-person))) >
θ, where θ is a user-defined fre-
quency threshold. We also find that
P (Action(fly)|Action(refuel), T ask(transport-person)) is
very similar toP (Action(refuel)), T ask(transport-person),
which means thatAction(fly) can be the base case of the
recursive method with a high probability. Thus, we pick
these two actions as the bottom layer of the hierarchical
method and pickAction(fly) as the base case for the
recursion. Subsequently, we use a new action namedNT 1
to replace the two-action sequence in the training dataset
whereAction(fly) occurs, and rebuild the subplan traces
(shown in Figure5). After this step, we rebuild the Markov

board(person2,p1,c2) NT(p1) debark(person2,p1,c1)

board(person1,p1,c1) debark(person1,p1,c2)

subsequence2:

subsequence1:

NT(p1)

Figure 5: New subplan traces for achieving the task “trans-
port person”.
model for these new subplan traces. Finally, we execute step
2 and step3 repeatedly until the all the elements of Markov
transition matrix are lower thanθ. This process generates a
hierarchical method for a task “transport person”, as shown
in Figure7).

Note that our algorithm follows the same spirit as In-
ductive Logic Programming such as the FOIL system
(Quinlan 1990). While both FOIL and our algorithm can
both learn recursions from examples, a major difference is
that our learning process is guided by statistical patterns
rather than by logical patterns. In the future, we will pursue
this direction further by integrating the two forms of reason-
ing.

Experiments
There are two aspects in ensuring the success of the learn-
ing algorithm. One is the quality of the HTN methods
learned, and another is the speed in executing the EM
algorithm. For evaluating the quality of HTCM, simi-
lar to (Xu & Muñoz-Avila 2005), we define two perfor-
mance measures as follows. First, HTN-method-recall =
#CMethods

#TMethods
, where #CMethods means number of correct

HTN methods correctly covered by the learned HTN meth-
ods and #TMethods means the total number of correct meth-
ods. Second, HTN-Methods-accuracy =#UMethods

#NMethods
, where

#UMethods means number of learned HTN methods accu-
rately cover correct methods and #NMethods means total
number of learned HTN methods. If the learned model cre-
ates too many methods, the recall measure will be high, and
the accuracy measure will be low. In contrast, the HTN-
Method-accuracy can be very high while the HTN-Method-
recall is very low if the learned model creates just a few
methods.

We have done several experiments to verify our algorithm.
Due to space limitation, we only show one of them. In our

first experiment, we used a well-known ZenoTravel domain
for generating the training data. ZeroTravel is one of the do-
mains in the planning competition. The ZenoTravel prob-
lem is to transport people form their current locations to
their destinations, by use of any available airplanes. In this
domain, we have generated 200 action sequences with four
actions (fly, board, debark, refuel) and two tasks (transport-
aircraft, transport-person) based on methods that are decided
by human experts. Actionfly (?plane ?city1 ?city2 ?fl1 ?fl2)
means the ?plane flies from ?city1 to ?city2 and the ?plane’s
fuel level changes from ?fl1 to ?fl2.board (?person ?plane
?city) means the ?person boards onto the ?plane in ?city. de-
bark (?person ?plane ?city) means the ?person debarks from
the ?plane in ?city.refuel(?plane ?fl1 ?fl2) means the ?plane
is refuelled from fuel level ?fl1 to ?fl2. We apply HTCM
to the these plan traces and generate HTN methods auto-
matically. In order to evaluate our HTN methods generator,
we compare the HTN methods learnt from HTCM with the
HTN methods which are given by the human experts. The
action sequences in testing set are all labeled by a gradu-
ate student for generating the performance measures. The
HTN methods created by HTCM are called the learned HTN
methods and the ones generated by the human is called the
correct HTN methods (this is the ground truth) see Figure
1. We ran our experiments on a Pentium IV PC with 1G
memory and 2.2 GHz CPU using Windows XP.

The experimental results are calculated by averaging the
results on 10 different randomly-generated the set of plan
traces. We show the performance results of recall and ac-

20 40 80 160
0.65

0.7

0.75

0.8

0.85

0.9

Size of Training Set

recall
accuracy

Figure 6: HTN-method-recall and HTN-method-accuracy
vs. different numbers of training plan traces.

curacy in Figure6. The X-axis of the figure represents
the number of plan traces used for training and the Y-axis
represents the HTN-method-recall rate and HTN-method-
accuracy in the range [0 1]. We can see that when the num-
ber of the training plan traces increases, the HTN-method-
recall and HTN-method-accuracy of the learned model in-
crease and converge quickly at40. This implies we can learn
the HTN methods automatically from only40 plan traces.
The HTN methods learned from our models. We also found
that the generated HTN method for the task “transport per-
son”, which is shown in Figure7, is similar to the ones de-
signed by human experts, as shown in Figure1.

In Figure8, we show the learning time with on sizes of
the training set. From the figure, we can see that when the
number of training plan traces is 40, the CPU time has a
relatively small value. This implies our approach is very
efficient.

Transport-person

board NT2

NT1 debark

refuel flyfly

NT1

Basic case

Figure 7: The generated methods for the task “transport per-
son.”

20 40 80 160
0

50

100

150

200

250

Size of Training Set

Le
ar

ni
ng

 T
im

e
(S

ec
on

d)

Figure 8: CPU time used for learning.

Conclusion and Further Work

In this work, we explored how to apply model-based learn-
ing to construct task decomposition hierarchies for HTN
planning from a set of action sequences. We introduce a
novel two-phased approach, by simultaneously learning a
Markov models and parameter models from the action se-
quences and learning to cluster the action subsequences ac-
cording to the high-level tasks. These clusters are used
to construct HTN methods recursively. We have shown
through several experiments that this approach is effective
in learning HTN methods both accurately and efficiently. In
the future, we will explore how to learn all parts of HTN
methods together, as well as to conduct more tests on the
benchmark planning domains, and more evaluations when
the domains become more complex. Furthermore, how to
determine the thresholdθ in each iteration is also our inter-
esting work.

Acknowledgement

We are supported by Hong Kong RGC Research Grant
621606.

References

[Amir 2005] Amir, E. 2005. Learning partially observable
deterministic action models. InProceedings of the 19th
Intl’ Joint Conference on Artificial Intelligence (IJCAI’05),
1433–1439.

[Blythe et al.2001] Blythe, J.; Kim, J.; Ramachandran, S.;
and Gil, Y. 2001. An integrated environment for knowledge
acquisition. InIntelligent User Interfaces, 13–20.

[Currie & Tate 1991] Currie, K., and Tate, A. 1991. O-
plan: the open planning architecture.Artificial Intelligence
52:49–86.

[Dempster, Laird, & Rubin 1977] Dempster, A. P.; Laird,

N. M.; and Rubin, D. B. 1977. Maximum likelihood from
incomplete data via EM algorithm.Journal of the Royal
Statistical Society Series B39:1–38.

[Erol, Hendler, & Nau 1994] Erol, K.; Hendler, J.; and
Nau, D. S. 1994. Htn planning: Complexity and expressiv-
ity. In Proceedings of the National Conference on Artificial
Intelligence (AAAI). AAAI Press.

[Gil 1994] Gil, Y. 1994. Learning by experimentation: In-
cremental refinement of incomplete planning domains. In
Eleventh Intl Conf on Machine Learning, 87–95.

[Ilghami et al.2005] Ilghami, O.; Munoz-Avila, H.; Nau,
D. S.; and Aha, D. W. 2005. Learning preconditions for
planning from plan traces and htn structure. InProceed-
ings of the International Conference on Machine Learning
(ICML). AAAI Press.

[Lotem, Nau, & Hendler 1999] Lotem, A.; Nau, D. S.; and
Hendler, J. A. 1999. Using planning graphs for solving
htn planning problems. Menlo Park, CA, USA: American
Association for Artificial Intelligence.

[McCluskey, Liu, & Simpson 2003] McCluskey, T. L.; Liu,
D.; and Simpson, R. 2003. Gipo ii: Htn planning in
a tool-supported knowledge engineering environment. In
The International Conference on Automated Planning and
Scheduling (ICAPS03).

[Nauet al.2003] Nau, D. S.; Au, T.-C.; Ilghami, O.; Kuter,
U.; Murdock, J. W.; Wu, D.; and Yaman, F. 2003. Shop2:
An htn planning system.Journal of Artificial Intelligence
Research20:379–404.

[Nejati, Langley, & Könik 2006] Nejati, N.; Langley, P.;
and Könik, T. 2006. Learning hierarchical task networks
by observation. InICML, 665–672.

[Quinlan 1990] Quinlan, J. R. 1990. Learning logical defi-
nitions from relations.Machine Learning5:239–266.

[Rabiner 1989] Rabiner, L. R. 1989. A tutorial on hidden
Markov models and selected applications in speech recog-
nition. Proceedings of the IEEE77(2):257–286.

[Reddy & Tadepalli 1997] Reddy, C., and Tadepalli, P.
1997. Learning goal-decomposition rules using exercises.
In Fisher, D. H., ed.,ICML, 278–286. Morgan Kaufmann.

[Wang 1995] Wang, X. 1995. Learning by observation
and practice: An incremental approach for planning oper-
ator acquisition. InInternational Conference on Machine
Learning, 549–557.

[Wilkins 1988] Wilkins, D. E. 1988.Practical planning:
extending the classical AI planning paradigm. San Fran-
cisco, CA, USA: Morgan Kaufmann Publishers Inc.

[Xu & Muñoz-Avila 2005] Xu, K., and Muñoz-Avila, H.
2005. A domain-independent system for case-based task
decomposition without domain theories. In Veloso, M. M.,
and Kambhampati, S., eds.,AAAI, 234–240. AAAI Press /
The MIT Press.

[Yang, Wu, & Jiang 2005] Yang, Q.; Wu, K.; and Jiang, Y.
2005. Learning action models from plan examples with in-
complete knowledge. InProceedings of the Fifteenth Inter-
national Conference on Automated Planning and Schedul-
ing, 241–250. AAAI Press.

	Introduction
	Background and Objective
	HLS: HTN Learning System
	Phase 1: Clustering to Associate Action Subsequences with Tasks
	Phase 2: HTN-Method Structure Generator

	Experiments
	Conclusion and Further Work

