
Learning Hierarchical Task Networks from Plan Traces

Chad Hogg and Hector Muñoz-Avila
Lehigh University

Abstract

We present HTN-MAKER, an offline and incremental algo-
rithm for learning the structural relations between tasks in a
Hierarchical Task Network (HTN). HTN-MAKER receives
as input a STRIPS domain model, a collection of STRIPS
plans, and a collection of task definitions, and produces an
HTN domain model. HTN-MAKER is capable of learning an
HTN domain model that reflects the provided task definitions.
In particular, if the tasks have different levels of abstrac-
tion, these will be reflected in the HTN. We have conducted
an empirical evaluation of HTN-MAKER on the logistics-
transportation domain. These experiments demonstrate that
HTN-MAKER quickly learns an HTN domain model that
may be used to solve nearly all problems in the domain. Chal-
lenges and future work are discussed.

Introduction
Hierarchical Task Network (HTN) planning is an important,
frequently studied research topic in artificial intelligence.
Researchers have reported work on its formalisms and ap-
plications (Erol, Hendler, & Nau 1994; Smith, Nau, & Erol
1998; Nau et al. 2005). In HTN planning, complex tasks
are decomposed into simpler tasks until a sequence of prim-
itive actions is generated. There are three main motivations
for the recurrent interest in HTN planning. First, researchers
have pointed out that one way to model how humans acquire
knowledge is through a hierarchy of skills. Humans begin
by learning simpler tasks and then proceed by learning more
complex tasks that build on existing knowledge. Thus, hi-
erarchical modeling is at the core of many cognitive archi-
tectures (Choi & Langley 2005). Second, HTN planning is
a natural representation for many real-world domains such
as computer games (Smith, Nau, & Erol 1998) and story-
telling (Cavazza & Charles 2005). Third, HTN planning
has played a fundamental role in the remarkable advances of
AI planning research over the past few years. HTN knowl-
edge representation principles of capturing domain-specific
strategies for problem-solving while performing domain-
independent search was in part the motivation for the so-
called domain-configurable planners such as SHOP (Nau
et al. 1999), which have demonstrated impressive speed
gains over earlier classical (STRIPS) planners. These new
paradigms for planning have improved the runtime perfor-
mance for solving planning problems by several orders of

magnitude.
Despite these successes, a major hurdle for the use of

HTN planning is the need for an HTN domain description.
In fact, a controversy in the AI planning research community
surrounds the recent efficiency gains obtained with HTN
planning because the domain descriptions sketch the under-
pinnings of the solutions. Therefore, it has been argued that
a significant knowledge engineering effort is required to ob-
tain such domain descriptions. A domain description is a
collection of knowledge constructs describing the target do-
main. In HTN planning, a domain description consists of the
action model and the task model. The action model encodes
knowledge about valid actions or primitive tasks changing
the world state. The task model encodes knowledge about
how to decompose tasks into subtasks, and is the part of the
domain description that has been argued to be difficult to
obtain. Given the large interest in HTN planning, it is sur-
prising that little research has been done on learning task
models. The bulk of research involving planning and learn-
ing has focused on search control knowledge (Zimmerman
& Kambhampati 2003).

We present HTN-MAKER (Hierarchical Task Networks
with Minimal Additional Knowledge Engineering Re-
quired), an offline and incremental algorithm for learning
task models. HTN-MAKER receives as input a collection
of plans generated by a STRIPS planner, an action model,
and a collection of task definitions, and it produces a task
model. When combined with the action model, this task
model results in an HTN domain model that may be used
by an HTN planner to solve problems in the domain. HTN
planning with this domain model is sound but not necessar-
ily complete. That is to say that there may be problems that
could be solved by a STRIPS planner using the action model
alone but that cannot be solved by an HTN planner using the
learned HTN domain model. However, any plans generated
from the HTN domain model will be correct in terms of the
original STRIPS model.

We have performed an evaluation of HTN-MAKER on
the logistics-transportation domain and found that HTN-
MAKER is successful in learning an HTN domain model ca-
pable of solving nearly all problems in the domain based on
a few examples. However, the over-generality of the learned
task models is a challenging open problem in most other do-
mains.

Related Research
Learning task decompositions means eliciting the hierarchi-
cal structure relating tasks and subtasks. Existing work on
learning hierarchies elicits a hierarchy from a collection of
plans and from a given action model (Choi & Langley 2005;
Reddy & Tadepalli 1997; Ruby & Kibler 1991). A particu-
larity of the existing work on learning task models is that
the tasks from the learned hierarchies are the same goals
that have been achieved by the plans. Reddy and Tede-
pally’s 1997 X-Learn, for example, uses inductive gener-
alization to learn task decomposition constructs, which re-
late goals, subgoals, and conditions for applying d-rules.
By grouping goals in this way, task models are learned that
lead to speed-up in problem-solving. However, it is possible
to solve the same problems without the learned task mod-
els. In the experiments reported in (Choi & Langley 2005;
Reddy & Tadepalli 1997) some of the problems that were
solved using the learned task models could not be solved
without using them (e.g., by using only the action mod-
els). This is due to the speed-up gains that allow these sys-
tems to obtain solutions in the pre-defined time. However,
these problems could theoretically be solved using the action
models alone if the search was performed systematically and
enough time was given.

Two recent studies (Ilghami et al. 2005; Xu & Munoz-
Avila 2005) propose eager and lazy learning methods re-
spectively to learn the preconditions of HTN methods.
These systems require as input the hierarchical relationships
between tasks and learn only the conditions under which a
method may be used. Another recent work by Langley &
Choi 2005 learns a special case of HTNs known as teleoreac-
tive logic programs. Rather than a task list, this system uses
a collection of Horn clause-like concepts. The means-end
reasoning that is tightly integrated with this learning mech-
anism is known to be incapable of solving some problems
that general HTNs are able to solve, such as the register as-
signment problem.

Although the state of the art in learning task models has
resulted in speed-up gains for problem-solving, the learned
task models are far from the kinds of task models that mo-
tivated HTN planning. In almost any description of HTN
planning found in the literature it is said that highly complex
tasks should be decomposed into less complex tasks, which
are further decomposed eventually into low-level tasks (e.g.,
(Erol, Hendler, & Nau 1994; Nau et al. 1999)). For example,
in the blocks world domain, higher level tasks could repre-
sent actions on piles of blocks, whereas lower level tasks
represent manipulations of pairs of blocks. In existing al-
gorithms for learning task models, all tasks represent pairs
of blocks because these are goals used in the classic action
model of the blocks world.

The principle of representing tasks of increasing complex-
ity at higher levels of a hierarchy is by no means unique to
HTN planning. In abstraction planning the same principle is
followed; Bergmann & Wilke 1995 demonstrate how goals
at higher levels of a hierarchy may be expressed in a dif-
ferent, more abstract language than goals at more concrete
levels. A similar point is made for cognitive architectures;
the concepts expressed at higher levels are at a different level

of granularity than concepts at the concrete level.
Work on learning macro-operators (e.g., (Mooney 1988;

Botea, Muller, & Schaeffer 2005)) falls in the category of
speed-up learning, as do work on learning search control
knowledge ((e.g., (Mitchell, Keller, & Kedar-Cabelli 1986;
Minton 1998; Fern, Yoon, & Givan 2004)). Search control
knowledge does not increase the number of problems that
theoretically can be solved. However, from a practical stand
point, these systems increase the number of problems that
can be solved because of the reduction in runtime. Other
researchers assumed that hierarchies are given as inputs for
learning task models. (Garland, Ryall, & Rich 2001) uses
interactive elicitation in which the user provides examples
showing how to correctly perform a task and annotates other
ways to perform the task in the examples.

Inductive approaches have been proposed for learning ac-
tion models (e.g., (Martin & Geffner 2000; Winner & Veloso
2003)). For example, the DISTILL system learns domain-
specific planners from an input of plans that have certain
annotations (Winner & Veloso 2003). The input includes
the initial state and an action model. DISTILL elicits a pro-
gramming construct for plan generation that combines the
action model and search control strategies.

Another related work is abstraction in planning such as
the Alpine (Knoblock 1993) and the Paris (Bergmann &
Wilke 1995) systems. These systems take a concrete plan
and generalize it. This allows the reuse of the general-
ized plan in different problems by instantiating its condi-
tions. These systems require both an action model and an
abstraction model that indicates how to abstract and special-
ize plans.

Learning Hierarchical Relations From Tasks
We will first specify the problem of extracting hierarchies.
In previous work for learning task hierarchies, tasks are
goals and therefore the semantics of the learned hierarchies
were clear. Given an HTN H with a goal g at the top level,
the plan P obtained by collecting the actions in the leaves
of H must achieve g to be correct. That is, one can exam-
ine the plan, regardless of the hierarchy, to determine if it is
correct. This is not the case in general HTN planning. In-
formally, a plan is correct if an HTN exists that decomposes
the top-level task(s) of the problem such that the HTN en-
tails the plan. The top-level tasks represent complex goals
that may not be in the vocabulary of the preconditions and
effects of the actions in the plans. This means that the only
way to verify if a plan is correct is by finding an HTN that
entails it. This poses a problem for defining the kinds of
tasks that are given in the task taxonomy so that the seman-
tics of the resulting hierarchy unambiguously relates to the
input problem-solution plan pairs.

Task Definitions
To address this problem, we have adopted the definition of
tasks from process models. Loosely speaking, a process
is the means by which tasks are accomplished via a series
of actions or operations. Process models represent concept
reuse and modification. In particular, we chose the task-
method-knowledge (TMK) variant of process models. In

(:task (:method

(deliver-pkg ?obj ?dst) (deliver-pkg ?obj ?dst)

((OBJ ?obj) ((OBJ ?obj)

(LOCATION ?dst)) (AIRPORT ?dst)

((at ?obj ?dst))) (AIRPORT ?src)

(AIRPLANE ?pln)

(at ?plane ?src)

(different ?src ?dst)

(in ?obj ?pln))

((fly-plane ?pln ?src ?dst)

(deliver-pkg ?obj ?dst)))

Table 1: Example Task and Method

TMKs, tasks indicate what they accomplish by stating their
preconditions and effects. Task semantics are the following:
if the preconditions are true in the state of the world and the
task is accomplished, the effects must be true in the resulting
world state.

Table 1 shows an example of a task in the logistics-
transportation domain and a method for accomplishing that
task. The task description consists of the task name and pa-
rameters, a list of preconditions, and a list of effects. This
task delivers a package to a location. The only preconditions
for this task require that the parameters be of appropriate
types, while the single effect is to cause the package to be
at the required destination. It should be noted that the task
descriptions do not specify how they may be accomplished;
they only indicate what they accomplish. An HTN method,
the construct learned by HTN-MAKER, specifies how to ac-
complish a given task. An example of such a method for this
task is also provided. This method requires that the package
be in an airplane at an airport distinct from its destination.
The method proceeds by flying the package to the destina-
tion, then recursively decomposing itself.

The task definitions used as input for the hierarchy learn-
ing problem consist of a collection of tasks in this form.
These become the nonprimitive tasks of the domain. The
heads of the operators in the action model form the primi-
tive tasks in the domain. Creation of these task definitions
is not a significant burden; they simply describe the things
that a planner might be asked to accomplish. Complete pre-
conditions and effects are not necessary. Only the subset of
effects that define the goal of a task are required, although
other effects and preconditions may be used to make the pro-
cess more efficient.

Learning Problem
The task model learning problem is defined as follows:
given a collection of task definitions, a collection of STRIPS
problems, a collection of plans solving these problems, and
the action model used to generate these plans, obtain a task
model. Under these preconditions and given a learned task
model, one can check if a plan P correctly solves an HTN
planning problem where t1 . . . tn are the tasks to achieve,
and S is the initial state. To do this, one checks if the pre-
conditions of t1 are satisfied in S and if the effects of t1 are
satisfied in a state S1. The state S1 is obtained by execut-
ing the plan P1 on S, where P1 is the plan entailed by the

portion of the HTN that accomplishes t1. One can continue
by checking task t2 starting from S1, and so forth for the
remaining tasks.

The HTN-MAKER Algorithm
The HTN-MAKER algorithm traverses forward through a
STRIPS plan, generating the new state after each action by
applying it to the previous state. For each substitution of
variables such that the current state includes all effects of a
task it is possible to learn a set of methods: one that encap-
sulates the previous operator, another for the previous two
operators, and so on. The methods that encapsulate a shorter
section of the plan are learned first, so that they may be used
as subtasks in methods that encapsulate longer sections of
the plan.

Operators and previously learned methods may be added
as subtasks of the new method, from last to first. An operator
or method is chosen as a subtask if its effects provide either
an effect of the task or a precondition of a later subtask. If no
operator or method is useful at a particular step of the plan,
that operator will be skipped as irrelevant to the method.

The learned method has the associated task as its head; the
union of the task preconditions, preconditions of subtasks
that are not satisfied by an earlier subtask, and effects of the
task that are not satisfied by a subtask as its preconditions;
and the collected operators and methods as its subtasks. This
process is a variant of goal regression (Mitchell, Keller, &
Kedar-Cabelli 1986) in which conditions are regressed both
horizontally from one operator to the next and vertically up
the task hierarchy.

Algorithm 1 is a very relaxed pseudocode of HTN-
MAKER. The pseudocode abstracts away difficulties of
finding a proper substitution for each subtask and unifying
them with each other and does not provide such necessary
features as building multi-level hierarchies in which meth-
ods have non-primitive subtasks. Nevertheless, it should
provide enough detail to understand the general operation
of HTN-MAKER.

The outermost loop (line 4) iterates forward through the
states created by the plan. Within each state s, there is a
search for all tasks that have their effects satisfied in that
state (lines 5 and 6). In the actual implementation, the
task definitions contain variables and therefore considers all
possible substitutions that make the inclusion (line 6) true.
We then consider subsequences of the plans to determine
whether or not a method may be created from them, starting
with the subsequence that contains only the operator that
caused the current state, then adding the previous and so
forth. The initial state in this subsequence is controlled by
init (line 7), while the last state in the subsequence is always
s. We maintain a list of remaining effects to be achieved,
which is initially all of the task effects (line 8), a list of
remaining preconditions to be achieved, which is initially
empty (line 9), and a list of subtasks, which is initially empty
(line 10). The inner-most loop (lines 11-16) walk backward
through the subsequence, adding operators to the subtasks
list. Any effects of a selected operator are removed from
the list of remaining effects (line 14) and remaining precon-
ditions (line 15), and then the preconditions of the operator

are added to the remaining preconditions (line 16). The im-
plementation handles substitutions unifiying variables from
the various subtasks with those of the task definition, ignores
operators that do not contribute to the remaining effects or
preconditions, and may select a previously learned method
rather than one or more operators. Finally, a new method
is created (line 18) with the task as its head, the collected
operators and methods as its subtasks, and the union of task
preconditions, task effects that were not achieved by a sub-
task, and outstanding subtask preconditions. This method is
added to the domain (line 19), although the implementation
will decline to add some methods for reasons discussed in
the section on Open Questions and Future Work.

Algorithm 1 HTN-MAKER(P,D, T)
1: Input: P is a plan, consisting of actions and initial, fi-

nal, and intermediate states; D is a partial HTN domain
description; T is a set of task definitions

2: Output: D′ is an enhanced HTN domain description
that can be used to generate P

3: D′ ← D
4: for s← first state of P to last state of P do
5: for all tasks t in T do
6: if effects of t ⊆ s then
7: for init← s downto first state of P do
8: rem-effects← effects of t
9: rem-precs← ∅

10: subtasks← ∅
11: for current← s downto init do
12: oper← operator causing current
13: prepend oper to subtasks
14: rem-precs← rem-precs \ effects of oper
15: rem-effects← rem-effects \ effects of oper
16: rem-precs← rem-precs ∪ precs of oper
17: method-precs ← rem-precs ∪ rem-effects ∪

precs of t
18: new← METHOD(t, method-precs, subtasks)
19: D′ ← D′ ∪ {new}
20: return D′

Example
Figure 1 exemplifies a resulting HTN for the logistics-
transportation domain. The initial state in this case con-
sists of a package p1 in a truck t1 at an airport l1 that con-
tains an airplane a1, and the goal is to deliver the pack-
age to a different airport l2. The plan consists of four
actions: unload-truck(p1,t1,l1), load-plane(p1,a1,l1), fly-
plane(a1,l1,l2), and unload-plane(p1,a1,l2).

Suppose that there is a single task, deliver-pkg(?p,?l),
with preconditions that ?p be a package and ?l be a location,
and effects that ?p be at ?l. After the first operator, package
p1 has been delivered to location l1. Thus, HTN-MAKER
will learn a method for solving this task bound to these con-
stants. The operator unload-truck(p1,t1,l1) produces the ef-
fect at(p1,l1), so it will be selected as a subtask. The learned
method will be applicable when the types of variables are
correct (from the task preconditions), and the package is in

Figure 1: Example of HTN obtained by HTN-MAKER

a truck that is at the destination (from the preconditions of
the operator). In the next two states, there are no valid in-
stantiations of the task effects.

In the final state, the package p1 has been delivered to lo-
cation l2. A recursive series of methods is learned. The first
delivers a package that is in an airplane at the destination by
unloading the airplane. The next delivers a package that is
in an airplane at the wrong location by flying to the destina-
tion, which must be an airport, and then delivering [shown
in Table 1. The third requires that the package be at an air-
port that is not the destination and that contains an airplane,
and proceeds by loading the package into airplane and then
continuing to deliver. The final first delivers to an airport,
and then from there to the final destination.

An HTN planner presented with this initial state, goal,
and collection of methods might build the same hierarchical
structure from the top task down to the primitive actions.
With a different initial state or goal, an HTN planner might
use pieces of this structure integrated with other methods
learned from other problems.

Empirical Validation
Our experimental hypothesis is that the output of HTN-
MAKER on a given domain will converge to an HTN do-
main model that is able to solve nearly all solvable problems
in the domain after a few problems are analyzed. We mea-
sure performance by the cummulative number of problems
successfully solved as they are presented sequentially.

Experiment Setup
We slightly modified the logistics-transportation action
model from the FF Domain Collection to prevent trucks
from being driven from one location to itself and similarly
for airplanes. This change merely improves the runtime of
planners as they will no longer consider applying these ac-
tions with no effects. We generated 100 random problems
with between 3 and 5 cities, each of which contains a truck,
an airport, and between 2 and 4 other locations, with a total
of between 1 and 3 airplanes distributed among the airports

and between 1 and 4 packages. The goals for each problem
consist of transporting each package to a destination. The
STRIPS planner Fast-Forward (Hoffmann & Nebel 2001)
was used to generate a solution to each solvable problem.

We also developed a set of tasks for which methods could
be learned. Although HTN-MAKER is capable of learning
methods for accomplishing any type of task in the domain,
we chose a task set for this experiment that reflects only the
goals specified in the problems. This allows us to evaluate
the learning algorithm by its ability to solve the same prob-
lems from which it learns.

We then completed 4 trials in which HTN-MAKER was
used to learn an HTN domain model starting with an action
model and an empty task model. Each trial began with such
a base HTN domain model and processed the 100 problems
in a random order. For each problem, we tried to solve it us-
ing the HTN domain model learned thusfar in the sound and
complete HTN planner SHOP. If SHOP was able to solve the
problem, we counted this problem as a success. Otherwise,
the problem was counted as a failure and HTN-MAKER was
used to update the current HTN domain model with methods
learned by analyzing Fast-Forward’s solution to the prob-
lem.

Results
The cummulative number of problems solved, averaged over
the 4 trials is shown in Figure 2. After learning from a
few initial failures, this line rapidly approaches the optimal
y = x, where all problems are solved without the need for
learning. On average, only 5.75 problems are not success-
fully solved by the HTN planner. The first 10 problems
encountered contain 3.75 of these failures, while only 2.0
of the remaining 90 cannot be solved. Thus, our hypoth-
esis is valid for the logistics-transportation domain. All of
the methods used to solve the 94.25 solved problems were
learned from STRIPS plan traces of the 5.75 failed prob-
lems. On average, 73 distinct methods are learned during
the process. If the problems were presented in a designed
order, we would expect even better results.

Open Questions And Future Work
While we have been able to produce good results in the
logistics-transportation domain, these do not translate well
to the blocks-world domain. In all cases the soundness of the
learned domain description in terms of producing only valid
STRIPS plans is guaranteed1, but it is often far from opti-
mal. Specifically, we have encountered the following two
difficulties. The first is the very large number of methods
that will be learned and that must be considered by an HTN
planner using the domain description. The second, more se-
rious problem is the possibility for the planner to use meth-
ods in an infinitely recursive manner.

We have considered a number of steps to address the first
difficulty. Primarily, whenever one learned method sub-
sumes another, we retain only the most general method. We

1The proof of correctness is omitted here, but follows from the
way preconditions are effects are regressed through the learned
methods

Figure 2: Cummulative number of Logistics-Transportation
problems solved

define a method a to subsume b if and only if there is a sub-
stitution µ such that subtasks of a = µ(subtasks of b) and
preconditions of a ⊆ µ(preconditions of b). Thus, whenever
b is applicable, a must also be. This reduces the number of
methods somewhat and, because it replaces specific methods
with general ones, should increase the number of opportuni-
ties for methods to be used in hierarchies dissimilar from
those in which they were created.

1: fly-plane(a1,l1,l2)
2: load-plane(p1,a1,l2)
3: fly-plane(a1,l2,l3)
4: load-plane(p2,a1,l3)
5: fly-plane(a1,l3,l4)
6: unload-plane(p1,a1,l4)
7: unload-plane(p2,a1,l4)

Figure 3: Example plan

As an example of the recursion problem, consider the
logistics-transportation plan in Figure 3, where an airplane
is used to deliver two packages from different locations to
the same destination. Several methods will be learned for
the task of delivering p2: one that encapsulates operator 7,
one that concatenates operator 5 to the previous method, one
that concatenates operator 4 to the method of 5 and 7, one
that concatenates operator 3 to the method of 4, 5, and 7,
and one that adds operator 1 to the method of 3, 4, 5, and
7. This last method is created because operator 1 provides
at(a1,l2), which is a precondition of the method that encap-
sulates operator 3. This method is dangerous because it al-
lows the planner to fly the airplane to a location that is en-
tirely irrelevant to the task, then do the same ad infinitum.
This is a minor annoyance in the logistics-transportation do-
main, but recursive methods of a similar nature are learned in
the blocks-world domain, where they are much problematic.
We are currently exploring several approaches to preventing
these methods that allow allow infinite recursion from being

learned.
Additionally, there is a nondeterministic choice to be

made while learning a method between adding the operator
as a subtask or instead adding a previously-learned method
that encapsulates that operator. We initially envisioned tak-
ing each choice in turn, but found that this unnecessarily ex-
ploded the search space for the planner. For the experiments
reported in this paper we chose a strategy that prefers to se-
lect the method that encapsulates the most operators when
one exists, resulting in deep hierarchies. We intend to fur-
ther explore the trade-offs between these alternatives.

The general question to be studied is the appropriate level
of generality. A domain description that is too general al-
lows infinite recursion and erodes the advantages of HTN
planning over classical planning. A highly specific domain
description is less likely to be capable of solving new prob-
lems and will require a much larger set of methods than
should be necessary.

Acknowledgments
This research was in part supported by the National Science
Foundation (NSF 0642882) and the Defense Advanced Re-
search Projects Agency (DARPA).

References
Bergmann, R., and Wilke, W. 1995. Building and refin-
ing abstract planning cases by change of representation lan-
guage. Journal of Artificial Intelligence Research 53–118.
Botea, A.; Muller, M.; and Schaeffer, J. 2005. Learning
partial-order macros from solutions. In Proceedings of the
Fifteenth International Conference on Automated Planning
and Scheduling (ICAPS-05). AAAI Press.
Cavazza, M., and Charles, F. 2005. Dialogue generation
in character-based interactive storytelling. In Proceedings
of the Artificial Intelligence and Interactive Digital Enter-
tainment Conference (AIIDE-05). AAAI Press.
Choi, D., and Langley, P. 2005. Learning teleoreactive
logic programs from problem solving. In Proceedings of
the Fifteenth International Conference on Inductive Logic
Programming. Springer.
Erol, K.; Hendler, J.; and Nau, D. S. 1994. Htn planning:
complexity and expressivity. In AAAI’94: Proceedings of
the twelfth national conference on Artificial Intelligence
(vol. 2), 1123–1128. Menlo Park, CA, USA: American
Association for Artificial Intelligence.
Fern, A.; Yoon, S. W.; and Givan, R. 2004. Learning
domain-specific control knowledge from random walks. In
Proceedings of the 14th International Conference on Auto-
mated Planning and Scheduling (ICAPS-04). AAAI Press.
Garland, A.; Ryall, K.; and Rich, C. 2001. Learning hi-
erarchical task models by defining and refining examples.
In Proceedings of the First International Conference on
Knowledge Capture, 363–391.
Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: Fast plan generation through heuristic search. Journal
of Artificial Intelligence Research 14:253–302.

Ilghami, O.; Munoz-Avila, H.; Nau, D.; and Aha, D. W.
2005. Learning approximate preconditions for methods
in hierarchical plans. In Proceedings of the International
Conference on Machine Learning (ICML).
Knoblock, C. 1993. Abstraction Hierarchies: An Auto-
mated Approach to Reducing Search in Planning. Norwell,
MA: Kluwer Academic Publishers.
Martin, M., and Geffner, H. 2000. Learning generalized
policies in planning using concept languages. In Proceed-
ings of the 7th Int. Conf. on Knowledge Representation and
Reasoning (KR2000). Morgan Kaufmann.
Minton, S. 1998. Learning Effective Search Control
Knowledge: an Explanation-Based Approach. Ph.D. Dis-
sertation, Carnegie Mellon University.
Mitchell, T.; Keller, R.; and Kedar-Cabelli, S. 1986.
Explanation-based generalization: A unifying view. Ma-
chine Learning 1.
Mooney, R. J. 1988. Generalizing the order of operators in
macro-operators. Machine Learning 270–283.
Nau, D.; Cao, Y.; Lotem, A.; and Munoz-Avila, H. 1999.
Shop: Simple hierarchical ordered planner. In Proceedings
of the Sixteenth International Joint Conference on Artificial
Intelligence, 968–973. AAAI Press.
Nau, D. S.; Au, T.-C.; Ilghami, O.; Kuter, U.; Munoz-
Avila, H.; Murdock, J. W.; Wu, D.; and Yaman, F. 2005.
Applications of shop and shop2. IEEE Intelligent Systems
20(2):34–41.
Reddy, C., and Tadepalli, P. 1997. Learning goal-
decomposition rules using exercises. In Proceedings of the
Internation Conference on Machine Learning (ICML-97).
Ruby, D., and Kibler, D. F. 1991. Steppingstone: An
empirical and analytic evaluation. In Proceedings of the
Ninth National Conference on Artificial Intelligence, 527–
531. Morgan Kaufmann.
Smith, S. J. J.; Nau, D. S.; and Erol, K. 1998. Control
strategies in htn planning: theory versus practice. In IAAI
’98: Proceedings of the tenth conference on Innovative
applications of artificial intelligence, 1127–1133. Menlo
Park, CA, USA: American Association for Artificial Intel-
ligence.
Winner, E., and Veloso, M. M. 2003. Distill: Learning
domain-specific planners by example. In Proceedings of
the International Conference on Machine Learning.
Xu, K., and Munoz-Avila, H. 2005. A domain-independent
system for case-based task decomposition without domain
theories. In Proceedings of the Twentieth National Confer-
ence on Artificial Intelligence (AAAI-05). AAAI Press.
Zimmerman, T., and Kambhampati, S. 2003. Learning-
assisted automated planning: Looking back, taking stock,
going forward. AI Magazine 73–96.

