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Abstract
1 We consider the problem of computing general policies
for decision-theoretic planning problems with temporally ex-
tended rewards. We consider a gradient-based approach to
relational reinforcement-learning (RRL) of policies for that
setting. In particular, the learner optimises its behaviour by
acting in a set of problems drawn from a target domain. Our
approach is similar toinductive policy selectionbecause the
policies learnt are given in terms of relational control-rules.
These rules are generated either (1) by reasoning from a first-
order domain description, or (2) more or less arbitrarily ac-
cording to a taxonomic concept language.

The cost of decision-theoretic planning in individual
problems is substantial. State-of-the-art solution algorithms
target either state-based (tabular) or factored propositional
problem representations, thus they succumb to Bellman’s
curse of dimensionality – i.e. the complexity of comput-
ing the optimal policy for a problem instance can be ex-
ponential in the dimension of the problem (Littman, Gold-
smith, & Mundhenk 1998). A research direction which
has garnered significant attention recently is that ofgen-
eralisation in planning. The idea is that the cost of plan-
ning with propositional representations can be mitigated by
technologies that plan for a domain rather than for indi-
vidual problems. These approaches yieldgeneral policies
which can be executed in any problem state from the do-
main at hand. In practice general policies are expressed
in first-order/relational formalisms. Proposals to date sug-
gest general policies can be achieved by either (1) reason-
ing from the domain description (Boutilier, Reiter, & Price
2001; K. Kersting, M. V. Otterlo, & L. D. Raedt 2004;
Sanner & Boutilier 2005; Karabaev & Skvortsova 2005;
Wang, Joshi, & Khardon 2007), or (2) by developing plan-
ners that canlearn from experience(Khardon 1999; Martin
& Geffner 2000; C. Guestrinet al. 2003; Hernandez-Gardiol
& Kaelbling 2003; Kersting & Raedt 2004; Fern, Yoon, &
Givan 2006). There has also been some work in combining
the two (Gretton & Thíebaux 2004).

Reasoning approaches can achieve optimal general poli-
cies without recourse to individual problems. On the down-
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1This paper is a short summary of my ICAPS-07 paper with the
same title.

side they rely on expensive theorem proving and cannot give
guarantees about the quality and generality of policies they
compute for domains where the value of a state is drawn
from an infinite set. For example, this is the case in the
blocks-world because the value of a state given any policy
is the expected number of actions it takes for that policy to
achieve the goal, which in turn is related to the number of
blocks. Inductive learning approaches have a significant ad-
vantage over reasoning approaches because they avoid the-
orem proving and do not rely on an exhaustive domain de-
scription. They rarely achieve optimality, however are able
to compute good policies with very little effort. On the
downside, we are not aware of any technique for learning
a good general policy, represented in terms of the true (or
a reasonable approximation of the true) state values of that
policy, for the decision-theoretic case.

Orthogonal to generalisation in planning, there have also
been significant developments towards propositional plan-
ning with temporally extended rewards. In this case, rather
than accepting the standard scenario where reward is allo-
cated to individual states, reward is allocated to sequences
of states calledrewarding behaviours. Typical examples of
rewarding behaviours occur where we reward the mainte-
nance of some property, the periodic achievement of some
objective, the achievement of an objective after a trigger has
occurred (and not expired), or the first achievement of an
objective. These rewards are not supported in a reasonable
way where problems are modelled using Markov decision
processes (MDPs), the standard problem representation for-
malism. In particular, for an MDP we say both dynamics and
reward areMarkovianbecause, at any time both the effects
of an action and the reward allocated are determined com-
pletely by the state the process is in. Moreover, although
it may be possible in principle to manually compile tempo-
rally extended rewards into an MDP, by adding propositions
that capture temporal events, the original structure is lost on
an MDP solution algorithm that is not aware of the tempo-
ral interpretation of some state characterising propositions.
In order to address weaknesses in the MDP model where
temporally extended rewards are involved, formalisms and
solution methods have been proposed for decision processes
with non-Markovian rewards (NMRDPs) (Thiébauxet al.
2006). For an NMRDP, the problem dynamics is Marko-
vian, and reward is a compact temporal logic specification



Figure 1: Data-flows for the two settings in which we use
ROPG. (A) Demonstrates the case where control-rules are
generated using first-order regression from an NMRDP do-
main description, and (B) the case where control-rules are
generated according to the grammar of a taxonomic concept
language.

of temporally extended rewards. NMRDP solution meth-
ods exploit the temporal logic specification of the reward-
ing behaviours to efficiently translate NMRDPs into equiv-
alent MDPs amenable to MDP solution methods. Conse-
quently, NMRDP solution techniques still succumb to Bell-
man’s curse.

Our Contribution
We developed ROPG (Relational Online Policy Gradient),
an unsupervised RRL approach to computing temporally ex-
tended policies for domains with non-Markovian rewards.
ROPG itself consists of an online REINFORCE (Williams
1992) style gradient ascent optimisation strategy wherecon-
trols correspond to relational control-rules, andobservations
to theavailable controls(in the sense they prescribe an ac-
tion) at an underlying state history. Figure 1 summarises
the settings where we employed ROPG. The key novelty of
our work is the way in which we use relationally defined
control-rules as the mechanism to provide ROPG with rela-
tional observations and actions while it is learning to act in a
set of problems from a given planning domain. In a similar
vein to some of the more fruitful techniques for RRL such
as inductive policy selection (Yoon, Fern, & Givan 2002;
Gretton & Thíebaux 2004), ROPG learns policies in terms
of relational control-rules. Each control-rule is a small ex-
pression in a first-order language that can be interpreted at
an NMRDP state to provide an action prescription. We adapt
two very different techniques from the literature for gener-
ating relational control-rules, and have described and eval-
uated each in the full paper. The first technique is based
on (Fern, Yoon, & Givan 2006). Relational control-rules are
generated more or less arbitrarily according to the grammar
of a temporal taxonomic concept language. In order to avoid
redundant taxonomic control-rules, and also to avoid over-
whelming the learner with too many rules, they are evaluated
in small problems and only a small number of rules that be-
have well according to the optimal decision-theoretic plan-
ner NMRDPP (Thíebauxet al. 2006) are passed to ROPG.

The second technique is based on (Gretton & Thiébaux
2004). In this case we exploit first-order regression to gen-
erate control-rules, from a given domain description, that
are guaranteed to cover all concepts relevant to any opti-
maln-state-to-go value function. To this end, we developed
a domain description language which accommodates non-
Markovian rewards, and also extend the standard definition
of first-order regression (Boutilier, Reiter, & Price 2001)to
this setting.

We have implemented our approach in C++ including
functionality for generating control-rules according to:(1)
the extended taxonomic syntax from (Fern, Yoon, & Givan
2006), (2) our own extension of that language with tempo-
ral operators, and (3) first-order decision-theoretic regres-
sion (Gretton & Thíebaux 2004). Figure 2 demonstrates the
convergence of ROPG in the case where control-rules are
generated according to each of these mechanisms. In partic-
ular, convergence is shown for a set of 15 problems from the
deterministic blocks-world domain with the usual Marko-
vian reward scheme, and 11 problems from a stochastic vari-
ant of miconic (Koehler & Schuster 2000) (elevator schedul-
ing) with a simple non-Markovian reward when a passenger
is served for the first time. Essentially we find that ROPG
yields good policies for these problem sets, and that learn-
ing with the temporal features is both achievable and help-
ful. Moreover, ROPG is useful in the case where the target
domain is Markovian and non-Markovian. In the full paper
we explore how the policies learnt for Figure 2 perform in
large problems. We found that such policies did not always
generalise. For example, in the blocks-world, the policy that
was learnt on the 15 training problems for Figure 2 is only
reliable on large (20 and 30 block) problems if the goal is to
reverse a stack of blocks on the table.

Summary

ROPG is a version of online policy gradient, and thus learns
by acting in problems. ROPG is the first reported tech-
nique for direct relational reinforcement-learning of general
policies which does not rely on a state-based planning (or
learning) mechanism. This means ROPG does not capture
action decisions made by an optimal (or good) state-based
planning agent which is inevitably better equipped to dis-
tinguish states according to propositional features that are
not available to a relational learner. Along the same lines,
ROPG also addresses some pitfalls of value-based relational
reinforcement-learning in the setting of decision-theoretic
planning with geometrically discounted future-rewards. Our
approach directly learns a policy, thus it does not attempt to
classify the infinite states from a target planning domain ac-
cording to real values. Rather, it classifies those states ac-
cording to an infinite set of actions prescribed by a small set
of relational control-rules. To summarise, ROPG learns a
general policy directly by acting in domain instances. More-
over, ROPG is not crippled by a reinforcement-learning
scheme which punishes a learner for not mimicking the ac-
tions of “problem specialist” in the form of a state-based
agent.
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 (a) Performance of ROPG in Blocks-World-15 
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Figure 2:For control-rules generated according to a temporal tax-
onomic syntax (t-tax-N) and the extended taxonomic syntax (tax-
N), we report average discounted reward as ROPG undertakes
episodes in problems from (a) blocks-world with up to 5 blocks
and (b) a stochastic version of a simple miconic (elevator schedul-
ing) domain with up to 7 people and floors.N reports the number
of control-rules that were given to the learner. We also report (opt)
the optimal performance according toNMRDPP, and (regr) the per-
formance of the best policy obtained by ROPG with control-rules
generated by regression from a domain description. We omitregr
in the case of blocks-world because control-rules based on regres-
sion do not work in that domain [Gretton and Thiébaux, 2004].
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