
Using Abstraction for Generalized Planning
Siddharth Srivastava and Neil Immerman ∗ and Shlomo Zilberstein

Department of Computer Science,
University of Massachusetts,

Amherst, MA 01002

Abstract

Given the complexity of planning, it is often beneficial to
create plans that work for a wide class of problems. This
facilitates reuse of existing plans for different instances of
the same problem or even for other problems that are some-
how similar. We present novel approaches for learning, and
even finding such plans using state representation and ab-
straction techniques originally developed for static analysis
of programs. The generalized plans that we compute include
loops and work for a large class of problem scenarios having
varying numbers of objects that must be manipulated to reach
the goal. Our algorithm for learning generalized plans takes
as its input an example plan for a certain problem instance
and a finite 3-valued first-order structure representing a set
of initial states from different problem instances. It learns a
generalized plan along with a classification of the problem in-
stances where it works. The algorithm for finding plans takes
as input a similar 3-valued structure and a goal test. Its out-
put is a set of generalized plans and conditions describing the
problem instances for which they work.

Introduction

In this paper we develop a new unified framework for finding
and learning generalized plans. We use it to construct novel
algorithms for finding or learning provably correct plans for
sets of problem instances from a domain. These problem
instances could not only differ in the number of elements
which need to be manipulated for reaching the goal, but also
have no bounds on these numbers. This is accomplished
by including loops over such objects. Our plans are thus
closer to algorithms: our input represents an abstract plan-
ning problem and the generalized plans we compute solve
it for a range of problem instances. We also present a pre-
cise analytical characterization of the domains (extended-LL
domains) where our techniques are guaranteed to work.

This paper is organized as follows. We first provide a
high level overview of our technique, followed by sections
describing the abstraction mechanism, our methodology and
the requirements we impose in order to identify a useful cat-
egory of domains that we currently handle. This is followed
by sections on learning generalized plans from examples and
on finding them from scratch. Since this paper is restricted
to 6 pages, all proofs and most of the details can be found at
[Srivastava et al., 2007]. To save space, we provide only a
sketch of the TVLA system. We suggest the reader use our
discussion of TVLA as an overview for the description in
[Sagiv et al., 2002].

∗Research of the first two authors supported in part by NSF
CCF-0541018

topmost

on

on

onTable

on

Figure 1: Canonical abstraction in blocks world. Abstracted ob-
jects are encapsulated. The abstraction predicates are topmost and
onTable; diagram on the right shows the state in TVLA notation.

Overview of the Approach
Our approach is based on canonical abstraction that has
been used effectively in the Three-Valued Logic Analyzer
(TVLA) – a tool for static analysis of programs that ma-
nipulate pointers [Sagiv et al., 2002; Loginov et al., 2006].
Canonical abstraction groups together any objects that are
the same with respect to certain key properties: unary predi-
cates referred to as abstraction predicates. The values of all
the abstraction predicates on an object of the domain define
the role that it plays. Abstract states are then generated by
merging all objects in a role into a single summary element.
For example, Fig.1 shows the abstraction predicates, roles,
and an abstract representation for a blocks world domain.

We need a sound methodology for modeling actions with
such abstract representations. This is done in TVLA using
action transformers specified in first-order logic with tran-
sitive closure, discussed in detail in the next section. The
most interesting part of this methodology is the automatic
modeling of branching when an action depletes the number
of objects of a role. Since we abstracted away the true num-
bers, our model must reflect the possibility that the object
removed from a role could be the last one playing that role.
Fig.2 shows an example of this situation in the blocks world
where the focus operation splits the abstract structure into
two relevant cases.

Our methodology for finding plans uses the abstraction
mechanism described above to construct an abstract state
space. The abstract start state represents a set of concrete
states from problem instances with varying numbers of ob-
jects. We perform a search in the abstract state space using
the action model described. Typically, back edges and loops
are encountered. Unlike a search in the concrete state space,
not all loops encountered here are stagnant – on the contrary,
part of our goal is to identify paths with loops that make
progress and lead to the goal. Once such a path is found, we
find the preconditions on the concrete states for which it will
work, and annotate the start structure to reflect the availabil-

Figure 2: Branching. In blocks world the focus operation models
“drawing” an object from a role. In doing so it produces a branch
on the number of objects left in the ¬topmost ∧ ¬onTable role.

ity of this partial solution. We then repeat this process until
either the entire abstract start structure has been covered, or
all the interesting paths have been analyzed. In this paper,
we only consider paths with simple, i.e, non-nested loops.
Our algorithm for learning plans is a simple modification of
this procedure, described in its own section.

Framework for Canonical Abstraction
We assume that actions are deterministic and that their re-
sults are observable. States of a domain are represented by
two-valued logical structures consisting of a universe of con-
stant elements or objects, and definitions for all the predi-
cates in a domain-specific vocabulary. We use JϕKS to de-
note the truth value of a closed formula ϕ in the structure
S. State transitions are carried out using an action’s trans-
former, which is a set of first-order formulas describing new
values of every predicate in terms of the old values. We use
three-valued logic structures, which we call abstract struc-
tures, to represent sets of two-valued structures succinctly.

Example 1 A typical blocks world vocabulary would con-
sist of a binary relation on; this can be used to define other
relations like onTable and topmost using first-order formu-
las. For clarity in presentation however, we will treat all
of these relations as separate and equally fundamental. An
example structure, S, in this vocabulary can be described
as: the universe, |S| = {b1, b2, b3}, onTableS = {b3},
topmostS = {b1}, onS = {(b1, b2), (b2, b3)}.

We assume actions to be deterministic. The action trans-
former for an action a (written τa) consists of a set of pre-
conditions and a set of formulas defining the new value r′
of each relation r. We separate these two parts of an ac-
tion transformer: the argument selection and precondition
checks are done in a pre-action step. For instance, for the
move action, the pre-action steps set up predicates iden-
tifying the object to be moved and its destination. These
predicates are used to bind the two variables obj1 and
obj2 to the block to be moved, and its destination, respec-
tively. Preconditions of actions may enforce integrity con-
straints, for example, the precondition for move could be
topmost(obj1) ∧ topmost(obj2) ∧ obj1 6= obj2 ensuring
that the relation on remains 1:1 and irreflexive.

We write τa(S) to denote the structure obtained by apply-
ing action a to structure S. Let, τa(Γ) =

{
τa(S)

∣∣ S ∈ Γ
}

be the application of a to a set of structures, Γ.
Let ∆+

i (∆−
i) be formulas representing the conditions un-

der which the relation ri(x̄) will be changed to true (false)

by a certain action. The formula for r′i, the new value of ri,
is written in terms of the old values of all the relations:

r′i(x̄) = (¬ri(x̄) ∧∆+
i) ∨ (ri(x̄) ∧ ¬∆−

i) (1)

The RHS of this equation consists of two clauses, the first of
which holds for arguments on which ri is changed to true by
the action; the second clause holds for arguments on which
ri was already true, and remains so after the action.

Example 2 In the blocks world, action move has two argu-
ments: obj1, the block to be moved, and obj2, the block it
will be placed on. Update formulas for on and topmost are:

on′(x, y) = ¬on(x, y) ∧ (x = obj1 ∧ y = obj2)
∨ on(x, y) ∧ (x 6= obj1 ∨ y = obj2)

topmost′(x) = ¬topmost(x) ∧ (on(obj1, x) ∧ x 6= obj2)
∨ topmost(x) ∧ (x 6= obj2)

The goal condition is represented as a first-order formula;
given a start structure, the objective of planning is to reach a
structure that satisfies the goal condition. With this notation,
we define a domain-schema as follows:

Definition 1 A domain-schema is a tuple D = (V,A, ϕg)
where V is a vocabulary, A a set of action transformers, and
ϕg a first-order formula representing the goal condition.

Some special unary predicates are classified as abstrac-
tion predicates. The special status of these predicates arises
from the fact that when we perform abstraction, unlike other
predicates, these predicates do not become ambiguous. We
define the role an element plays as the set of abstraction
predicates it satisfies:

Definition 2 A role is a conjunction of literals consisting of
every abstraction predicate or its negation.

Example 3 In the blocks world, with abstraction predicates
topmost and onTable, the role ¬topmost∧¬onTable des-
ignates blocks that are in the middle of a stack.

Canonical Abstraction
Canonical abstraction [Sagiv et al., 2002] groups states to-
gether by only counting the number of objects in a role up to
two. If a role contains more than one element, they are com-
bined into a summary element. We can tune the choice of
abstraction predicates so that abstract structures effectively
model some interesting general planning problems and yet
the size and number of abstract structures remains manage-
able.

The imprecision that must result when states are merged is
modeled using three-value logic. In a three-valued structure
the possible truth values are 0, 1

2 , 1, where 1
2 means “don’t

know”. If we order these values as 0 < 1
2 < 1, then con-

junction evaluates to minimum, and disjunction evaluates to
maximum. See Fig.1 where on holds between the topmost
block, e1, and some but not all of the blocks of the summary
element, e2. Thus the truth value of on(e1, e2) is 1

2 , drawn
in TVLA as a dotted arc.

We next define embeddings [Sagiv et al., 2002]. De-
fine the information order on the set of truth values as
0 ≺ 1

2 , 1 ≺
1
2 , so lower values are more precise. Intuitively,

S1 is embedabble in S2 if S2 is a correct but perhaps less

fψ
Role i Role iRole i Role i

Role i

φφ
φ

S SS
1 2 3

S
0

Figure 3: Effect of focus with respect to ϕ.

precise representation of S1. In the embedding, several ele-
ments of S1 may be mapped to a single summary element in
S2.

Definition 3 Let S1 and S2 be two structures and f :
|S1| → |S2| be a surjective function. f is an embedding
from S1 to S2 (S1 vf S2) iff for all relation symbols p of ar-
ity k and elements, u1, . . . , uk ∈ |S1|, Jp(u1, . . . , uk)KS1 ≺
Jp(f(u1), . . . , f(uk))KS2 .

The universe of the canonical abstraction, S′, of structure,
S, is the set of nonempty roles of S. In order to merge all
elements that have the same role, we use the subscript {p ∈
A|Jp(x)KS,u/x = 1}, {p ∈ A|Jp(x)KS,u/x = 0} to denote
elements in the abstracted domain.

Definition 4 The embedding of S into its canonical ab-
straction wrt the set A of abstraction predicates is the map:

c(u) = e{p∈A|Jp(x)KS,u/x=1},{p∈A|Jp(x)KS,u/x=0}

Further, for any relation r, we have Jr(e1, . . . , ek)KS
′

=
l.u.b�{Jr(u1, . . . , uk)KS |c(u1) = e1, . . . , c(uk) = ek}.

The truth values in canonical abstractions are as precise
as possible: if all embedded elements have the same truth
value then this truth value is preserved, otherwise we must
use 1

2 . The set of concrete structures that can be embedded
in an abstract structure S is called the concretization of S:
γ(S) = {S′|∃f : S′ vf S}.

Focus With such an abstraction, the update formulas for
actions might evaluate to 1

2 . We therefore need an effective
method for applying action transformers while not losing too
much precision. This is handled in TVLA using the focus
operation. The focus operation on a three-valued structure
S with respect to a formula ϕ produces a set of structures
which have definite truth values for every possible instanti-
ation of variables in ϕ, while collectively representing the
same set of concrete structures, γ(S). A focus operation
with a formula with one free variable is illustrated in Fig.3:
if φ() evaluates to 1

2 on a summary element, e, then either
all of e statisfies φ, or part of it does and part of it doesn’t, or
none of it does. This process could produce structures that
are inherently infeasible. Such structures are either refined
or discarded during TVLA’s coerce operation using a set of
restricted first-order formulas called integrity constraints. In
Fig.3 for instance, if integrity constraints restricted φ to be
unique and satisfiable, then structure S3 in Fig.3 would be
discarded and the summary elements for which φ() holds in
S1 and S2 would be replaced by singletons.

The focus operation wrt a set of formulas works by suc-
cessive focusing wrt each formula in turn. The result of
the focus operation on S wrt a set of formulas Φ is writ-
ten fΦ(S). We use ψa to denote the set of focus formulas
for action a.

Choosing Action Arguments
Usually, action specifications are allowed to have free vari-
ables. During a typical TVLA execution, such an action is
tried with every binding of the free variables that satisfies
the pre-conditions. In static analysis this feature can be used
to model non-determinism. Our algorithm chooses the argu-
ments in a series of pre-action focus steps. For example, to
choose obj1, in the move action we would focus on an aux-
iliary unary predicate obj′1() that is constrained to be single-
valued and to imply topmost.

Action Application
Recall that the predicate update formulas for an action trans-
former take the form shown in equation 1. This equation
might evaluate to indefinite truth values in abstract struc-
tures. For our purposes, the most important updates are for
(unary) abstraction predicates since precision in their val-
ues determines the accuracy of modeling action dynamics.
In this special case, the expressions for ∆+

i and ∆−
i are

monadic (i.e. have only one free variable apart from the
action arguments which are bound by the pre-action steps).

In order to obtain definite truth values for these updates,
we focus the given abstract structure S using focus formulas
∆±
i . Once the action transformer has been applied, we apply

canonical abstraction (this is called “blur” in TVLA) on the
resulting structures to get the abstract result structures.

Transitions
Once the action arguments have been chosen, there are three
steps involved in action application: action specific focus,
action transformation, and blur. The transition relations a−→,
captures the combined effect of these steps:

Definition 5 (Transition Relation) S1
a−→ S2 iff S1 and S2

are three-valued structures and there exists a focused struc-
ture S1

1 ∈ fψa(S1) s.t. S2 = blur(τa(S1
1)).

Sometimes however we will need to study the exact path
S1 took in getting to S2. For this, the transition S1

a−→ S2 can

be decomposed into a set of transition sequences {(S1
fψa−−→

Si1
τa−→ Si2

b−→ S2)|Si1 ∈ fψa(S1) ∧ Si2 = τa(Si1) ∧ S2 =
blur(Si2)}.

Transition Graphs Transition graphs are graphs of all
the transition relations a−→ with nodes representing abstract
structures. Formally,
Definition 6 Given a domain D and an initial state S0, the
transition graph for D starting with S0, GD(S0) is the edge-
labeled multigraph defined by the set of relations { a−→: a ∈
A} on the set of structures reachable from S0. Each edge of
GD(S0) is labeled by the appropriate action.

We omit the subscript D where it is understood from con-
text. The entire transition graph of a domain is a finite struc-
ture and can be generated using TVLA.

Finding Pre-conditions
The idea behind our algorithm for generalized planning is to
successively find paths in a transition graph and for each
such path, to compute the pre-conditions under which it
takes concrete structures to structures satisfying the goal.

In order to accomplish this, we need a way of representing
subsets of abstract structures that are guaranteed to take a
particular branch of an action’s focus operation. Next, we
need to propagate these subsets backwards through action
edges in the given path all the way up to the start structure.

We represent subsets of an abstract structure by annotat-
ing a structure with a set of conditions from a chosen con-
straint language. In static analysis terms, we use annotations
to refine our abstraction. Formally,
Definition 7 (Annotated Structures) Let C be a language
for expressing constraints on three-valued structures. A
C−annotated structure S|C is the refinement of S consist-
ing of structures in γ(S) that satisfy the condition C ∈ C.
Formally, γ(S|C) =

{
s ∈ γ(S)

∣∣ s |= C
}

.
We extend the notation defined above to sets of struc-

tures, so that if Γ is a set of structures then by Γ|C we
mean the structures in Γ that satisfy C. Thus we have
γ(S|C) = γ(S)|C .

The (annotated) pre-image of an annotated structure gives
us the pre-condition for reaching that structure. If finding
this pre-image is possible, we say the domain is amenable
to back propagation:
Definition 8 (Annotated Domains) An annotated domain-
schema is a pair 〈D , C〉 where D is a domain-schema and
C is a constraint language. An annotated domain-
schema is amenable to back-propagation if for every tran-

sition S1
fψa−−→ Si1

τa−→ Si2
b−→ S2 and C2 ∈ C there exists

Ci1 ∈ C such that τa(γ(S1)|Ci1) = τa(γ(Si1))|C2 .

In terms of this definition, since τa(γ(Si1)) is the subset
of γ(Si2) that has pre-images in Si1 under τa, S1|Ci1 is the
pre-image of S2|C2 under a particular focused branch (the
one using Si1) of action a. The disjunction of Ci1 over all
branches taking S1 into S2 therefore gives us a more general
annotation which is not restricted to a particular branch of
the action update. Using the abbreviation τk...1 to represent
the successive application of action transformers a1 through
ak in this order, we get:
Proposition 1 (Linear backup) Suppose 〈D , C〉 is an anno-
tated domain-schema that is amenable to back-propagation
and S1, . . . , Sk ∈ D are distinct structures such that S1

τ1−→
S2 · · ·

τk−1−−−→ Sk. Then for all Ck there exists C1 such that
τk−1...1(γ(S1)|C1) = τk−1...1(γ(S1)) ∩ Sk|Ck

The restriction of distinctness in this proposition confines
its application to action sequences without loops.

Inequality-Annotated domain-schemas Let us denote
by #R(S) the number of elements of role R in structure
S. We use CI(R), the language of constraints expressed as
sets of linear inequalities using #Ri(S), for annotations.

Quality of Abstraction In order for us to be able to clas-
sify the effects of focus operations, we need to impose some
quality-restrictions on the abstraction. Our main require-
ment is that the changes in abstraction predicates should
be characterized by roles: given a structure, an action can
change a certain abstraction predicate only for objects with
a certain role. We formalize this property as follows: a for-
mula ϕ(x) is said to be role-specific in S iff only objects of
a certain role can satisfy ϕ in S.

We therefore want our abstraction to be rich enough to
make the action change formulas, ∆±

i , role-specific in ev-
ery structure encountered. For example, in the blocks world
state shown in Fig.2 the move action can only change the
topmost predicate for a block of the role ¬topmost ∧
¬onTable, representing blocks in the middle of the stack.
The design of a problem representation and in particular, the
choice of abstraction predicates therefore needs to carefully
balance the competing needs of tractability in the transition
graph and the precision required for back propagation.

The following definition and theorem identify a class of
domains where back propagation is possible.

Definition 9 (Extended-LL domains) An Extended-LL do-
main with start structure Sstart is a domain-schema such
that ∆+

i and ∆−
i are role-specific, exclusive when not equiv-

alent, and uniquely satisfiable in every structure reach-
able from Sstart. More formally, if Sstart →∗ S then
∀i, j,∀e, e′ ∈ {+,−} we have ∆e

i role-specific and either
∆e
i ≡ ∆e′

j or ∆e
i =⇒ ¬∆e′

j in S.

Theorem 1 Extended-LL Domains are amenable to back-
propagation.

Methods described in Srivastava et al. [2007] can be used
to find plan pre-conditions in extended-LL domains.

Intuitively, these domain-schemas are those where:
1. The information captured by roles is sufficient to deter-

mine whether or not an object of any role will change
roles due to an action; and

2. The number of objects being acquired or relinquished by
any role is fixed (constant) for each action.
Examples of such domains are linked lists, blocks-world

scenarios (the appropriate start structures are defined in the
section on Examples), problems in the rocket domain, as-
sembly domains where different objects can be constructed
from constituent objects of different roles etc.

Handling Paths with Loops In extended-LL domains we
can also effectively propagate annotations back through
paths consisting of simple (non-nested) loops.

Proposition 2 (Back-propagation through loops) Suppose
S0

τ1−→ S1
τ2−→ . . .

τn−1−−−→ Sn−1
τ0−→ S0 is a loop in an

extended-LL domain with a start structure Sstart. Let the
structures before entering the loop and after exit be be S and
Sf . We can then compute an annotationC(l) on S which se-
lects the structures that will be in Sf |Cf after l iterations of
the loop on S, plus the simple path from S to Sf .

Algorithm for Generalizing From Examples
In this section we present our approach for computing a gen-
eralized plan from a plan that works for a single problem
instance. The idea behind this technique is that if a given
concrete plan contains sufficient unrollings of some simple
loops, then we can automatically identify these loops by ob-
serving the action-abstract structure trace of the plan staring
with a suitable abstract structure. We can then enhance this
plan using the identified loops and use the techniques dis-
cussed above to find the set of problem instances for which
this new generalized plan will work. The procedure is shown
in Algorithm 1. It is described with an example in the next

Input: π = (a1, . . . , an): plan for S#
0 ; S#

i = ai(S
#
i−1)

Output: Generalized plan Π
S0 ← c(S#); Π← π; CΠ ← >1
Apply transformers for π on S0 to get S′i−1, Si s.t.2

S′i−1 ∈ fai(Si−1), τi(S
′
i−1) = Si and S#

i v Si.
if ∃C ∈ CI(R) : Sn|C |= ϕg then3

Π← formLoops(S0 : a1 . . . , Sn−1 : an, Sn)4
CΠ ← findPrecon(S0, Π, ϕg)5

end
return Π, CΠ6

Algorithm 1: GeneralizeExample

section; we describe the main subroutines here. Suppose we
are given a concrete example plan π for a structure S#

0 . We
work with S0, an abstract structure including S#

0 . S0 can be
any structure which makes the resulting domain extended-
LL, and for which we need a generalized plan; the canonical
abstraction of S#

0 forms a natural choice.
The formLoops subroutine converts a linear path of

structures and actions into a path with simple loops. One
way of implementing this routine is by making a single pass
over the input path, and adding back edges whenever a struc-
ture Sj is found such that Si = Sj(i < j), and Si is not
part of, or behind a loop. Structures and actions following
Sj are merged with those following Si if they are identi-
cal; otherwise, the loop is exited via the last action edge.
This method produces one of the possibly many simple-
loop paths from π; we could also produce all such paths.
formLoops thus gives us a generalization Π of π. We then
use the findPrecons subroutine to obtain the restriction on
S0 for which Π works.

Example
We illustrate this idea using an example in the blocks world
domain. Given a stack consisting of red blocks below and
blue blocks above, we need to find a plan for constructing a
stack with alternating red and blue blocks above an assigned
red, base block with a blue block on top. The number of red
and blue blocks in the given stack is unknown.

Representation Our vocabulary consists of the predicates
{t[on]2, on2, topmost1, onTable1, obj11, obj12, red

1, blue1,
base1,misplaced1}, where all the unary predicates are
abstraction predicates. The misplaced predicate is used to
check that a block is above a stack of alternating colors.
t[on] is the transitive closure of on, and is used in integrity
constraints for the coerce operation. The obj1, obj2 predi-
cates are used to select action arguments before an action
is applied. There are two actions: move(), which places
obj1 on top of obj2 and moveToTable(), which moves
obj1 to the table. For simplicity of demonstration, we
restrict to only one stack on the table in this example (for
discussion on multiple stacks, see Srivastava et al. [2007]).
This representation can also be used to describe linked lists
and subsequently for creating or learning algorithms for
some programming tasks.

Fig.5 shows ΠG, a generalized plan for achieving the de-
sired configuration. This plan is the goal for our learning
algorithm, and we show how to learn it from a concrete plan
for a fixed instance of the problem. In fact our techniques
can generate ΠG itself from scratch - we briefly discuss this

Figure 4: Initial structure for striped blocks world.

Figure 5: A generalized plan with three loops.

in the next section.
Suppose we are given a concrete plan π = a1, . . . , an

for the initial structure S#
0 consisting of a stack with 5 blue

blocks above 5 red blocks. π consists of the following oper-
ations: 5 actions moving blue blocks to the table, followed
by 4 actions moving red blocks to the table, and finally by
9 actions moving red and blue blocks alternately back to the
stack. This plan can be computed by any classical plan-
ner. Fig. 4 shows S0, the canonical abstraction for S#

0 .
γ(S0) contains infinitely many stacks with any number of
blue blocks upon any number of red blocks.

Let S#
i = ai(S

#
i−1), i > 0. To obtain the general plan,

we first convert π into a sequence of action transformers
by replacing each action with a transformer that uses as
its argument(s) any block having the role of the real ac-
tion’s argument(s). We then apply the resulting sequence
of transformers on S0. This gives us a sequence of sets
of structures representing the possibilities after each ac-
tion. From each set in the sequence, we select the struc-
ture Si such that S#

i v Si. Let us call the sequence
{(S0, a0), . . . (Si, ai), (Sn−1, an−1)} πabs, where Sn is the
final structure.

Πabs is an unrolled version ΠG as applied on S0. Further,
every unrolled loop in Πabs is punctuated by a repeated ab-
stract structure. Therefore, when formLoops is executed
on Πabs, it finds these repeated structures and re-creates the
loops, giving us exactly ΠG! As can be observed by the
structure of ΠG itself, Sn satisfies the goal and we use the
techniques presented in this paper to find the annotation on
S0 which ΠG will work.

Our algorithm computes the desired annotation by associ-
ating counters Bt(Rt) with roles corresponding to blue(red,
but not base) blocks that are onTable and topmost and
Bm(Rm) with blue(red) blocks that are neither topmost
nor onTable. The obtained annotation at structure S0 is

[Bt = l − lb, Rt = l − lr − 1, Bm = 3 + lb, Rm = 4 + lr],

where the lr(lb) denote number of iterations of the unstack-
red (unstack-blue) loop. Together these conditions imply
that the total number of blue blocks (counting the topmost
blue block and bottommost red block) is 4+ l, exactly equal
to the number of red blocks in the initial structure.

We are thus able to extract the generalized plan ΠG from
π, a simple concrete plan that could have been found by any
classical planner. We also find the pre-conditions, or prob-
lem instances for which our learned plan achieves the goal.

Algorithm for Finding Generalized Plans
Let the annotated-domain-schema〈D , CI〉 be an extended-
LL domain with a start structure S0. We can then formu-
late an algorithm for generalized planning as follows. We
proceed in phases of search and annotation on the transition
graph. During the search phase we find a path π from the
start structure to structures satisfying the goal condition. The
transition graph could also be dynamically generated during
this phase. During the annotation phase, we find the annota-
tion on S0, Cπ for π. If Cπ adds to the structures in S0, we
include it in the general plan, and continue the search. The
resulting algorithm can be implemented in an any-time fash-
ion, by outputting plans capturing more and more problem
instances as new paths are found in the transition graph.

Propositions 2 and 1 thus give us the following theorem:

Theorem 2 (Generalized planning for extended-LL do-
mains) For an extended-LL domain with a start structure
S0 it is possible to find plans πi and annotations Ci such
that ∀s ∈ γ(S|Ci), πi takes s to the goal; further, for
s ∈ γ(S) \ γ(S|∨iCi), the goal is not reachable via plans
with only simple loops in the transition graph G (S0).

Example: Striped Blocks World
Our goal is to find a generalized plan for the abstract prob-
lem of constructing a stack of blocks of alternating colors as
described in the previous section.

Input An abstract structure (Fig.4) representing all prob-
lem instances with a single stack of unknown and un-
bounded numbers of red and blue blocks (at least two of
each), with the red blocks below the blue blocks (Fig. 4).
The goal condition is ∀x¬misplaced(x).

Output Our algorithm finds a generalized plan for solving
infinitely many instances of the given abstract problem. In
fact, in this case we get a solution for all solvable instances.
ΠG (Fig.5) shows the steps from the most interesting branch
of the computed plan. The pre-condition annotation for ΠG

was discussed in the previous section. Cases with fewer
number of blocks are captured by other paths (found before
this path), and their pre-conditions are obtained similarly.

Related Work
Interest in computing plan generalizations in AI is perhaps
as old as planning itself. Attempts at producing plans for
more than a single problem instance started with Fikes et
al. [1972]. Their framework parametrized and indexed sub-
sequences of existing plans for use as macro operations or
alternatives to failed actions. However, this approach turned
out to be quite limited and prone to over-generalization.

This initial effort was followed by various approaches to
plan reuse: case based planning [Hammond, 1996], analog-
ical reasoning [Veloso, 1994] and more recently, domain-
specific planning templates [Winner & Veloso, 2003]. Win-
ner & Veloso [2003] provide an approach for parametrizing,
extracting and assimilating example plans into templates.
However this technique does not guarantee correctness and
is limited in its capacity to detect loops. Levesque [2005]
presents an interesting method for creating general plans by
iteratively generating plans and finding repetitive patterns
involving a unique planning parameter. Our roles are more
generalized forms of such parameters. Also, unlike his ap-
proach, we find provably correct plans. However, our ap-
proach cannot currently handle numeric fluents, which are
accommodated in Levesque’s approach.

Conclusion and Future Work
We present a new unified framework for generalized plan-
ning using abstraction across problem instances for learning
and even constructing generalized plans. The main contri-
butions of this paper are the presentation of an abstraction
technique particularly conducive for this purpose, the formu-
lation of planning and learning algorithms, and a precise an-
alytical characterization of a setting in which they are guar-
anteed to work. Our planning algorithm is only partially im-
plemented; a full implementation requires interfacing with
TVLA and is left for future work. We use several examples
to illustrate how our algorithms work and to demonstrate the
overall power of this approach.

Our framework opens up several interesting research av-
enues for future work. Searching in an abstract space that
spans different problem instances presents new challenges
for heuristic and pruning techniques. We are exploring natu-
ral extensions such as generalizing our techniques to a wider
class of domains and to plans with nested loops. Finally,
other annotation languages could be examined as they may
provide a way of moving beyond extended-LL domains.

References
Cimatti, A.; Roveri, M.; and Traverso, P. 1998. Automatic OBDD-

Based Generation of Universal Plans in Non-Deterministic Do-
mains. Proc. of AAAI-98.

Fikes, R.; Hart, P.; and Nilsson, N. 1972. Learning and Execut-
ing Generalized Robot Plans. Technical report, AI Center, SRI
International.

Hammond, K. J. 1996. Chef: A Model of Case Based Planning.
Proc. of AAAI-96

Levesque, H. J. 2005. Planning with Loops. In In Proc. of IJCAI-
05.

Loginov, A.; Reps, T.; and Sagiv, M. 2006. Automated verification
of the Deutsch-Schorr-Waite tree-traversal algorithm. Proc. of
SAS-06

Sagiv, M.; Reps, T.; and Wilhelm, R. 2002. Parametric shape
analysis via 3-valued logic. Proc. of TOPLAS-02.

Srivastava, S.; Immerman, N.; Zilberstein, S. 2007. Using Ab-
straction for Generalized Planning. Tech Report 07-41, Deptt.
of Comp. Sci., Univ. of Massachusetts Amherst. www.cs.
umass.edu/∼siddhart/genPlan full.pdf

Veloso, M. 1994. Planning and Learning by Analogical Reason-
ing. Springer-Verlag.

Winner, E., and Veloso, M. 2003. DISTILL: Learning domain-
specific planners by example. Proc. of ICML-03

