
Learned Models of Performance for Many Planners ∗

Mark Roberts, Adele Howe and Landon Flom
Computer Science Dept., Colorado State University

Fort Collins, Colorado 80523 U.S.A.
mroberts,howe,flom@cs.colostate.edu

Abstract

We describe a large scale study of planners and their perfor-
mance: 28 planners on 4726 benchmark problems. In the
first part of the paper, we apply off-the-shelf machine learning
techniques to learn models of the planners’ performance from
the data. In the evaluation of these models, we address the
critical question of whether accurate models can be learned
from easily extractable problem features. In the second part,
we show how the models can be useful to furthering plan-
ner performance and understanding. We offer two contribu-
tions: 1) We demonstrate that accurate models of runtime and
probability of success can be learned using off-the-shelf ma-
chine learning techniques, and 2) We show that the learned
models can be leveraged to support a planner portfolio which
improves over individual planners. We also discuss how the
models can be analyzed to better understand how planner de-
sign decisions contribute to their performance.

Performance Models
Due to the maturity of the Planning field and the Interna-
tional Planning Competition (IPC), a great many planners
and problems are publicly available. We are at a point where
we can potentially model planner performance to better un-
derstand why they work well (when they do) and to leverage
this knowledge into the next generation.

In this paper, we describe a large study of 28 publicly
available planners on 4726 benchmark problems. While not
complete, the planner set comprises a good cross-section of
planners in terms of age and technology for planning. The
benchmark problems are mostly from the IPC test set, but
also include problems from other sites.

These data present several opportunities. First, planners
tend to be fairly complex software systems developed for re-
search purposes generally. Given that we have a fair amount
of performance data, can accurate models of planner perfor-
mance be learned? Second, can the data and models be used
to improve planner performance?

We can show that models of planner performance based
only on simple easy-to-compute problem features can be
surprisingly accurate for predicting success and somewhat

∗This research was partially sponsored by the National Science
Foundation under grant number IIS-0138690 and Air Force Office
of Scientific Research grant number FA9550-07-1-0403.

accurate (i.e., better than guessing the mean time) for pre-
dicting time. The models also work well even when trained
on older problems and tested on the most recent (showing
that the models generalize). We also show how the models
can be embedded into a portfolio of planning systems and
show that the learned models can drive a successful portfo-
lio. Our best portfolio that uses learned models can improve
over any single planner and the mean solution times. We end
by discussing how the learned models can help improve our
understanding of planner performance.

Related Work
Research on applying learning and planning has a long his-
tory. Our work most closely follows other research that used
learning to enhance a portfolio of algorithms. Most port-
folios follow one of two approaches: 1) learning models
(off-line or on-line) to predict runtime/success; or 2) learn-
ing control rules to manage a single algorithm1.

One of the first formulations calculated the risk of se-
lecting an algorithm (Huberman, Lukose, & Hogg 1997).
Gomes and Selman (1997) explicitly computed the value of
multiple restarts of the same algorithm. For classical plan-
ning, the Bus meta-planner (Howe et al. 1999) used linear
regression models of computation time and success to rank
a set of classical planners.

Some researchers use a different approach wherein they
learn control rules for a single overall system rather than
algorithm selection among full implementations of distinct
algorithms. Some early work was done by Minton (1996) for
the PRODIGY system as well as Gratch and Chien (1996)
for Scheduling . A more recent example is found in that of
Vrakas et al. (2003) where they applied machine learning to
select parameters for their planner HAP.

Predicting Planner Performance
No single planner completely dominates the others by solv-
ing all the problems that can be solved by any planner. How-
ever, a few planners – most notably those variants based
on the relaxed graph plan heuristic – do solve considerably
more problems. In this section, we describe how we learn

1Space limitations preclude a complete exposition of the liter-
ature, but an analysis of most literature for the portfolio models is
found at http://www.cs.colostate.edu/˜mroberts/publications.html.



performance models from a large set of run-time data and
evaluate how well the learned models predict performance.

Performance Data
We ran all planners on all problems to collect performance
data, using a time cutoff of 30 minutes and a memory cut-
off of 768 MB. We used identically configured Pentium 4
3.4Ghz computers each with 1 Gigabyte of memory running
Fedora Core 6.0 Linux.

Planners The 28 publicly available STRIPS capable plan-
ners used in our study are listed in Table 12. The set is
composed of IPC competitors plus some other planners in-
cluded to diversify the representative approaches. The plan-
ners were all run using their default parameters.

Planner Authors [Date]
AltAlt-1.0 Nguyen,Kambhampati, Nigenda [2002]
BlkBox-4.2 Kautz, Selman [1999]
CPT-1.0 Vidal, Geffner [2004]
FF-2.3 Hoffmann [2001]
HSP-2.0 Bonet, Geffner [2001]
HSP-h1plus Bonet, Geffner [2001]
HSP-h2max Bonet, Geffner [2001]
IPP-4.0 Koehler, et al. [1997]
IPP-4.1 Koehler, et al. [1997]
LPG-1.1 Gerevini, Saetti, Serina [2002]
LPG-1.2 Gerevini, Saetti, Serina [2003]
LPG-TD Gerevini, Saetti, Serina [2005]
Metric-FF Hoffmann [2003]
MIPS-3 Edelkamp [2003]
OPTOP McDermott [2005]
PROD-4.0 Veloso et al. [1995]
SystemR Lin [2001]
SAPA-2 Do, Kambhampati [2003]
Satplan04 Kautz, Selman [1999]
Satplan06 Kautz, Selman, Hoffmann [2006]
SGP-1.0h Weld, Anderson, Smith [1998]
SGP-1.0b Weld, Anderson, Smith [1998]
SGPlan-06 Chen, Hsu, Wah [2004]
SimPlan-2.0 Sapena, Onaindia [2002]
SNLP-1.0 McAllester, Rosenblitt [1991]
STAN-4 Long, Fox [1999]
UCPOP-4.1 Penberthy, Weld [1992]
VHPOP-2.2 Younes, Simmons [2003]

Table 1: Planners, their authors and dates of publications.

Problems Our problem collection consists of 4726
STRIPS PDDL problems from 385 domains. They are taken
from Hoffmann’s dataset (Hoffmann 2004), the UCPOP
Strict benchmark, IPC sets (IPC1, IPC2, IPC3 Easy Typed,
IPC4 Strict Typed and IPC5 Propositional) and 37 other
problems from two domains (Sodor and Stek) that have been
made publicly available.

2The full references and URLS for obtain-
ing the planners are being made available at
http://www.cs.colostate.edu/meps/nsf-data.html.

The majority of the problems in this compendium are out-
dated and no longer challenging. 33.7% of the runs succeed
over all planners and problems. The mean time to comple-
tion is 19.14 seconds over all successful runs and 232.30
for failed runs. Across all planners, 82.9% (successful) and
70.6% (failure) of runs complete in under 1 second. For ex-
ample, a model that predicted “success” for FF-2.3 would
be correct for 68% of the problems, and a time model that
predicted less than 1 second would be correct 86.9%.

The distributions do vary across planners from a range of
7.5%-70.7% for success within 30 minutes and 4.9%-70.1%
for success within 1 second. The mean time to complete
varies from 0.49-651.18 seconds for the different planners,
with means for successful runs of 0.10-84.48 seconds and
failed runs of 0.58-834.50 seconds.

Consequently, we restrict our further study to just chal-
lenging problems. A problem is defined to be challenging if
1) it can be solved by only three, two or one planners or 2)
the median time for solution is greater than one second. We
picked these thresholds so that we still had enough data to
support learning/testing. These criteria reduce the set to just
1215 problems from 41 domains; all of which are solvable
by some planner.

Model Parameters
We learned models for each of the planners from observed
performance on a large set of benchmark problems. The
input to each learning algorithm was problem/domain fea-
tures and the performance (whether or not successful and
how much time to completion) for each of the problems.

Performance Metrics For each planner on each problem,
we recorded whether a plan was found (success as true or
false) and how much time was required to complete execu-
tion (time in seconds). Because each planner has its own
way of declaring success, we constructed code to automati-
cally extract these metrics from the output. Some planners
reported success in their output without actually generating
a legal plan; those cases were marked as failures.

Problem/Domain Features Each problem instance is de-
fined by 32 features that can be automatically extracted from
PDDL problem and domain definitions. We started with fea-
tures from (Howe et al. 1999) and (Hoffmann 2001), but we
found that the Howe et al. features were not sufficient and
the Hoffmann features, while powerful, were only tractable
for small problems. The Hoffmann features were removed,
and others were added based on our intuitions about what
might influence performance. Table 2 shows the features in
two categories: domain specific and instance specific.

Learning Planner Models
For each planner, we constructed two models: success and
time. For success, we built a binary classifier (successful or
not) and in some cases, used the resulting model to estimate
P (solution found|problem, planner). Time predicts compu-
tation time needed for a given planner to successfully solve
a given problem.



Metrics Description
num # of operators
num # of predicates
min,mu,max arity for predicates
min,mu,max predicates in precondition
min,mu,max predicates in effects
min,mu,max negations in effects
num,ratio actions over negative effects
boolean requires ADL
boolean requires conditional effects
boolean requires derived predicates
boolean requires disjunctive preconditions
boolean requires domain axioms
boolean requires equality
boolean requires existential preconditions
boolean requires fluents
boolean requires quantified preconditions
boolean requires safety constraints
boolean requires STRIPS
boolean requires typing
boolean requires universal preconditions
num # of goals
num # of objects
num # of inits

Table 2: The feature set: first column is the metric being
collected, the last column briefly describes the feature.

We use the WEKA data mining package (Witten & Frank
2005) to build the models. We tried 32 different models from
WEKA. Table 3 lists the models that were most accurate
for the test used to select models for the portfolio: ADTree
(ADT), DecisionTable (DT), GaussianProcess (GP), IB1,
J48, JRip, KStar, LMT, Logistic (Log), MultilayerPercep-
tron (MLP), NNge, and PART. They include lazy instance
learners, rule based, decision tree, model tree, nearest neigh-
bor, kernel, neural network and regression algorithms.

Evaluating the Planner Models
A key issue is how well performance can be predicted given
the problem characteristics. Given our methodology of us-
ing easily extracted features and off-the-shelf learning, it is
entirely possible that accurate models would be elusive.

Selecting the Most Accurate Models To evaluate the
models, we hold out 20% of the Challenge problems as test
problems (half of IPC4 and IPC5 problems in the set); we
use the remaining 80% to train classifiers. Table 3 shows the
results of 10-fold cross-validation on the 80% training set
(labeled “80% Challenge”).

The models of success are quite accurate. Guessing “fail”
can be viewed as a strawman model (it is the most likely out-
come for all but two planners), and then % fail is its % cor-
rect. The best classifier’s % correct is higher than (or equal
to for CPT-1.0, SNLP-1.0, and VHPOP-2.2) the straw-
man. In some cases, the % correct is considerably higher
than the strawman, e.g., FF-2.3, IPP-4.1, IPP-4.0, LPG-TD,
Metric-FF, and SGPlan-06. A one-tailed paired sample t-test

comparing the correctness of the strawman against the best
model showed that that strawman’s correctness was signifi-
cantly lower (t = −3.7, p < 0.0005). Moreover, the average
correctness is quite high: 96.59% over all planners. Which
classifier is best varies across the planner set. Picking the
best classifier does matter as the average accuracy across all
classifiers and planners was lower (93.95%).

The models of time are not so accurate. The best Root
Mean Squared Error (RMSE) averages somewhat less than
the average time to succeed. The highest RMSE is 424.95
seconds, which at least is considerably less than the highest
possible time of 30 minutes. However, not all planners are
so hard to predict. The lowest RMSE is 3.55, and 13 have
RMSEs lower than the average times. We gauge the similar-
ity between the actual and predicted times on the test set for
the challenge problems (the 20% held out) by running paired
sample t-tests. At least three problems from the test set could
be solved by 25 of the planners (minimum needed to test
time to success predictions). Of those, predicted times for
seven planners (BlkBox-4.2, FF-2.3, HSP-h2max, IPP-4.1,
Satplan04, SGP-1.0b, and SGP-1.0h) were statistically sig-
nificantly different at α < .05 level; another three (HSP-2.0,
IPP-4.0, and LPG-1.2) up to 0.1 and three more (CPT-1.0,
OPTOP and VHPOP-2.2) up to .2. So roughly the other half
had predictions similar to actual distributions.

We point out two reasons why it is harder to predict time.
First, WEKA includes fewer models that can handle contin-
uous classes; future work will look at building better ma-
chine learning models for these data. Second, the distribu-
tions are highly skewed (consider the large difference be-
tween the median and the mean) with long tails. High val-
ues of time to succeed are rare and so are very hard to predict
accurately.

Do the models generalize? (Train on Old, Test on New)
We trained models on the portion of the challenge data other
than the latest (91 problems from the IPC5 subset) and tested
on these newer problems. As Table 3 shows, the planner fail-
ure rates are comparable on the newer problems; the average
accuracy of predicting success suffered only slightly (from
96.59 to 94.47).

Many of the planners are unable to solve problems from
the IPC5 set. We did not calculate models of time to success
for these. However, for those that could, we found lower
average time to succeed and lower RMSE for the models
than for the 80% Challenge set. However, the RMSE was
slightly higher than the mean time. As with the 80% data,
we compared actual and predicted times using two sample
t-tests on the 14 planner models with sufficient data. Two
(FF-2.3 and LPG-TD) were significantly different at α <
.05, and one more (Metric-FF) at 0.2. Thus, generally the
predictions were similar.

Computation Required The time to compute the mod-
els must be included in run times for on-line usage of the
learned models. Fortunately, the features are fast to extract,
and WEKA is fast to run the learned models. Features can
be extracted from problems in 0.0025 seconds on average.
The aggregated time to compute predictions for all the prob-
lems in our 80/20 test set was 0.29 for success and 0.08 for



Success Models Time Models
80% Challenge Test IPC5 80% Challenge Test IPC5

% Best % Best % Best % µ median Best Best µ Best
Planner fail correct Classifier fail correct time time RMSE Classifier time RMSE
AltAlt-1.0 98.87 99.18 KStar 100 100 0.89 0 3.55 KStar
BlkBox-4.2 95.77 97.42 MLP 97.8 100 11.36 0 84.79 GP 4.86 53.83
CPT-1.0 99.38 99.38 MLP 100 100 15.74 0.04 83.52 KStar
FF-2.3 43.71 93.4 KStar 37.36 82.42 146.29 0.12 316.79 KStar 145.91 258.87
HSP-2.0 82.47 92.78 j48 94.51 94.51 552.99 0.28 421.66 KStar 46.78 58.49
HSP-h1plus 93.81 96.7 KStar 90.11 91.21 211.48 0.03 333.09 KStar 110.83 281.37
HSP-h2max 97.84 98.76 KStar 100 100 413.07 0.03 368.75 KStar
IPP-4.0 79.28 96.08 NNge 96.7 96.7 513.88 6.29 424.95 KStar 59.74 57.73
IPP-4.1 78.45 96.39 JRip 96.7 97.8 503.23 6.45 383.94 KStar 88.49 72.02
LPG-1.1 85.46 95.36 PART 84.62 84.62 243.8 0 251.64 KStar 134.04 205.58
LPG-1.2 79.69 94.12 KStar 79.12 89.01 220.88 0 269.97 KStar 170.35 287.2
LPG-TD 63.20 94.95 IB1 37.36 71.43 214.61 0.18 309.4 KStar 138.11 190.93
Metric-FF 46.39 93.81 j48 32.97 81.32 57.26 0.54 189.98 KStar 164.42 319.6
MIPS-3 90.82 95.46 NNge 91.21 98.9 445.82 0.01 373.75 KStar 285.43 128.24
OPTOP 92.89 96.8 KStar 97.8 97.8 25.42 14 49.04 DT 193.97 154.16
PROD-4.0 98.14 99.59 NNge 100 100 588.3 0.85 170.44 KStar
SystemR 90.31 98.97 LMT 86.81 89.1 497.41 0.14 216.14 KStar 21.52 12.84
SAPA-2 98.87 99.07 Log 100 100 302.5 0.09 250.67 KStar
Satplan04 94.02 96.29 LMT 95.6 97.8 74.09 0.1 152.63 KStar 308.51 225.72
Satplan06 89.79 94.64 IB1 81.32 92.31 54.38 0.01 191.16 KStar 75.16 97.81
SGP-1.0b 97.84 98.76 Log 97.8 97.8 522.21 4.85 253.23 KStar 15.32 62.17
SGP-1.0h 97.84 98.87 PART 97.8 97.8 520.63 4.92 265.52 KStar 15.34 25.36
SGPlan-06 55.36 90.62 PART 24.18 87.91 113.28 0.16 294.45 KStar 14.18 32.92
SimPlan-2.0 80.82 90.93 PART 92.31 96.7 49.82 0.48 145.23 KStar 120.07 118.17
SNLP-1.0 99.59 99.59 MLP 100 100 749.16 0.1 134.45 DT
STAN-4 98.25 98.66 ADT 100 100 11.54 0 128.98 GP
UCPOP-4.1 96.91 98.66 LMT 100 100 842.45 8.77 235.62 DT
VHPOP-2.2 99.28 99.28 MLP 100 100 32.24 26.02 22.49 KStar
µ 86.61 96.59 86.15 94.47 283.38 2.66 225.92 111.21 139.11

Table 3: Planner performance and model accuracy data for success and time required using 10-fold cross-validation on 80% of
the Challenge dataset as well as on the “train with old challenge problems, test on IPC5”. % fail and times are from the planner
performance data; “Best % correct” and “Best RMSE” measure accuracy for the models selected as best. Boldface planners are
in the portfolio.

time. The mean time for WEKA to learn the models is only
4.3 seconds.

Using the Models I: A Portfolio
One obvious application of models of performance is driv-
ing an algorithm portfolio. In this case, the portfolio differs
from much of the literature because the “algorithms” are ac-
tually systems. Consequently, we did not know what strategy
to use or whether any strategy would produce performance
commensurate with single planners. This section describes
a portfolio and its evaluation. The evaluation is designed to
answer two questions concerning the utility of the learned
models. Do the learned models support the portfolio? How
does the portfolio compare to single planners?

Architecture
Figure 1 shows the portfolio architecture. The previous sec-
tion described the performance models. The other three de-
cision making components can be configured into many dif-
ferent combinations. The components and their options are:

Algorithm selection restricts the set of possible planners
to only those needed to cover the problem set. Redundant
and overlapping performance in the full set of 28 planners
is to be expected since we have included multiple versions
of some planners and because several planners use similar
technology (such as graphplan, POCL, etc.). Given the 80%
challenge data, we selected a “cover” from the 28 planners
using a greedy set covering approximation algorithm (Cor-
men et al. 2003). We excluded from the final list any plan-
ner that only solved one unique problem in the training set (4
planners total). Table 3 lists the cover planners in boldface.

Algorithm ranking orders the execution of the planners.
The four ranking strategies are:
cover uses the set covering order,
pSuccess prunes those planners predicted to fail and orders

the rest by decreasing predicted probability of success,
predTime orders by increasing predicted time, and
SimonKadane orders in decreasing pSuccess

predTime ; it was shown
to minimize expected cost of success in serial search (Si-
mon & Kadane 1975).



using
Set Covering

Selection
Algorithm

Planners

...

Problems

980 Training Problems

245 Testing Problems

Features
Performance Models

28 10

10

Time and Success

Allocation

Ranking
and

Serial

Round Robin

Figure 1: Portfolio architecture

Allocation strategies determine the runtime for each
planner. Planners may be run serially or round-robin. The
three strategies from these two types are in italics.
Serial executes the planners to their maximum allotted time

and quits at the first success or after all planners have
spent their time.
avgPlanner uses the average time to succeed for the

planner, and
predTime computes the predicted time for the problem

from the model.
Round-robin iterates through the queue until a single plan-

ner indicates success, all planners indicate failure, or the
portfolio exceeds the experimental time limit (30 min-
utes), as in:
confInt orders the CPU time of successful training

runs then performs quantile analysis for each quantile
q, where q = {25, 50, 75, 80, 85, 90, 95, 97, 99}.
For example, if the successful runtimes of a
planner are {0.1, 0.2, 0.3, 0.4, 0.5, 10, 100, 1000},
then confInt will return runtimes as
{0.28, 0.45, 32.5, 64.0, 95.5, 370.0, 685.0, 1000.0}.

Are the Learned Models Useful?
We assessed the impact of ranking and allocation strategies
on two performance metrics: ratio of success to failure (see
Table 4) and amount of time required for solution (see Ta-
ble 5). The portfolio’s runtime includes the time to load the
problem/domain, compute the problem features and to run
the models that are used. The time to run each model (two
per planner) is computed from running WEKA and is stored
with the model.

For ranking, three strategies (pSuccess, predTime and Si-
monKadane) exploit the learned models. Those strategies
exhibit the three lowest failure counts (29, 1 and 3, respec-
tively) with the non-learned cover failing 129 times. Clearly,
using the models for ranking boosts the number of problems
that can be solved by the portfolio.

The three model based ranking strategies also excel on
runtime, posting the three lowest mean runtimes as shown
in Table 6. SimonKadane ranking appears to outperform
the other methods based on the means. However, we used
Tukey’s Honest Significant Difference method (with an ad-
justed significance level to control for experiment-wise error
at α = 0.05) to group performance that is not significantly
different. Tukey’s formed two groups: [SimonKadane, pred-

Fail Succeed
predTime:avgPlanner 0 245
predTime:confInt 0 245
SimonKadane:confInt 0 245
predTime:predTime 1 244
SimonKadane:avgPlanner 1 244
SimonKadane:predTime 1 244
pSuccess:avgPlanner 5 240
cover:confInt 6 239
pSuccess:confInt 7 238
pSuccess:predTime 8 237
cover:avgPlanner 10 235
cover:predTime 12 233

Table 4: Counts of problem solution on the 20% Challenge
set for each portfolio combination, ordered best to worst.

µ σ
SimonKadane:confInt 49.21 136.37
SimonKadane:predTime 49.95 174.88
predTime:avgPlanner 55.53 164.08
predTime:confInt 52.57 152.67
SimonKadane:avgPlanner 60.66 200.67
predTime:predTime 62.73 197.00
pSuccess:avgPlanner 91.80 282.33
pSuccess:confInt 94.21 287.95
pSuccess:predTime 101.18 308.39
cover:confInt 138.94 376.94
cover:avgPlanner 150.66 422.63
cover:predTime 153.68 431.62

Table 5: Mean and standard deviations of portfolio combina-
tion runtimes for 20% Challenge set, ordered best to worst.

Time, pSuccess] and [pSuccess, cover]. The learned models
appear to exert a similar positive impact on ranking success.

For allocation, predTime is the only model-based strat-
egy. On failure count, it performed worse (52) than avg-
Planner (35), but better than confInt (77). On runtime, pred-
Time is again third best. TukeyHSD grouped [avgPlanner,
predTime]. These results suggest that allocation is not well
served by the time model in the current strategies. How-
ever, the effect is mitigated by an interaction effect; the low-
est mean runtime is for SimonKadane:confInt which uses



Strategy µ σ
SimonKadane 53.43 173.05

predTime 58.11 177.28
pSuccess 96.25 294.40

cover 149.11 415.51
avgPlanner 110.94 342.21

predTime 128.94 381.97
confInt 185.58 459.44

Table 6: Grouped means and σs for runtimes for ranking and
allocation strategies.

the supposed worst allocation strategy and the second low-
est was SimonKadane:predTime which uses models for both
ranking and allocation.

The best portfolio (SimonKadane:confInt) uses a learned
model for ranking but not allocation, reflecting the lower ac-
curacy of the time prediction. We compared the best port-
folio to single planners (those in the cover set). As Ta-
ble 7 shows, the most successful portfolio clearly outper-
forms any single planner on the testing set. Comparing the
runtime of the portfolio to that required by the single plan-
ner that solved the most problems in the test set (SGPlan-06)
shows that SimonKadane:confInt is better, but not signifi-
cantly (t = −1.497, p < 0.136 on a paired sample t-test of
problems solved by both). SGPlan-06 takes an average of
41.2 seconds; the portfolio took 32.61 seconds.

FAIL SUCCEED
SimonKadane:confInt 0 244
sgplan-2006 51 194
lpg-td-1.0 108 137
metric-ff-2002 174 71
ff-2.3 174 71
blackbox-4.2 213 32
lpg-1.2 225 20
ipp-4.0 243 2
optop-1.6.19 244 1
vhpop-2.2 245 0
prodigy-4.0 245 0
ucpop-4.1 245 0

Table 7: Comparison of best portfolio and single planners
on problems solved.

Using the Models II: Understanding
Performance

We have just started examining the models for what they can
tell us about the planners. For example in a paper submitted
to the ICAPS07 workshop on Domain Heuristics, we have
shown that features from Hoffmann’s taxonomy distinguish
performance of h+ planners from those that do not use h+.

The most exciting future work is in deconstructing the
portfolio and the models. We now have a tremendous
amount of data on planner performance. We plan to examine

the data for interactions based on planner type (such as SAT-
based, POCL-base, Graphplan, Relaxed Graphplan, or Hy-
brid). Our study used the default settings of all planners; we
have already began to extend these results to include some
limited parameter tuning of the planners by viewing each
change in parameters as a new planner. Most importantly,
we plan to analyze the learned models for clues as to why
some planners do better on some types of problems.

Our study has demonstrated the feasibility of modeling
planner performance using simple features and off-the-shelf
machine learning methods. The learned models have been
effective at predicting whether or not a planner is likely to
succeed on a never before seen problem. The learned mod-
els, so far, are not so good at predicting how long a given
planner will take on the problems. The learned models were
also useful in driving a portfolio of planners to outperform
any single planner.

References
Cormen, T.; Leiserson, C.; Rivest, R.; and Stein, C. 2003.
Introduction to Algorithms. MIT press, Cambridge, MA.
Gomes, C. P., and Selman, B. 1997. Algorithm portfolio
design: Theory vs. practice. In Proc. of 13th UAI. Linz,
Austria.: Morgan Kaufman.
Gratch, J., and Chien, S. 1996. Adaptive problem-solving
for large-scale scheduling problems: A case study. Journal
of Artificial Intelligence Research 4:365–396.
Hoffmann, J. 2001. Local search topology in planning
benchmarks: An empirical analysis. In Proc. of 17th IJCAI,
453–458.
Hoffmann, J. 2004. Utilizing Problem Structure in
Planning: A local Search Approach. Berlin, New York:
Springer-Verlag.
Howe, A. E.; Dahlman, E.; Hansen, C.; von Mayrhauser,
A.; and Scheetz, M. 1999. Exploiting competitive planner
performance. In Proc. of 5th ECP.
Huberman, B. A.; Lukose, R. M.; and Hogg, T. 1997. An
economics approach to hard combinatorial problems. Sci-
ence 275:51–54.
Minton, S. 1996. Automatically configuring constraint
satisfaction programs: A case study. Constraints 1(1/2):7–
43.
Simon, H., and Kadane, J. 1975. Optimal problem-
solving search: All-or-none solutions. Artificial Intelli-
gence 6:235–247.
Vrakas, D.; Tsoumakas, G.; Bassiliades, N.; and Vlahavas,
I. 2003. Learning rules for adaptive planning. In Proceed-
ings of the 13th International Conference on Automated
Planning and Scheduling (ICAPS03), 82–91.
Witten, I. H., and Frank, E. 2005. Data Mining: Practical
machine learning tools and techniques. Number ISBN 0-
12-088407-0. San Francisco: Morgan Kaufmann.


