
Learning to Solve Constraint Problems
Susan L. Epstein1,2 and Smiljana Petrovic1

1Department of Computer Science, The Graduate Center of The City University of New York, NY, USA
2Department of Computer Science, Hunter College of The City University of New York, NY, USA

spetrovic@gc.cuny.edu, susan.epstein@hunter.cuny.edu

Abstract
This paper explains why learning to solve constraint
problems is so difficult, and describes a set of methods that
has been effective on a broad variety of problem classes.
The primary focus is on learning an effective search
algorithm as a weighted subset of ordering heuristics.
Experiments show the impact of several novel techniques on
a variety of problems.

When a planning problem is cast as a constraint
satisfaction problem (CSP), it can use the representational
expressiveness and inference power inherent in constraint
programming (Nareyek et al. 2005). If such an encoding
lacks the necessary planning knowledge, a program might
learn effective solution methods. Our thesis is that it is
possible to learn to solve constraint satisfaction problems
from experience. In this scenario, a program is given a set
of CSPs and a set of search heuristics. It is then expected to
learn an effective search algorithm, represented as a
weighted combination of some subset of those heuristics.

From our perspective, the scenario’s principal challenge
is a plethora of purportedly “good” heuristics: heuristics to
select variables or values, heuristics for inference,
heuristics to determine when to restart. The focus here is
on heuristics for traditional global search. After
fundamental definitions and related work, this paper
addresses the differences among search order heuristics,
the power of mixtures of heuristics, and fundamental issues
in learning to solve a class of CSPs. It then describes two
algorithms for learning such mixtures, and additional
learning methods that speed learning and often improve
search performance.

Background and related work
A CSP is a set of variables, each with a domain of values,
and a set of constraints, expressed as relations over subsets
of those variables. CSP papers often present results on a
class of CSPs, that is, a set of putatively similar problems.
For example, a class of model B problems is characterized
by <n, m, d, t>, where n is the number of variables, m the
maximum domain size, d the density (fraction of edges out
of n(n-1)/2 possible edges) and t the tightness (fraction of
possible value pairs that each constraint excludes) (Gomes
et al. 2004). A problem class can also mandate some
non-random structure on its problems. For example, a
composed problem consists of a subgraph called its central
component loosely joined to one or more subgraphs called
satellites (Aardal et al. 2003).

In a binary CSP, all constraints are on at most two
variables. A binary CSP can be represented as a
constraint graph, where vertices correspond to the
variables (labeled by their domains), and each edge
represents a constraint between its respective variables.
Although the work reported here is on binary CSPs, in
principle that is not a restriction.

A solution to a CSP is an instantiation of all its variables
that satisfies all the constraints. Here, search for a solution
iteratively selects a variable and assigns it a value from its
domain, producing a search node. After each assignment,
some form of inference detects values that are incompatible
with the current instantiation. We use the MAC-3 inference
algorithm to maintain arc consistency during search (Sabin
et al. 1997). MAC-3 temporarily removes currently
unsupportable values to calculate dynamic domains that
reflect the current instantiation. If every value in any
variable’s domain is inconsistent (violates some
constraint), then the current instantiation cannot be
extended to a solution and some retraction method is
applied. Retraction here is chronological backtracking: it
prunes the subtree (digression) rooted at the inconsistent
node and withdraws the most recent value assignment(s).

All data was generated with ACE (the Adaptive
Constraint Engine). ACE learns a customized combination
of pre-specified search heuristics for a class of CSPs
(Epstein et al. 2005a) . It attempts to solve some sequence
of these problems within a specified resource limit (the
learning phase). Then learning is turned off and the
program attempts to solve a new sequence of problems
drawn from the same set (the testing phase). A run is a
learning phase followed by a testing phase. The resource
limit is measured in steps (number of variable selections
and value selections). The ability of a program to learn to
solve CSPs is gauged here by the number of problems
solved, the number of search steps, and the search tree size
in nodes, averaged over a set of runs.

The premise of learning is that data can be calculated,
stored, and applied to improve performance. Thus, it is
reasonable to learn about how to solve a class of problems
only if the effort expended, both to learn and to apply
learned knowledge, can be justified by a frequent need to
solve similar problems. For easy problems, learning is a
waste of resources —the search algorithm should recognize
and apply a simple, effective approach from its arsenal. On
a class of more challenging problems, learning may be
worthwhile if one expects to solve such problems often.
Indeed, proponents of any new search algorithm inherently
argue that most CSPs are enough like one another so that

success on some set of classes, as described in their papers,
bodes well for other classes yet untested. On a class of hard
problems, learning is appealing because the given search
algorithm is slower than one would wish, and thus the class
is “hard” for the search algorithm at hand.

Historically most learning for constraint solving has
been on an individual problem, rather than on an entire
class. Such learning has primarily focused either on
inconsistent partial instantiations that should be avoided or
on constraints that provoke retraction (Dechter et al. 1987;
Dechter 2003; Boussemart et al. 2004). Other work has
learned weights for individual assignments (Refalo 2004),
alternated among methods while solving an individual
problem (Borrett et al. 1996), identified problematic edges
with a preliminary local search (Ruml 2001; Eisenberg et
al. 2003; Hoos et al. 2004), learned global constraints
(Bessière et al. 2001; Bessière 2007), or addressed
optimization problems and incomplete methods (Caseau et
al. 1999; Caseau et al. 2004; Carchrae et al. 2005).

The argument for multiple heuristics
Despite enthusiasm for them in the CSP literature, ordering
heuristics (those that select variables and values for them)
display surprisingly uneven performance. Consider, for
example, the performance of the variable selection
heuristics in Table 1. (Definitions for all heuristics appear
in the Appendix.) Even well-trusted individual heuristics
such as these vary dramatically in their performance. For
example, max-weighted-degree (Boussemart et al. 2004) is
among the best individual heuristics when the number of
variables is substantially larger than the maximum domain
size (e.g., 50-10). It appears to be less effective, however,
when there are more potential values than variables (e.g.,
20-30).

Perhaps more surprising is that the opposite of a popular
heuristic may be considerably more effective than the
original. Let a metric be a function from a set of choices
(variables or values) to the real numbers. A metric returns a
score for each choice. An ordering heuristic is thus a
preference for one extreme or the other of the scores

returned by its metric. A dual for a heuristic reverses the
import of its metric (e.g., max-domain is the dual of min-
domain). Duals of popular heuristics may outperform them
on real-world problems and on problems with non-random
structure (Petrie et al. 2003; Lecoutre et al. 2004; Otten et
al. 2006). For example, each composed problems in Comp
has a Model B central component from <22, 6, 0.6, 0.1>
linked to a single model B satellite from <8, 6, 0.72, 0.45>
by edges with density 0.115 and tightness 0.05. The central
component is substantially larger, with lower tightness and
lower density than its satellite. These CSPs are particularly
difficult for some traditional heuristics. For example, max-
degree tends to select variables from the central
component, while the decidedly untraditional min-degree
tends to prefer variables from the satellite and thereby
detects inconsistencies much earlier. Table 2 shows how
three traditional heuristics and their duals fare on Comp.
Surprisingly, the simplest duals do by far the best. This is
of particular concern because the structural features of
Comp often appear in real-world problems.

In practice, a good mixture of heuristics can outperform
even the best individual one, as Table 3 demonstrates. The
first line shows the best performance achieved by any
traditional single heuristic from Table 1. The second line of
Table 3 shows that a good pair of heuristics, one for
variable ordering and the other for value ordering, can
perform significantly better than an individual heuristic.
Nonetheless, the identification of such a pair is not trivial.
For example, max-produc t -domain -va lue better

Table 2: Performance of 3 popular heuristics (in italics)
and their duals on 50 Comp problems (described in the
text) under a 100,000-step limit. Observe how much better
the duals perform on problems from this class.

Heuristic
Unsolved
problems Steps

Max degree 9 19901.76
Min degree 0 64.60
Max forward-degree 4 10590.64
Min forward-degree 0 64.50
Min domain/degree 7 15558.28
Max domain/degree 4 10922.82

Table 1: Search tree size under individual heuristics on 50
problems from each of three randomly-generated Model B
classes: <50, 10, 0.38, 0.2>, <20, 30, 0.444, 0.5>, and
<30, 8, 0.26, 0.34> (referred to hereon as 50-10, 20-30, and
30-8, respectively).

Heuristic 30-8 20-30 50-10
min-domain 563 10,411 51,347
max-degree 206 5,267 46,347
max-forward-degree 220 10,150 43,890
min-domain/degree 234 4,194 35,175
max-weighted-degree 223 5,897 30,956
min-dom/dynamic-deg 211 3,942 30,791
min-dom/weighted-deg 205 4,090 30,025

Table 3: Search tree size under individual heuristics and
under mixtures of heuristics on three classes of problems.
ACE learns a different, high-performing mixture of more
than two heuristics for each of these classes.

Mixture 30-8 20-30 50-10
The best heuristic from
Table 1 205 3,942 30,025

Min dom/dynamic degree +
Max Product Domain Value 156 2,764 15,091

Max-weighted-degree +
Max Product Domain Value 179 3,892 22,273

Mixture found by ACE 141 2,502 12,120

complements min-domain/dynamic-degree than it does
max-weighted-degree. The last line demonstrates that
combinations of more than two heuristics can further
improve performance.

Given these results, a program required to learn effective
search without knowledge about problem structure should
be provided with many popular heuristics, along with their
duals. ACE’s heuristics, each with its own metric, are
gleaned from the CSP literature. To make a decision during
search, ACE uses a weighted mixture of expressions of
preference from a large number of such heuristics. This is a
difficult task.

Why learning on a class of problems is hard
Without an instructor to provide examples of good and bad
decisions, learning in our scenario is self-supervised, that
is, the learner must assess both the quality of its own
actions and the adequacy of its model of the environment.
The <search node, decision> pairs from a solver’s trace
provide self-generated training instances. Reinforcement
learning rewards or penalizes heuristics based on their
ability to provide good search advice (Sutton & Barto,
1998), but in this context it faces a variety of difficulties.
A solution path may not provide good training
instances. Since every variable must be assigned a value,
any variable ordering must eventually lead to a solution if
the problem is solvable. Nonetheless, some variable orders
generate substantially fewer nodes, and may be more
effective by several orders of magnitude; those are the ones
we want our learner to produce. Self-generated training
instances, however, may not necessarily represent good
variable choices. Moreover, any variable ordering can lead
to an error-free solution if each chosen value satisfies all
constraints. As a result, the ease with which a solution is
found is not a reliable criterion for evaluating the quality of
the decisions that led to a solution.
The difficulty of a problem is hard to assess. Training
instances must be drawn from the same population as
testing instances, but a class of CSPs is only putatively
similar. For a given search algorithm, in some
circumstances the distribution of difficulty within a class is
heavy tailed (Hulubei et al. 2005). Thus some problems
will be extremely difficult, while others will be
manageable, or even easy. When a learner confronts a CSP
from a class, it is hard to predict how amenable the
particular problem will be to the search algorithm. This
issue arises whether or not the problems are “hard” in some
fundamental sense. Variation in difficulty is not noise; it is
inherent in the problems themselves and in their interaction
with heuristics. In learning to solve CSPs, the skewed
distribution within a problem class (as the result, perhaps,
of an inappropriate heuristic) poses a particular challenge
that is only exacerbated by more difficult classes.
The difficulty of a problem class is hard to assess. In
Model B problems, for fixed values of n and m, there are
value combinations for d and t that make the entire class of
problems difficult in some fundamental sense (the phase

transition) (Cheeseman et al. 1991). Even in a class at the
phase transition (as are the classes in Table 3) there may be
a wide range of difficulty, so that individual problems
could give a misleading picture of the class as a whole. In
theory one could assess the difficulty of a class using
standard algorithms on a sample drawn from it, and thereby
characterize the relative difficulty for problems with
different parameter values. More generally, however,
particularly in real-world contexts, this may not be possible
to do beforehand. In such situations, the previously
described difficulties of learning from learner-generated
solution paths may be magnified.
The severity of an error is costly to assess. An error is a
value assignment that is eventually retracted during search.
Typically, even a handcrafted CSP solver arrives at a
solution only after a lengthy series of errors. To penalize
incorrect decisions appropriately, one should assess the
severity of the error. Effectively, any incorrect decision
creates an unsolvable problem. When a good solver errs, it
will quickly discover its error. Gauging the effectiveness of
error recovery, however, requires exploration of every
possible ordering of value assignments in the digression, an
unreasonable computational burden.
Errors may not be immediately apparent. An important
issue in credit/blame assignment for reinforcement learning
is that most retractions appear at some distance from the
root of the search tree. In fact, even for hard but solvable
problems, there are usually relatively few retractions at the
top of the search tree, even with maintained arc
consistency. Retractions often begin only after several
decisions have been made. In such searches, the impact of
bad decisions, especially variable selections, appears only
after several more decisions have been made. As a result, it
is difficult to assign blame to the true culprits.
Implications for learning. In summary, given a set of
search traces, it is difficult to gauge how representative
they are of effective search, difficult to identify sources of
inefficiency from errors alone, and difficult to gauge how
severe the errors are, how hard an individual problem is
(despite its class designation), and even the degree to
which a solution is based on good decisions. Moreover,
since CSP solution is NP-complete, there can be no “gold
standard” by which to judge the quality of a heuristic; the
perfect search path must be assumed to be unobtainable on
a regular basis. Clearly, for a program expected to learn an
effective search algorithm based only on its own problem-
solving experience, the interpretation of success and failure
is not straightforward. Even the worst heuristic can solve
some problems quickly. If such problems occur early in
learning, then an ineffective heuristic will deceptively
appear to be effective. If poor heuristics are reinforced
early in learning, they will inevitably lead to poor
performance on some subsequent problems.

Learning a mixture of heuristics
ACE, is based on FORR, an architecture for the
development of expertise from multiple heuristics (Epstein

1994). ACE learns a customized weighted mixture of pre-
specified heuristics for any given class. Guided by its
ordering heuristics (here, Advisors) ACE solves problems
in a given class and uses that experience to learn a weight
profile (a set of weights for the Advisors). To select a
variable or a value, ACE consults its Advisors. Each
Advisor Ai expresses the strength sij of its preference for
choice cj. Based on the weight profile, the choice with the
highest weighted sum of Advisors strengths to choices is
selected:

€

argmax
j

wisij
i
∑ [1]

Initially, all weights are set to 0.05. During learning,
ACE gleans training instances from its own (likely
imperfect) successful searches. Positive training instances
come from the error-free path to a solution. Negative
training instances are incorrect value selections, as well as
variable selections after which a value assignment fails.
Decisions made within a digression are not considered.
After each successful search, ACE extracts training
instances from the trace, and updates the weight profile
with a weight-learning algorithm before it goes on to the
next problem.

Weights are based on the historical frequency with
which an Advisor agreed with positive training instances
and disagreed with negative ones, taken as a ratio because
an Advisor may not always comment (express a preference)
on a training instance. The learning algorithm presents
each training instance, along with the possible actions
available, to each Advisor. If an Advisor can discriminate
among these actions by its comment strengths, its weight is
adjusted: increased if it supports the correct decision,
decreased otherwise. The actual weights are more than
mere frequencies, however. A reward (the increment to the
numerator) is not necessarily 1, and a penalty (the
decrement to the numerator) can be substantial.

ACE has two effective algorithms that learn a weighted
mixture of ordering heuristics for a class of CSPs. In DWL
(Digression-based Weight Learning) an Advisor supports a

decision if it gives that choice its highest rank. DWL
rewards and penalizes search choices based on the number
of nodes in the search tree, the size of its digressions, and
performance on the preceding problems. RSWL (Relative
Support Weight Learning) considers all heuristics’
preferences when a decision is made. Weight
reinforcements under RSWL depend upon the normalized
difference between the strength the Advisor assigned to
that decision and the average strength it assigned to all
available choices (relative support). An Advisor supports a
decision if its relative support is positive. Under RSWL,
rewards and penalties are proportional to relative support.

Important learning mechanisms
The multitude of available CSP heuristics, their
idiosyncratic applicability, and the issues described earlier
drove the development of several important general
learning mechanisms which we summarize here. Although
these approaches are not limited to CSP, they are essential
for good learning performance as envisioned here. All of
the following experiments with ACE average results over
10 runs and use 42 Advisors, (described in the Appendix:
28 for variable ordering and 14 for value ordering).
Full restart. When class-inappropriate heuristics acquire
high weights early in training, they often control the
subsequent decisions and repeatedly fail to solve problems.
Full restart recognizes that the current learning attempt is
not promising, abandons the responsible training problems,
and restarts the entire learning process with a freshly-
initialized weight profile (Petrovic et al. 2006). Without
full restart, reduced learning resources (the learning step
limit) produce occasional unsatisfactory runs. With an
appropriate full restart strategy, however, learning
resources can be reduced by an order of magnitude without
compromising performance. Full restart has proved most
effective when it responds to the frequency of recent
problem failure and when learning terminates after some
number of consecutive solved problems. Table 4
demonstrates the power of restart. ACE monitored its own
reliability during the learning phase: failure on 4 of the last
7 problems triggered a full restart. During the learning
phase, ACE was required to try to solve 30 problems in its
current full-restart attempt. Problems were never reused
during learning, even under full restart.
Random subsets. Given an initial set of heuristics that is
large and inconsistent, many class-inappropriate heuristics
may combine to make bad choices, and thereby make it
difficult to solve any problem within a given step limit.
Because only solved problems provide training instances
for weight learning, no learning can take place until some
problem is solved. Random subsets have proved a
successful approach to this issue: rather than consult all of
its Advisors at once, ACE randomly selects a new subset of
Advisors for each problem, consults them, makes decisions
based on their comments, and updates only their weights
(Petrovic et al. 2007b). During the experiments in Table 5,
for each problem in the learning phase, r of the variable-

Table 4: ACE’s average steps to solution, with and without
full restart. A lower step limit without full restart gives
uneven performance.

Class <30, 8, 0.31, 0.34> <30, 8, 0.18, 0.5>
Restart
strategy

None None 4 out of
7 failed None None 4 out of

7 failed
Learning
step limit

20000 2000 500 10000 1000 500

Run 1 145.13 145.12 144.47 71.80 3324.42 73.00
Run 2 149.17 150.10 147.85 71.07 71.38 72.37
Run 3 163.28 6541.17 163.98 69.72 69.72 71.95
Run 4 146.85 151.63 152.73 70.85 70.43 73.23
Run 5 153.25 6373.50 156.27 71.53 71.92 71.97
Run 6 144.30 144.02 154.63 71.43 72.43 75.82
Run 7 154.90 157.73 158.10 72.37 71.42 71.50
Run 8 150.27 154.55 153.25 69.75 73.87 72.43
Run 9 135.93 157.68 162.58 71.25 3370.53 72.78
Run 10 150.77 154.25 158.00 69.90 71.62 73.20

ordering Advisors and r of the value-ordering Advisors
were selected without replacement to make decisions
during search on that problem. (For size 20%-80%, a
random r in [.2,.8] was generated first.) Random subsets
reduce early failures (problems unsolved before any
weights were learned) during learning. They also reduce
search tree size during testing, and increase the number of
solved problems during both learning and testing, as shown
in Table 5.
Fewer heuristics. A benchmark Advisor expresses random
preferences over the same set of choices an Advisor faces.
ACE has two such benchmarks, one for variable ordering
and the other for value ordering. Benchmarks are excluded
from decision-making, but weights are learned for them.
To speed performance during testing, ACE uses only those
Advisors whose learned weight exceeds that of their
respective benchmarks. This typically eliminates about half
the initial Advisors. We have experimented with further
reductions in the number of Advisors during testing, as
shown in Table 6. The more extensive reductions
eventually increased search tree sizes for the 20-30
problems. For the 50-10 problems, however, the search tree
size remained stable with a 31% speedup. We believe the
explanation lies in the nature of the problems themselves.
When there are many values compared to the number of
variables, despite inference with MAC-3, domains remain
large and many values still share the same scores (and

strengths). With too few value-ordering Advisors, ties
among value choices occur more often, so that random
selection among tied values is more likely, making search
decisions less prescient.
Borda-based voting. The metrics that underlie heuristics
embody domain knowledge that reflects preferences among
choices. Simple ranking ignores the degree of metric
difference, linear interpolation attends to relative
differences among scores, and exponential methods stress
choices with higher scores while they reduce the influence
of low-scoring choices dramatically. Two preference
expression methods inspired by the Borda voting literature
in political science (Brams et al. 2002) consider relative
positions among scores and have proven particularly
reliable (Petrovic et al. 2007a). When preference for fewer
heuristics and full restart are combined with more sensitive
expression of those Advisors’ preferences, it is possible to
significantly reduce both computation time and the size of
the search tree on difficult problems.
Inference policy. Inference is intended to remove from
consideration values that will not lead to a solution. An
inference policy includes preprocessing, selection of an
inference method, identification of relevant method
parameters, and switching among methods. In pioneering
work with ACE, we have shown the significant impact
such a policy has on solution time, and that the choice of a
good policy varies with both the problem class and the
search order heuristics (Epstein et al. 2005b). We have also
demonstrated how an inference policy can be learned
automatically and can substantially improve performance.
The most effective methods thus far are those that monitor
and respond to domain changes after instantiations. They
do less work than AC without reducing search
performance.

Table 7 compares this combination with that of the
single heuristics in Table 1. ACE’s current development
focuses on interleaving global with local search, and on a
variety of structure-targeting representations that should
continue to strengthen its ability to learn to search.

Table 6: Search tree size, number of solved problems, and
time comparison with fewer Advisors during testing. Bold
values are statistically significant performance reductions
compared to the traditional benchmark approach (> bmk).

20-30 50-10Var.
Adv.

Val.
Adv. Steps Solved Time Steps Solved Time

>bmk >bmk 2,864 100% 100% 19,689 91% 100%
8 4 2,956 100% 71% 19,923 93% 84%
8 2 2,930 100% 55% 19,372 93% 70%
4 4 3,198 100% 87% 19,265 94% 77%
4 2 3,176 100% 67% 19,428 94% 69%

Table 5: Random subsets (r < 100%) improve
performance. (*) indicates that only 2 runs were completed.

Learning Testing

Class
Subset
size r Unsolved

Early
failures Unsolved Steps

100% 52.60% 42.41% 31% 36,835.70
30% 32.20% 11.89% 0 % 3,608.27
70% 14.56% 9.48% 0 % 3,962.6220

-3
0

20%-80% 24.37% 7.72% 0 % 3,888.62
100% (*) 93.38% 58.10% 97.5% 97,972.85

30% 31.64% 26.63% 1 % 15,599.71
70% 26.45% 23.27% 10 % 23,499.9950

-1
0

20%-80% 27.43% 20.29% 0% 13,206.32

Table 7: Reduced search tree size with the full complement
of learning methods described here, compared to the
traditional single-heuristic approaches from Table 1. ACE
values here are averaged over 10 runs; ACE Table 3 values
are best individual runs.

Heuristic 30-8 20-30 50-10
min-domain 563 10,411 51,347
max-degree 206 5,267 46,347
max-forward-degree 220 10,150 43,890
min-domain/degree 234 4,194 35,175
max-weighted-degree 223 5,897 30,956
min-dom/dynamic-deg 211 3,942 30,791
min-dom/weighted-deg 205 4,090 30,025
ACE’s learned mixture 175 2,941 14,480

Appendix: Metrics for ACE’s heuristics
Each metric produces two Advisors.
Metrics for variable selection were static degree, dynamic
domain size, FF2, dynamic degree, number of valued
neighbors, ratio of dynamic domain size to dynamic
degree, ratio of dynamic domain size to degree, number of
acceptable constraint pairs, static and dynamic edge degree
with preference for the higher or lower degree endpoint,
weighted degree, and ratio of dynamic domain size to
weighted degree (Boussemart et al. 2004). Here, the degree
of an edge is the sum of the degrees of its endpoints. The
edge degree of a variable is the sum of edge degrees of the
edges on which it is incident.
Metrics for value selection were number of value pairs for
the selected variable that include this value, and, for each
potential value assignment: minimum resulting domain size
among neighbors, number of value pairs from neighbors to
their neighbors, number of values among neighbors of
neighbors, neighbors' domain size, a weighted function of
neighbors' domain size, and the product of the neighbors'
domain sizes. Two vertices with an edge between them are
neighbors.

References
Aardal, K. I., S. P. M. van Hoesel, A. M. C. A. Koster, C.
Mannino and A. Sassano (2003). "Models and solution
techniques for frequency assignment problems." 4O 1(4):
261-317.

Bessière, C. (2007). Learning Implied Global Constraints.
In Proceedings of IJCAI-2007, Hyderabad, India.

Bessière, C. and J.-C. Régin (2001). Refining the basic
constraint propagation algorithm. In Proceedings of
IJCAI-2001.

Borrett, J., E. Tsang and T. Walsh (1996). Adaptive
constraint satisfaction. In Proceedings of ECAI-96.

Boussemart, F., F. Hemery, C. Lecoutre and L. Sais
(2004). Boosting systematic search by weighting
constraints. In Proceedings of ECAI-2004, IOS Press.

Brams, S. J. and P. C. Fishburn (2002). Voting procedures.
Handbook of Social Choice and Welfare Volume 1: 173-
236.

Carchrae, T. and J. C. Beck (2005). Cost-based Large
Neighborhood Search In Proceedings of Workshop on the
Combination of Metaheuristic and Local Search with
Constraint Programming Techniques.

Caseau, Y., G. Silverstein and F. Laburthe (1999). A Meta-
Heuristic Factory for Vehicle Routing Problems. In
Proceedings of CP-1999, Springer Verlag.

Caseau, Y., G. Silverstein and F. Laburthe (2004).
"Learning Hybrid Algorithms for Vehicle Routing
Problems " Theory and Practice of Logic Programming
1(6): 779-806.

Cheeseman, P., B. Kanefsky and W. M. Taylor (1991).
Where the REALLY Hard Problems Are. In Proceedings
of IJCAI-91, Sidney, Australia.

Dechter, R. (2003). Constraint Processing. San Francisco,
CA, Morgan Kaufmann.

Dechter, R. and J. Pearl (1987). "Network-based heuristics
for constraint satisfaction problems." Art i f ic ia l
Intelligence 34: 1-38.

Eisenberg, C. and B. Faltings (2003). Using the Breakout
Algorithm to Identify Hard and Unsolvable Subproblems.
In Proceedings of CP-2003, Springer Verlag.

Epstein, S. L. (1994). "For the Right Reasons: The FORR
Architecture for Learning in a Skill Domain." Cognitive
Science 18(3): 479-511.

Epstein, S. L., E. C. Freuder and R. J. Wallace (2005a).
"Learning to Support Constraint Programmers."
Computational Intelligence 21(4): 337-371.

Epstein, S. L., E. C. Freuder, R. M. Wallace and X. Li
(2005b). Learning Propagation Policies. In Proceedings of
Second International Workshop on Constraint
Propagation and Implementation, Sitges, Spain.

Gomes, C., C. Fernandez, B. Selman and C. Bessière
(2004). Statistical Regimes Across Constrainedness
Regions. In Proceedings of CP- 2004, Springer-Verlag.

Hoos, H. H. and T. Stützle (2004). Stochastic Local
Search: Foundations and Applications. San Francisco,
Morgan Kaufmann.

Hulubei, T. and B. O'Sullivan (2005). Search heuristics and
heavy-tailed behavior. In Proceedings of CP 2005,
Springer-Verlag.

Lecoutre, C., F. Boussemart and F. Hemery (2004).
Backjump-based techniques versus conflict-directed
heuristics. In Proceedings of ICTAI-2004.

Nareyek, A., E. C. Freuder, R. Fourer, E. Giunchiglia, R. P.
Goldman, H. Kautz, et al. (2005). "Constraints and AI
planning." IEEE Intelligent Systems 20(2): 62 - 72.

Otten, L., M. Grønkvist and D. P. Dubashi (2006).
Randomization in Constraint Programming for Airline
Planning. In Proceedings of CP-2006, Springer Verlag.

Petrie, K. E. and B. M. Smith (2003). Symmetry breaking
in graceful graphs. In Proceedings of CP-2003, Kinsale,
Ireland, Springer Verlag.

Petrovic, S. and S. L. Epstein (2006). Full Restart Speeds
Learning. In Proceedings of FLAIRS-2006.

Petrovic, S. and S. L. Epstein (2007a). Preferences
Improve Learning to Solve Constraint Problems. In
Proceedings of AAAI07 Workshop on Preference for
Artificial Intelligence.

Petrovic, S. and S. L. Epstein (2007b). Random Subsets
Support Learning a Mixture of Heuristics. In Proceedings
of FLAIRS 2007, Key West, AAAI.

Refalo, P. (2004). Impact-based search strategies for
constraint programming. In Proceedings of CP-2004.

Ruml, W. (2001). Incomplete Tree Search using Adaptive
Probing. In Proceedings of IJCAI-2001.

Sabin, D. and E. C. Freuder (1997). Understanding and
Improving the MAC Algorithm. In Proceedings of CP-
97., Springer Verlag: 167-181.

