
LoopDISTILL: Learning Looping Domain-Specific Planners from Example Plans

Elly Winner and Manuela Veloso
Computer Science Department

Carnegie Mellon University
5000 Forbes Avenue

Pittsburgh, PA 15213-3891, USA
(412) 268-4801

{elly,mmv}@cs.cmu.edu

Abstract

Many large-scale planning problems exhibit looping struc-
ture that translates into costly repeated problem solving ef-
fort, leading to the failure of many general-purpose plan-
ners to scale up. Instead, domain-specific planners can be
more effective by reasoning about specific domain character-
istics, such as repeated structure. While hand-writing such
domain specific planners can be challenging, giving exam-
ples of plans for concrete problems with repeated structure is
quite simple. In this work, we present the LoopDISTILL al-
gorithm for automatically acquiring looping domain-specific
planners from example plans. LoopDISTILL identifies re-
peated structures in the example plans and then converts the
looping plans into domain-specific planners, or dsPlanners.
Looping dsPlanners are able to apply experience acquired
from the solutions to small example problems to solve ar-
bitrarily large ones. We show that automatically learned
dsPlanners are able to solve large-scale problems more effec-
tively and to solve problems many orders of magnitude larger
than general-purpose planners can solve.

Introduction
Many large-scale planning problems have a repetitive struc-
ture. Example plans are available for many domains, and
can demonstrate this structure. Previous work introduced the
concept of automatically-generated domain-specific plan-
ning programs (or dsPlanners) and showed how to use exam-
ple plans to learn non-looping dsPlanners, which can solve
problems of limited size (Winner & Veloso 2003). Here, we
present the novel LoopDISTILL algorithm for automatically
identifying the repeated structure of example plans to learn
looping dsPlanners. DsPlanners execute independently of
a general-purpose planning program and return a solution
plan in time that is linear in the size of the dsPlanner and
of the problem, modulo state-matching effort. We show that
looping dsPlanners can solve large-scale planning problems
more effectively than can general-purpose planners and can
solve much larger problems than can general-purpose plan-
ners. And because dsPlanners are learned directly from ex-
ample plans, there is no need for tedious hand coding.

Finding optimal solutions to general planning problems is
NP-complete. Therefore, dsPlanners learned automatically

Copyright c© 2007, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

from a finite number of example plans cannot be guaranteed
to find optimal plans. Our goal is to extend the solvability
horizon for planning by reducing planning times and allow-
ing much larger problem instances to be solved, even if not
necessarily optimally, to be solved. We believe that post-
processing of plans can help improve plan quality, if needed.

We first discuss related work. We then define dsPlan-
ners and explain how we use them to generate the solu-
tion plans for new problems. Then we discuss classes of
loops, describe our algorithm for automatically identifying
loops in observed plans, and illustrate its behavior with ex-
amples. Next we present the results of using learned loop-
ing dsPlanners and compare this to using state-of-the-art
general-purpose planners. Finally, we draw conclusions.

Related Work
Research efforts have sought to automatically improve
general-purpose planning efficiency, most commonly by us-
ing learned or hand-written domain knowledge to reduce
generative planning search e.g. (Minton 1988; Kambham-
pati & Hendler 1992). We focus here on methods that learn
and exploit repeated structure within plans.

Case-based and analogical reasoning, e.g., (Veloso 1994),
apply planning experience from previous problems to solv-
ing a new one. Similarly, the internal analogy tech-
nique (Hickman & Lovett 1991) reuses the planning experi-
ence gleaned from solving one part of a particular problem
to solving other parts of the same problem.

Iterative and recursive macro operators and control rules,
e.g., (Schmid 2003), capture repetitive behavior and can
drastically reduce planning search by encapsulating an ar-
bitrarily long sequence of operators. However, unlike our
approach, this technique does not attempt to replace the gen-
erative planner, and so does not eliminate planning search.

Context free grammars have also been used as a parsing
technique to extract instantiated patterns in examples that
exhibit structural dependencies (Oates, Desai, & Bhat 2002),
but do not necessarily capture looping terminating condi-
tions and show how to solve new problems.

Some early work, which inspired our own work, also fo-
cused on analyzing example plans to reveal a strategy for
planning in a particular domain. One example of this ap-
proach is BAGGER2, which learns recurrences that capture
some kinds of repetition (Shavlik 1990). BAGGER2 was

able to learn recurrences from few examples, but relied on
background knowledge and did not capture parallel repeti-
tion.

Another example of the strategy-learning approach is the
decision list (Khardon 1999): a list of condition-action pairs
derived from example state-action pairs. This technique also
relies on background knowledge, is able to solve fewer than
50% of 20-block Blocksworld problems, and requires over a
thousand state-action pairs to achieve that coverage.

Finally, many researchers have explored hand writing
domain-specific planners, e.g., (Bacchus & Ady 2001; Nau
et al. 2003). These planners are able to solve more prob-
lems than general-purpose planners, and are able to solve
them more quickly (Long & Fox 2003), but often require
months or years to create.

Defining and Using DsPlanners
In this section, we explain the form of the dsPlanners our
algorithm learns and how they are used for planning.

Defining DsPlanners
A dsPlanner is a domain-specific planning program that,
given a planning problem (initial and goal states), either re-
turns a plan that solves the problem or returns failure, if it
cannot do so. DsPlanners are composed of the following
programming constructs and planning-specific operators:

• while loops and endwhile statements;
• if , then , else , and endif statements;
• logical structures (and , or , not);
• inGoalState and inCurState operators;
• numbered and typed variables;
• the “v” variant indicator for while loops;
• plan predicates; and
• plan operators.

Variables are introduced in if-statement and while-loop
conditions. Any objects in the problem which match the
conditions may be assigned to the variables. Assignments
hold throughout the conditions and body of the if statement
or while-loop. While-loop variable assignments hold for all
iterations of the loop unless the variable is labelled “v” for
variant, in which case it may be reassigned at each iteration.

DsPlanner 1 solves all gripper-domain problems involv-
ing moving balls between rooms. The dsPlanner is com-
posed of one while loop: while there is an ball that is not at
its goal location, move to the ball (if necessary), pick up the
ball, move to goal location of the ball, and drop the ball.

Planning with DsPlanners
To use the dsPlanner to solve a planning problem, first ini-
tialize the current state to the initial state and the solution
plan to the empty plan. Then apply each of the statements to
the current state. Each statement in the dsPlanner is either
a plan step, an if statement, or a while loop. If the current
statement is a plan step, make sure it is applicable, then ap-
pend it to the solution plan and apply it to the current state. If
the current statement is an if statement, check to see whether

DsPlanner 1 A simple dsPlanner that solves all gripper-
domain problems involving moving balls from one room to
another.

while inCurState (at(v?1:ball v?2:room)) and inGoal-
State (at(v?1:ball v?3:room)) do

if inCurState (at-robby(?5:room)) then
move(?5 ?2)

end if
if inCurState (at-robby(?3:room)) then

move(?3 ?2)
end if
pick(?1 ?2)
move(?2 ?3)
drop(?1 ?3)

end while

it applies to the current state. If it does, apply each of the
statements in its body; if not, go on to the next statement. If
the current statement is a while loop, check to see whether it
applies to the current state. If it does, apply each of the state-
ments in its body until the conditions of the loop no longer
apply. Then go on to the next statement.

A failure is detected when suggested plan steps are not
applicable in the current state or when the dsPlanner finishes
executing and its final state does not match the goal state. We
handle failures by handing the problem off to a generative
planner and then adding that new solution to the dsPlanner.

Identifying Loops in Example Plans
The current version of the LoopDISTILL algorithm identi-
fies all non-nested loops with identical iterations in an ob-
served plan. In the remainder of this section, we discuss
some relevant definitions, describe in detail the two main
portions of the LoopDISTILL algorithm—identifying loop
candidates and creating a loop from a candidate)—and illus-
trate the operation of LoopDISTILL with two examples.

Definitions
Subplans are connected components within in a partially-
ordered plan when the initial and goal states are excluded
(otherwise every set of steps would be a connected com-
ponent). Two subplans of a painting and transport domain
problem are illustrated in Figure 1. There are many other
possible subplans, but the steps paint(obj1) and paint(obj3)
are not a subplan, since they are not a connected component
within the partial ordering.

Matching Subplans satisfy the following criteria:
• they are non-overlapping,
• they consist of the same operators,
• the operators in each subplan are causally linked to each

other in the same way,
• they have the same conditions and effects in the plan,
• they unify.

We also use the term “matching steps” as a special case
of matching subplans (in which the subplans are of length
one). The two load operators in Figure 1 are matching steps,
as are the two paint operators.

paint(obj1)
Initial:
at(paint, loc1)
at(obj1, loc1)
at(obj2, loc1)
at(obj3, loc1)
at(truck, loc1)

at(paint, loc1)
at(obj1, loc1)

load(obj1, truck, loc1)

load(obj2, truck, loc1)

paint(obj3)

at(obj2, loc1)
at(truck, loc1)

at(paint, loc1)
at(obj3, loc1)

Goal:
painted(obj1)
painted(obj3)
inside(obj1, truck)
inside(obj2, truck)

at(obj1, loc1)
at(truck, loc1)

threat

painted(obj1)

inside(obj1, truck)

inside(obj2, truck)

painted(obj3)

Figure 1: Two parallel matching subplans of length 1 are surrounded by dotted lines and represent an unrolled loop.

Parallel Subplans are causally- and threat-independent of
each other. Figure 1 shows two parallel subplans.

Serial Subplans are causally linked to each other and are
connected in the partial ordering (there are no plan steps
which rely on one subplan and precede the next).

An Unrolled Loop is a set of matching subplans. One of
two unrolled loops is circled in Figure 1.

A Loop replaces an unrolled loop in the plan. The body
of the loop consists of the common subplan, but with the
differing variables converted into loop variables. The condi-
tions on its execution are: that the goal state contains all goal
terms that are supported by steps within the unrolled loop,
and that the current state when the loop is executed contains
all the conditions for the steps within the unrolled loop to
execute correctly and support the goals of the plan.

A Parallel Loop is a loop in which each iteration of the
loop is causally independent from the others. The unrolled
loop shown in Figure 1 is a parallel loop. A loop may also
have a multi-step body with complex causal structure1 The
current version of LoopDISTILL is able to identify non-
nested parallel loops in observed plans.

A Serial Loop is a loop in which each iteration of the loop
is causally linked to the others—there is a specific order in
which the iterations must be executed. For example, in a
package-transport domain, one loop may describe a particu-
lar delivery vehicle visiting different locations, loading and
unloading packages at each one. Each iteration of the loop
consists of loading and unloading packages and then moving
from the current location to a new one. These iterations must
be executed in a specific order since the move operations are
causally linked. The current version of LoopDISTILL iden-
tifies non-nested serial loops in observed plans.

The LoopDISTILL Algorithm
The LoopDISTILL algorithm can handle domains with con-
ditional effects, but we assume that it has access to a min-
imal annotated consistent partial ordering of the observed
total order plan. Previous work has shown how to find mini-
mal annotated consistent partial orderings of totally-ordered

1Note that an observed total-order execution of a multi-step par-
allel loop need not present the steps of the loop in a specific order—
it could be any topological sort of the loop.

plans given a model of the operators (Winner & Veloso
2002) and has shown that STRIPS-style operator models are
learnable through examples and experimentation (Carbonell
& Gil 1990), so this assumption is not restrictive.

The LoopDISTILL algorithm has two components, for-
malized in Algorithm 1 and Algorithm 2. The first extracts
parallel loops from the observed plan and the second extracts
serial loops. Both begin by identifying an unrolled loop
(described in the Section “Identifying Unrollec Loops”) and
then converting it into a loop (described in the Section “Con-
verting Unrolled Loops into Loops”). The unrolled loop is
then removed from the plan and replaced by the loop.

Algorithm 1 LoopDISTILL algorithm for identifying non-
nested parallel loops in an observed plan.
Input: Minimal annotated partially ordered plan P .
Output: P with all non-nested parallel loops identified.

for all steps i in P do
Mi ← all parallel matching steps with i in P
if Mi 6= ∅ then
C ← LargestCommonSubplan(Mi + i, P)
L ←MakeLoop(C)
P ← P − C
P ← P + L

end if
end for

Algorithm 2 LoopDISTILL algorithm for identify non-
nested serial loops in an observed plan.
Input: Minimal annotated partially ordered plan P .
Output: P with all non-nested serial loops identified.

for all steps i in P do
for all steps j in P causally linked from i do
C ← ConnectSerialLoop(i, j, P)
if C 6= then
C ← FindOtherSerialIterations(C, P)
L ←MakeLoop(C)
P ← P − C
P ← P + L
break / goto next i...?

end if
end for

end for

Identifying Unrolled Loops
Identifying Parallel Unrolled Loops The process of
identifying a parallel unrolled loop—or a set of parallel
matching subplans within the observed plan—begins with
the identification of a set of parallel matching steps, as de-
scribed in Algorithm 1. Next, LoopDISTILL finds the
largest parallel matching subplan common to at least two
of those steps. This process takes place in the procedure
LargestCommonSubplan. LargestCommonSubplan recur-
sively tries every possible expansion of the existing subplan
and returns the one with the most steps per parallel track.
First, it identifies the sets of steps that supply conditions to
the steps in each parallel track of the existing subplan (Step-
Back) and the set of steps that rely on effects of the steps
in each parallel track of the existing subplan (StepAhead).
The initial and goal states are not considered as steps ahead
or back. Then, it explores each of these steps as a possible
way to expand the subplan. For each step in StepBack and
StepAhead for each track, it finds which other tracks also
have a matching step in StepBack or StepAhead. If there is at
least one other track, the current subplans with the new steps
added are recorded as a new unrolled loop. At the end of this
process, there is a set of new unrolled loops. LargestCom-
monSubplan is then recursively applied to each of these to
further expand them. The largest resulting candidate is then
returned by the algorithm as the final unrolled loop.

Identifying Serial Unrolled Loops The process of find-
ing a serial unrolled loop begins by stepping through the plan
and, for each step, searching for a causally linked match-
ing step. If such a step is found, LoopDISTILL tries to ex-
pand the two matching steps into serial matching subplans in
the procedure ConnectSerialLoop. If the steps can be con-
nected, then LoopDISTILL searches for additional iterations
of the loop they represent in the procedure FindOtherSe-
rialIterations. If they cannot be connected, LoopDISTILL
continues searching for causally linked steps that match the
original step.

Converting Unrolled Loops into Loops
Once an unrolled loop is identified, it must be converted into
a loop. As previously defined, an unrolled loop is a set of
matching subplans differing in only one variable. The body
of the loop is the subplan—with a new loop variable replac-
ing the differing variable. The conditions for the loop’s exe-
cution are requirements on the goal state and on the current
state while the loop is executing. The unrolled loop sub-
plans are then removed from the plan and replaced by the
new loop.

A Multi-Step Loop Example
We will now illustrate the operation of the LoopDISTILL al-
gorithm on a simple example plan from an artificial domain,
illustrated in Figure 2. First, LoopDISTILL searches for a
set of parallel matching steps. It finds the steps op1(x) and
op1(y), which differ only in the values x and y. These two
one-step parallel matching subplans are then sent to Largest-
CommonSubplan, which searches for a larger subplan com-
mon to both of them.

Algorithm 3 MakeLoop: Create the loop described by the
given unrolled loop.
Input: Unrolled loop: set of matching subplans S1..Sm,

minimal annotated partially ordered plan P .
Output: The loop described by S1..Sm.

let vi,j be the jth variable in Si that ∀k is not in Sk

let vloop,j be the jth loop variable
Loop.body ← S1 with vloop,j replacing v1,j ∀j
Loop.conditions← ∅
for all steps s in Loop.body do

for all conditions c of s not satisfied by steps in
Loop.body do

Loop.conditions ← Loop.conditions +
CurrentStateContains(c)

end for
for all goal terms g dependent on s do

Loop.conditions ← Loop.conditions +
GoalStateContains(c)

end for
end for

Initial:
s(x)
s(y)

Goal:
g(x)
g(y)

a1(x)

a1(y)

a2(x)

a2(y)

s(x)

s(y)

s(y)

s(x)

g(x)

g(y)

op1(x)

op2(x)

op1(y)

op2(y)

op3(y)

op3(x)

Figure 2: An example annotated partially ordered plan in an
artificial domain that includes a multi-step loop consisting of
the steps op1, op2, and op3. The original totally ordered plan
could have been any topological sort of this partial ordering.

LargestCommonSubplan begins by finding the StepAhead
set for each parallel track. There is one step in StepAhead
for each track: op3(x) and op3(y), respectively. There
are no elements in the StepBack set, since neither of these
steps depends on any other plan step. Because adding these
steps preserves the parallelism and matching of op1(x) and
op1(y), they can be added to the subplans. This is the only
way to expand the original subplans, and so is the only ele-
ment in the list of unrolled loops.

LargestCommonSubplan is then executed recursively on
this new set of subplans. There are now no elements in
StepAhead for any track, but there is one in StepBack for
each parallel track: op2(x) and op2(y), on which op3(x)
and op3(y) depend. Adding these steps also preserves the
parallelism and matching of the existing subplans, so they
are added as well. Again, this is the only way to expand
the given subplan. LargestCommonSubplan is executed one
last time on this new loop expansion and is unable to find
any possible “steps ahead” or “steps back,” so this loop ex-
pansion is returned.

A new loop is then created to represent the common

branching three-step subplan. The loop body is assigned to
the common subplan, with a new loop variable, lv, replac-
ing the differing values, x and y. The conditions of the loop
are that the current state satisfies the conditions of the steps
within it (s(lv)) and that the goal state contains the goals
supported by the steps in the loop body (g(lv)). The result-
ing plan is shown in Figure 3.

op1(lv)

op2(lv)

Initial:
s(x)
s(y)

op3(lv)

s(x)
s(y)

s(x)
s(y)

Goal:
g(x)
g(y)

g(x)
g(y)

cur: s(lv)
goal: g(lv)

conditions:

a1(lv)

a2(lv)

Figure 3: The example plan shown in Figure 2 after the loop
has been identified. The loop is surrounded by dotted lines.
The loop variable is written as lv, and ranges over all values
that meet the conditions of the loop (in this case, x and y).
The conditions of the loop are shown above it.

Using Looping Plans as Domain-Specific
Planners

Here, we briefly describe how to convert a looping plan into
a looping dsPlanner capable of solving similar problems of
arbitrary size. First, the plan is parametrized: values are re-
placed by variables.2 The planner is a total ordering of the
partially ordered plan. Loops are described as while state-
ments: while the conditions for the loop hold, execute the
body of the loop. Plan steps not contained within loops
are expressed as if statements: if the conditions of the steps
hold, execute the steps. The conditions of a set of steps are
the current-state terms required for the steps to execute cor-
rectly and support the goal-state terms that are dependent on
those steps.

Results
We compare general-purpose planning, using several well-
known general-purpose planners, to planning using learned
looping dsPlanners. To illustrate the effectiveness of iden-
tifying loops in plans, our tests focus on performance on
large-scale problems of the same form as the example plans.
We show that the learned dsPlanners capture the structure of
the example plans and are able to apply this knowledge very
efficiently to solving much larger problems. In these situa-
tions, planning using dsPlanners scales orders of magnitude
more effectively than does general-purpose planning.

Rocket-Domain Results
The dsPlanner learned from a one-way rocket-domain ex-
ample (?) is shown in dsPlanner 2. The problems on which
we tested the planners vary in the number of objects to trans-
port, but have a single rocket and two locations and consist

2Two discrete objects in a plan are never allowed to map onto
the same variable as this can lead to invalid plans.

of the same initial and goal states: the initial state consists
of at(rocket, source), and for all objects obj in the prob-
lem, the initial state contains at(obj, source) and the goal
state contains at(obj, destination). Figure 4 shows the re-
sults of executing several different general-purpose planners
and the learned dsPlanner on large-scale problems of this
form. Run times for the dsPlanner do not include the time
required to learn the dsPlanner, though this is negligible 3.
The learned dsPlanner is orders of magnitude more efficient
on large problems than the general-purpose planners, and is
able to solve problems with more than 60,000 objects in un-
der a minute.

DsPlanner 2 dsPlanner based on a one-way rocket domain
problem. The variable in each loop is indicated by a “v”
preceding its name.

while inCurState (at(v?1:obj, ?2:loc)) and inCurState
(at(?3:rocket, ?2:loc)) and inGoalState (at(v?1:obj,
?4:loc)) do

load(?1 ?3 ?2)
end while
if inCurState (at(?1:rocket ?2:loc)) and inCurState
(in(?3:obj ?1:rocket)) and inGoalState (at(?3:obj
?4:loc)) then

fly(?1 ?2 ?4)
end if
while inCurState (in(v?1:obj, ?2:rocket)) and in-
CurState (at(?2:rocket ?3:loc)) and inGoalState
(at(v?1:obj, ?3:loc)) do

unload(?1 ?2 ?3)
end while

��������� 	�
��� ��	�������� ������	�� ��� �� ��� ����
! "$#%! "$#&"'! "$#&"$("$#&"$(

)�"�" "$#*(!�#+)�,)�#%!.-
/ "�" "$#10 / 2 #103(!�03#%!.-
-�"�" "$#+4�() 2 #+)�- (�-�#&"'!
2 "�" "$#+4 2 -�(�# /�/
!5"�"�" !�#%!�(
!5"�"�"�" (�# 2 (
,�"�"�"�" !.-�#+)�,
-�"�"�"�" ,�03# 2 !

!.)603#+-7! !�,�03#+) 2
/)�-�#*,�(!�0 2 # /�/
!5"�"�03# 2 !) /)�#*(/

8 9;:<: =>:<: ?;:<: @;:<: 8A:<:<: 8A:<:<:<: BC:<:<:<: ?;:<:<:<:
:
D
8A:
8 D
9;:
9 D
BC:
B D
=>:
= D
D :
DED
?;:
? D
F :

GIHKJMLONQPSRTHVUXWZY\[

]_^a`>b cCdedefCghaij�k lA^

m�n*o6p�q r6sut�v w�rVxzy{o}|6o6pE~ar�����t5�

� �� �
�� ��
�� �
�� �
����
� ��

Figure 4: Timing results of several general-purpose planners
and of the learned dsPlanner shown in DsPlanner 2 on large-
scale rocket-domain delivery problems. All timing results
were obtained on an 800-MHz Pentium II with 512 MB of
RAM.

3It takes less than a second to learn the dsPlanner for the rocket-
domain example we used

Multi-Step Loop Domain Results
The dsPlanner learned from the multi-Step loop domain ex-
ample shown in Figures 2 and 3 is shown in DsPlanner 3. As
with the rocket domain, the problems on which we tested
the planners vary in the number of objects but consist of
the same initial and goal states: for all objects obj in the
problem, the initial state contains s(obj) and the goal state
contains g(obj). Figure 5 shows the results of executing
several different general-purpose planners and the learned
dsPlanner on large-scale problems of this form. The learned
dsPlanner scales much better to large problems than these
general-purpose planners, and is able to solve problems with
as many as 40,000 objects in under a minute.

DsPlanner 3 DsPlanner based on the multi-step loop do-
main problem shown in Figures 2 and 3.

while inCurState (s(?v1:type1) and inGoalState
(g(?v1:type1))) do

op1(?1)
op2(?1)
op3(?1)

end while

� ����� ����� ����� 	����
���� �������
������ �������� 	�������
�
���
���
���
	��

��
� �
� �
� �
� �
�����
����

����� ���������! #"%$'&(&)"+*,&)-/.��10

2!3�4�5 671718�9:�:<;1=�> ?@BA�4CD4E;�?1> FG14HI;JK> =�> J

LNMPORQDS TVUXW�Y Z�T\[P]^O`_EOVQ�a�T`b�cdW�e

f gh i
jk gl
jk m
no p
nqgl
r ps

Figure 5: Timing results of several general-purpose planners
and of the learned dsPlanner shown in dsPlanner 3 on large-
scale multi-step loop domain problems.

Conclusion
In this paper, we contribute the LoopDISTILL algorithm
for automatically identifying repeated structures in observed
plans, determining the body and conditions of the loop
they represent, and converting looping plans into loop-
ing domain-specific planning programs (dsPlanners). The
LoopDISTILL algorithm identifies parallel loops by finding
sets of parallel matching subplans and then converting each
set into a loop. Our results show that the looping dsPlan-
ners learned by the LoopDISTILL algorithm are able to take
advantage of the repeated structures in planning problems.
In these situations, planning using dsPlanners scales more
effectively than general-purpose planning and extends the
solvability horizon by solving problems orders of magni-
tude larger than general-purpose planners can handle. While

these advantages could be expected of domain-specific plan-
ners, our core contribution is demonstrating that they can be
achieved by automatically learned domain-specific planners.

References
Bacchus, F., and Ady, M. 2001. Planning with resources
and concurrency: A forward chaining approach. In Pro-
ceedings of IJCAI-2001, 417–424.
Carbonell, J. G., and Gil, Y. 1990. Learning by experi-
mentation: The operator refinement method. In Michalski,
R. S., and Kodratoff, Y., eds., Machine Learning: An Ar-
tificial Intelligence Approach, Volume III. Palo Alto, CA:
Morgan Kaufmann. 191–213.
Hammond, K. J. 1996. Chef: A model of case-based plan-
ning. In Proceedings of AAAI-96, 261–271.
Hickman, A., and Lovett, M. 1991. Partial match and
search control via internal analogy. In Proceedings of the
CogSci1991, 744–749.
Kambhampati, S., and Hendler, J. A. 1992. A validation-
structure-based theory of plan modification and reuse. Ar-
tificial Intelligence 55(2-3):193–258.
Khardon, R. 1999. Learning action strategies for planning
domains. Artificial Intelligence 113(1-2):125–148.
Long, D., and Fox, M. 2003. The 3rd international plan-
ning competition: Results and analysis. JAIR 20:1–59.
Minton, S. 1988. Learning Effective Search Control
Knowledge: An Explanation-Based Approach. Boston,
MA: Kluwer Academic Publishers.
Nau, D.; Au, T.-C.; Ilghami, O.; Kuter, U.; Murdock, J. W.;
Wu, D.; and Yaman, F. 2003. SHOP2: An HTN planning
system. JAIR 20:379–404.
Oates, T.; Desai, D.; and Bhat, V. 2002. Learning k-
reversible context-free grammars from positive structural
examples. In Proceedings of ICML-2002.
Schmid, U. 2003. Inductive Synthesis of Functional Pro-
grams. Number 2654 in LNAI. Springer-Verlag.
Shavlik, J. W. 1990. Acquiring recursive and iterative con-
cepts with explanation-based learning. Machine Learning
5:39–50.
Shell, P., and Carbonell, J. 1989. Towards a general
framework for composing disjunctive and iterative macro-
operators. In Proceedings of IJCAI-89.
Veloso, M. M. 1994. Planning and Learning by Analogical
Reasoning. Springer Verlag.
Winner, E., and Veloso, M. 2002. Analyzing plans with
conditional effects. In Proceedings of AIPS-02, 271 – 280.
Winner, E., and Veloso, M. 2003. DISTILL: Learning
domain-specific planners by example. In Proceedings of
ICML-03.

