
Designing Experiments to Test Planning Knowledge about
Plan-step Order Constraints

Clayton T. Morrison and Paul R. Cohen
Information Sciences Institute

University of Southern California
4676 Admiralty Way, Marina del Rey, California 90042

{clayton,cohen}@isi.edu

Abstract

A number of techniques have been developed to effec-
tively extract and generalize planning knowledge based
on expert demonstration. In this paper we consider a
complementary approach to learning in which we may
execute experiments designed to test hypothesized plan-
ning knowledge. In particular, we describe an algo-
rithm that automatically generates experiments to test
assertions about plan-step ordering, under the assump-
tion that order constraints between two steps are inde-
pendent of other step orderings. Experimenting with
plan-step ordering can help identify asserted ordering
constraints that are in fact not necessary, as well as
uncover necessary ordering constraints not represented
previously. The algorithm consists of three parts: iden-
tifying the space of step-ordering hypotheses, efficiently
generating ordering tests, and planning experiments that
use the tests to identify order constraints that are not
currently represented. This method is implemented in
the CMAX experiment design module and is part of the
POIROT integrated learning system.

Introduction
In learning from demonstration, a learning system is pre-
sented with a demonstration of how to correctly complete
some task. The demonstration is typically represented as
a trace that consists of the ordered sequence of executed
actions, and usually includes the parameter values and out-
comes of the action executions, with some additional infor-
mation about the world state. Extracting planning knowl-
edge from the trace requires intelligent application of back-
ground knowledge. As with all learning, the goal is correct
generalization: to produce planning knowledge in the form
of operators and methods that can solve problems beyond
what is observed in the trace. A number of techniques are
being developed that do this effectively. Here we consider a
facet of the learning problem that complements these meth-
ods: What if I could take some actions and observe their
outcomes, thereby getting additional knowledge about the
domain? What aspects of my current hypotheses need test-
ing, and what would help me better generalize what I know?
Just as single-shot learning can not depend on large quanti-

Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

ties of prior examples, neither can we ask for all the informa-
tion we want. Our tests must be as informative as possible,
requiring the smallest possible effort, and we should also
develop methods for rating the relative importance of tests.
These considerations are the subject matter of the general
paradigm of active learning (Cohn, Ghahramani, & Jordan
1996), but rather than standard active learning techniques
that use statistical properties of prior data, our focus is on
analyzing existing background knowledge and using both
domain-general and domain-specific heuristics to plan effi-
cient information gathering experiments.

In this paper we report on our work in the DARPA In-
tegrated Learning (IL) program. We are developing au-
tomated methods for identifying and efficiently acquiring
(when permitted) the most useful additional information to
improve generalization from a single trace. The approach
we describe is implemented in CMAX, the Causal MAp
eXperiment designer, a module in the POIROT integrated
learning from demonstration system (Burstein et al. 2007).
The POIROT system comes equipped with a domain ontol-
ogy and model of the primitive operators to use in planning.
This model, however, is not complete in the sense that it does
not represent all of the preconditions and possible affects of
executing the operators in different combinations and con-
texts. POIROT’s task is to use the demonstration trace as
a guide to construct planning methods that decompose the
planning problem into a hierarchical task network (Nau et
al. 2003) that ultimately grounds out in primitive actions,
in an attempt to appropriately generalize from the trace to
solve a whole class of problems. From CMAX’s perspec-
tive, other modules in POIROT play the role of “planning
knowledge extractors,” and their products are hypothesized
planning methods. It is the job of CMAX to automate testing
any of the different kinds of assertions the knowledge ex-
tractors might make in their hypothesized methods. CMAX
currently automates our approach to planning experiments to
identify potential ordering constraints between plan steps –
ordering constraints that are otherwise implicit in the orig-
inal expert trace and are not represented in the primitive
operator models provided as prior knowledge.

Generating Step-Order Experiments
The POIROT system works in a semantic web service do-
main, where primitive actions are calls to web services. The

operator semantics of the primitive actions-as-web-service-
calls adds to the standard STRIPS-style operator seman-
tics an explicit representation of action input parameter val-
ues (e.g., to make a reservation, one must specify the pur-
chaser’s name, the flight number, etc.) and possible output
values returned by the web service (e.g., a reservation con-
firmation number).1 When planning a series of web service
calls to satisfy a task, output values returned by one web
service may be required as inputs to another web service.
For this reason, plan representation in POIROT not only in-
cludes representation of state change dependencies but also
data flow from one web service to another. (The labeled di-
rected edges in Figure 1 are examples of such data flow.) In
POIROT, planning knowledge is represented as sets of plan-
ning methods expressed in the Learnable Task-Modeling
Language (LTML). LTML is very expressive and includes
constructs for representing data flow between primitive ac-
tion outputs and inputs, and control flow constructs asserting
step orderings, conditional execution, and loops. In the work
we present here, CMAX analyzes and tests LTML planning
method data flow and plan step ordering constraints.

When presented with a planning problem (an initial world
state and goal), POIROT submits a set of methods to a plan-
ner and an executable workflow is generated. A workflow is
a totally-ordered sequence of steps2, where each step may
involve executing a primitive action, and output-to-input
data flow between steps is specified by data flow links. An
executive then executes the workflow and reports the results
of the execution.

There are three possible outcomes of workflow execution:
a workflow could (1) fail to execute because one of the steps
in the workflow cannot be enacted or completed; or, if exe-
cution completes, the executive determines whether the exe-
cuted workflow has (2) failed or (3) succeeded in satisfying
the planning goal. If the execution fails (with either outcome
1 or 2), then we conclude that one or more planning method
constructs in incorrect. If, on the other hand, a workflow
execution succeeds in satisfying the planning problem goal
(outcome 3), then we conclude that the planning knowledge
was at least sufficient for this problem instance. We define
a test to be the execution of a workflow – a workflow that
is “complete” in the sense that it is intended to completely
satisfy the planning goal.3 (From here on, unless otherwise
noted, we will use the terms “test” and “workflow” inter-
changeably.) An experiment, then, consists of the execution
of one or more workflows. Our goal for CMAX’s experi-
ment design procedure is to construct workflows as experi-
ments whose outcomes inform our beliefs about the efficacy

1As with standard STRIPS operators, successful web service
enactment may involve world-state preconditions that must be sat-
isfied (e.g., to make a plane reservation there must be an open seat),
as well as bring about changes in the world (a seat is filled when a
reservation is made).

2In this phase of our work we do not consider parallel plan-step
execution.

3We could define a test to be a shorter sequence of steps aimed
at achieving local goals. This raises a number of issues for exper-
imentation (including reasoning about subgoals and their satisfac-
tion) that are beyond the scope of the work we report here.

of our planning knowledge, as expressed in our planning
methods.

There are many different aspects of hypothesized plan-
ning knowledge that we might try to test. We have chosen to
target assertions about step ordering first because assertions
about step order constraints are common in the IL project.
By step-order constraint we mean that a step order is neces-
sary: if step s1 is constrained to occur before step s2, then
having s2 occur before s1 in a workflow will result in ex-
ecution failure. In general, the existence of an order con-
straint can depend on the context in which the ordered pair
of steps occurs. For example, if s1 sets a condition that s2

depends on and that condition is not present initially, then
s1 must occur before s2; if that condition is present initially
and nothing else removes it, then there is no necessary or-
dering between s1 and s2. Similarly, a step s3 might negate
that condition, so if s3 occurs before steps s1 and s2, then
s1 must occur before s2, but not otherwise. In the algorithm
we present below, particularly the phase that relates poten-
tial experiments according to the order constraints tested, we
assume that order constraints are independent of the order in
which other steps occur (and also assume the initial world
state is held constant). It is important to keep this in mind as
it does restrict the applicability of the method; we will return
to this point below.

Misrepresenting step order constraints results in at least
one of two kinds of planning knowledge generalization fail-
ures:

1. Asserting an ordering constraint that is in fact not neces-
sary may make later plan generation under new circum-
stances appear impossible when in fact a plan could be
generated if the order constraint were ignored.

2. Not explicitly representing a step order constraint means
that plans may be generated that violate the constraint and
subsequently fail to successfully execute.

Assuming that necessary step ordering constraints are inde-
pendent, we can test for either of these generalization fail-
ures by producing totally-ordered workflows with different
step orderings, execute them, and see whether they succeed
or fail.

In the next three sections we describe the three phases in-
volved in generating experiments to identify missing or mis-
represented ordering constraints.

Phase 1: The Step-order Hypthesis Space
The first task for CMAX is to identify the space of step or-
der constraint hypotheses we wish to test. To describe this
hypothesis space we review some (likely familiar) concepts
about order relations. Consider a totally ordered sequence
of three elements, a b c, and let ≺ represent the irreflexive,
asymmetric and transitive order relation (assuming left-to-
right directionality). In the sequence, a comes before b is
represented by a ≺ b, and b comes before c is represented
by b ≺ c. We also have, by transitivity, the order relation
a ≺ c. In general, for each element we add to the right-
hand end of the sequence, we introduce a set of order re-
lations between every prior element and the new one. The
total number of order relations present in a totally ordered

2
lookupAirport

3
setPatientAPOE

4
getArrivalTime

5
setPatientAvailable

6
lookupAirport

7
setPatientAPOD

8
lookupMission

0 01:37
ORBI

ORBI

0 01:37ORBI ETAR

ETAR

2
lookupAirport

3
setPatientAPOE

4
getArrivalTime

5
setPatientAvailable

6
lookupAirport

7
setPatientAPOD

8
lookupMission

0 01:37
ORBI

ORBI

0 01:37ORBI

ETAR

ETAR

Original total order: (2 3 4 5 6 7 8)
Order constraints based on data-flow links (directed edges): ((2 3) (2 4) (2 8) (4 5) (4 8) (6 7) (6 8))
Remaining order relations (no edges) representing candidate order constraints:

Re-ordered total order, moving steps 6 and 7 before step 2: (6 7 2 3 4 5 8)
This new order violates the following candidate order constraints: ((2 6) (2 7) (3 6) (3 7) (4 6) (4 7) (5 6) (5 7))

A

B

((2 6) (2 7) (3 4) (3 5) (3 6) (3 7) (3 8)
 (4 6) (4 7) (5 6) (5 7) (5 8) (7 8))

Figure 1: A represents the link-based order constraint relations (directed edges) identified for a sequence in a method fragment;
the pairs of step numbers in parentheses represent individual order relations; labels on the edges represent values that would be
assigned to the corresponding links were the method used to reproduce the demonstration trace as an executing workflow. B
represents a re-ordering of the step sequence that preserves the link-order constraints identified in A, but violates (and therefore
tests) eight candidate order constraints.

sequence of n elements is K = (n2−n)/2. We will refer to
this complete set of order relations as the transitive closure
of order relations over the totally ordered sequence. Without
prior knowledge about order constraints, any of the K order
relations in the transitive closure over a sequence of steps is
a candidate step-order constraint.

CMAX distinguishes between two classes of order con-
straints expressed in LTML methods and treats them differ-
ently for the purpose of step-order experimentation. The first
class consists of assertions about step ordering that range
from fully specifying step sequences (in Sequence clauses)
to leaving steps unordered (in Activity-graph clauses);
Activity-graphs may include predicate clauses whose condi-
tions must be maintained, thus asserting some constraints.
CMAX identifies groups of steps associated with these
clauses and experiments with their order. Depending on the
experiment outcome, CMAX may recommend revising the
current method’s step order constructs.

The other class of order constraints consists of data flow
assertions, as mentioned in the previous section. LTML pro-
vides a links construct to specify how output values resulting
from web service calls are used as input values to later ser-
vice calls. In the version of the step order experiment design
algorithm we present here, CMAX generates orderings of
steps that preserve these data flow links, thus treating them
as order constraints that cannot be violated. In later versions
of CMAX, ordering experiments will be generated that also
test data-flow links.

Figure 1 A represents data flow links as directed edges
between steps. In this example, the space of candidate or-
der constraints that CMAX will test is the set of order rela-
tions other than the set of link order constraints. Put another

way, the target set of relations to test consists of the relations
that remain after removing the link order constraints from the
transitive closure of order relations over the total ordered se-
quence of steps. This target set of relations is represented
beneath Figure 1 A as the list of thirteen ordered pairs of
step numbers. Figure 1 B shows an example of a reordering
that preserves the original link orders while violating eight
of the target candidate order constraints.

Phase 2: Efficiently Generating Tests
If we could test each candidate order constraint individu-
ally, then in the example we would only need thirteen tests:
for each order relation, simply swap the two elements in the
relation, thereby violating any underlying order constraint,
and see if the workflow successfully executes. However, this
is only possible for order relations between adjacent steps.
For example, for the a b c sequence we have three options
for testing the necessity of the a ≺ c order: (1) c a b, which
violates a ≺ c and b ≺ c; (2) b c a, which violates a ≺ c
and a ≺ b; and (3) c b a, which violates all three original
order relations. In no case can we violate only a ≺ c. As
we will see in the next section, we may combine tests so as
to (potentially) isolate order relations between non-adjacent
steps. For example, if we first run an experiment with the
step order b a c and it succeeds, then we can eliminate a ≺ b
as a candidate order constraint. Now that we know that it
does not matter in what order a and b occur, we can use or-
dering (2) b c a and be certain that if it fails, it is due to
violating a ≺ c. If, however, the b a c workflow fails, then
the a ≺ b order is necessary and b c a is guaranteed to fail
irrespective of the relationship between a and c. In this case,
we must try a different sequence of tests to isolate the a ≺ c

relation. We won’t know ahead of time which sequences of
tests we will need so we must be prepared to consider any
of them. We need a general method for generating orderings
that violate different combinations of relations representing
candidate order constraints while preserving data flow link
constraints.

The naive approach to generating the desired set of se-
quences is to generate the complete set of permutations (with
no constraints) and then select only those that satisfy the link
order constraints. Unfortunately, for n elements there are n!
unconstrained sequences. For the seven steps in Figure 1 this
involves generating 7! = 5040 sequences. We can greatly
reduce our work by generating only those permutations that
satisfy the link order constraints.4 For the seven steps in
Fig. 1, there are actually only 144 permutations that satisfy
all of the identified link order constraints – an order of mag-
nitude fewer than the full set of unconstrained permutations.

A better way to proceed is to start with the constraints we
wish to preserve. First, consider a single order constraint
a ≺ b. All this relation asserts is that a has to come before
b. If element c has no order constraints involving a and b,
then we are free to place c in any region (indicated by ‘ ’)
around a and b: a b . Doing so does does nothing to
the original a ≺ b order relation. We say that we distribute
c over the sequence a b if we generate a new sequence for
each placement of c. Distributing c over a b thus produces
the sequences: c a b, a c b, and a b c. We can repeat this op-
eration, distributing a new unconstrained element d over the
four positions around each of the three new sequences that
include a, b and c. We can also distribute an order constraint
pair x ≺ y over the sequences, producing new sequences;
if x already exists in the sequence, then y is distributed to
all position after x, and likewise if y already exists, x is dis-
tributed to all positions before y. And if neither x nor y is
constrained, than we first distribute x, then distribute y over
all positions after x.

Using this simple operation of distributing elements (or
pairs of order-constrained elements) over sequences, the fol-
lowing algorithm generates all, and only, the permutations
satisfying the set of (consistent) ordering constraints. We
present the basic algorithm here; see (Morrison & Cohen
2007) for more developed justification of each step.

1. Remove transitive orderings from the order constraints we
wish to preserve: if a ≺ b is an order constraint we wish
to preserve, but two or more other to-be-preserved order
constraints exist that together link a to b, then remove a ≺
b from the to-be-preserved list.

2. An order constraint a ≺ b overlaps another order con-
straint if a or b appears in the other order constraint. This
step sorts the to-be-preserved list of order constraints re-
maining after step 1 so that any two related order con-
straints A and B, where A appears earlier in the list than

4While there is no known formula for calculating the num-
ber of permutations that preserve arbitrary ordering constraints
(Birghtwell & Winkler 1991), we do know that if the longest chain
of ordering constraints includes c elements (e.g., steps 2, 4 and 5 in
Figure 1 A form a chain of length 3), then the number of permuta-
tions is upper bounded by n!/c!.

(0 1 3 2)
00001

(1 0 2 3)
10000

(0 2 1 3)
00010

(1 0 3 2)
10001

(1 2 0 3)
11000

(2 0 1 3)
01010

(1 3 0 2)
10101

(1 2 3 0)
11100

(2 1 0 3)
11010

(1 3 2 0)
11101

(2 1 3 0)
11110

(0 1) (0 2) (0 3) (1 2) (2 3)

0 1 2 3

1

2

3

4

Candidate Order
Constraints to Test :

Original Sequence with
 1 Order Constraint (1 3) :

Figure 2: Test Dependency Graph

B, will not be separated by one (or more) order constraints
that do not overlap A while they do overlap B. The fol-
lowing simple example shows why we do this: if we went
through the following list in order, a ≺ b, c ≺ d, a ≺ d, it-
eratively distributing the next constraint over the growing
set of sequences, then at some point we would distribute
c and d around a and b, generating, e.g., c d a b, but then
come to a ≺ d, asserting that d cannot occur before a.
This violates the goal of producing all and only valid or-
derings. By moving c ≺ d to come after a ≺ d, we avoid
this problem.

3. After step 2, we simply step through the list of to-be-
preserved order constraints and incrementally distribute
them: take the first order constraint and distribute the sec-
ond over it; then distribute the third order constraint over
the sequences just generated, and so on.

4. Finally, any other elements not represented in preserved
order constraints are individually distributed one at a time
over the sequences.

This algorithm generates all of the permutations that sat-
isfy the link-order constraints, and no more. In the worst
case, when there are no order-constraints, the algorithm runs
inO(n!) (both in time and for the space required to store the
generated sequences for the next phase). As long as there
is a significant number of order constraints, time and space
complexities are much better.

Phase 3: Planning Effective Experiments
We now refine our definition of experiments and describe
how they are constructed. Experiments are sets of tests cho-
sen to determine whether ordering assertions made in LTML

methods are valid. In Phase 1, CMAX identifies sets of steps
(and their link constraints) involved in LTML method order-
ing constructs. In Phase 2, CMAX generates re-orderings
of these steps that can be used to test whether the orderings
asserted in the method are valid. Each experiment gener-
ated in Phase 3 will test only one ordering construct at a
time. Recall that while our focus has been on permuting a
sequence of steps, a full test in an experiment consists of
these permutations in the context of other steps that together
form a “complete” workflow. That is, our experiments alter,
through reordering, a component of a workflow that is oth-
erwise expected to solve the planning problem instance. If
the workflow fails to execute, the cause is somewhere in the
alteration.

In the previous section we noted that some sequences will
test more than one order constraint at the same time, and
some order relations cannot be altered without altering oth-
ers. We also pointed out that we can combine tests to isolate
individual order constraints. In Figure 2 we show how test
sequences are related. In this example, a simple 4-step se-
quence has one link constraint (pictured at the top of the fig-
ure). Below the sequence is the list of order relations repre-
senting the candidate order constraints we wish to test. Each
node in the graph at the center of the figure represents a per-
muted sequence. Below each sequence is a binary vector
representing which candidate order constraints are violated
by the sequence – a 1 indicates a violation and the positions
correspond to the positions of the candidate order constraints
in the list above the graph. For example, sequence (0 1 3 2)
violates the fifth candidate order constraint: 2 ≺ 3. The
nodes are arranged into rows such that all nodes in a row vi-
olate the same number of order relations; the numbers in the
left margin indicate how many. Finally, the directed arrows
represent that the sequence the arrow is pointing toward vi-
olates the order relations of the sequence at the tail of the
arrow as well as others – that is, the parent violations are
a subset of the child violations. (These subset relationships
are transitive, but for clarity, transitive edges have been re-
moved.) For example, (1 0 3 2) and (0 1 3 2) both violate
2 ≺ 3, but (1 0 3 2) also violates 0 ≺ 1. The subset relation-
ships, as represented by the arrows, are not the only kind of
relation between the sequences. Sets of violated order rela-
tions for two nodes may also partially overlap. Again, for
clarity these edges are not pictured. We refer to this graph
as a test dependency graph (TDG). In the current version of
CMAX, this graph is constructed explicitly, using the set of
permutations generated in the previous phase.

The TDG is a useful representation for selecting tests for
an experiment. After a sequence is executed, we update the
graph based on the execution outcome. For example, if we
execute sequence (0 1 3 2) and it succeeds, then we now
know that relation 2 ≺ 3 is not necessary. This also means
that any other tests violating this relation will not fail be-
cause of this violation – if another test fails it is due to some
other constraint. In this example, we update the TDG by re-
moving all 1’s in index 5 of the binary vector (representing
2 ≺ 3). After the update, sequence (1 0 3 2) has only one re-
maining candidate order constraint, 0 ≺ 1. Running the test
(1 0 3 2) will now determine with certainty whether 0 ≺ 1 is

necessary. Test success may also lead to the removal of other
tests: any ancestor (according to the subset relation depicted
by the arrows) may be removed from the graph because all
violated order relations of the ancestors have been shown to
be not necessary, so running their test won’t tell us anything
new.

Updating due to test failure works in a complementary
fashion. If a test fails, then we know that any descendant
according to the subset relation will also fail, since descen-
dants always violate more order relations. Again, we remove
these because they can no longer tell us anything new.5 Any
other tests that overlap, however, remain tests of interest in
our search to identify which violated order relations are ac-
tual order constraints.

The overall goal in experiment test selection is to run tests
that determine which candidate order constraints are neces-
sary. At the same time, we want to minimize the total num-
ber of tests we execute. There are several test selection poli-
cies to choose from, and which in the long run is cheaper
depends on how many actual order constraints there are. To
see this, consider binary versus linear search, two ends of
a spectrum of policies. If there are likely only a few order
constraints, binary search can be significantly cheaper than
linearly testing each individual order. In binary search, we
start by selecting a test that violates as many order relations
as possible. If it fails, choose two new tests that (ideally)
violate half as many relations and don’t overlap in the rela-
tions they violate. As long as tests fail, keep splitting and
testing. If a test succeeds, stop further testing of that set
of relations. If no order constraints exist, then we can stop
after a single test that violates all order relations succeeds.
If there is just one order constraint, then we can uniquely
identify it while confirming all the rest are not necessary
in order O(log n) experiments (for n order relations). But
as the number of order constraints increases, binary search
quickly looses its superiority. When there are many actual
ordering constraints, it is best to confirm them by testing for
them one at a time. With many ordering constraints, binary
search could result in twice as many tests. If we have back-
ground information about the number of likely tests, then we
can use that to inform which policy to use.

We can approximate a binary search policy by starting
with sequences at the bottom of the TGD, where the tests
violate many order relations. In subsequent iterations, we
work our way up the graph and identify pairs of tests that
together cover all of the relations being tested but split the
set of relations roughly in half. Linear search starts at the
top of the graph and works its way down.

CMAX’s default experiment construction strategy is to
conduct a linear search. CMAX first selects tests from the
top of the TGD that violate single order relations. These are

5Note that when we remove tests from the graph some order re-
lations that were not directly tested may be no longer represented
in the graph. This is due to transitivity. In the example, suppose
we find that 0 ≺ 1 is necessary. Since 1 ≺ 3 is already a link con-
straint, 0 ≺ 3 must also be necessary, by transitivity. We see this
in the TDG update: when (1 0 2 3) fails (0 ≺ 1 is necessary), we
remove all descendants, including everything with a 1 at position 3
in the binary vector: (1 2 3 0), (1 3 2 0) and (2 1 3 0).

executed and the graph is updated. Now updated tests may
have better resolving power; these are selected in the next
round and the cycle is repeated until all of the order rela-
tions have been confirmed to be actual ordering constraints
or not necessary.

Related Work
We have room here to describe only a few projects related
to our work. A very similar approach to learning planning
methods is Veloso and Winner’s SPRAWL algorithm (Win-
ner & Veloso 2002), which analyzes existing domain knowl-
edge to identify step dependencies. The main difference
with our work is that we focus on experimentation and can
therefore refine planning knowledge in the face of incom-
plete domain models; we view CMAX as complementary to
SPRAWL. Carbonell and Gil (1990) developed a framework
of heuristics for identifying problems in planning and exe-
cution that arise due to elements missing from planning op-
erator definitions This work was further developed in Gil’s
EXPO module, part of the PRODIGY planning system (Gil
1996). Other systems, such as OBSERVER (Wang 1996)
and WISER (Tae, Cook, & Holder 1999) are natural exten-
sions to EXPO, adding to operator refinement techniques
that rely on less prior domain knowledge. OBSERVER
shares with CMAX a focus on learning from expert trace
observations. Two important differences between CMAX
and these approaches are that CMAX does not require that
the world state is fully observable and CMAX also explic-
itly considers the relationships between experiments, where
multiple orderings may be tested at once (again, assuming
independence). Finally, we have already indicated the con-
nection between CMAX and active learning; similarly, the
field of active sensing, particularly in robotics, involves ex-
plicit use of actions to gather information to form and refine
domain models (Mihaylova et al. 2002).

Conclusion
We have presented an approach to generating experiments
that test planning knowledge about step ordering constraints.
We plan to develop the approach described here in several
ways. First, we have just begun to characterize the test de-
pendency graph and there may be additional structure that
we can put to work. At the same time, the power of the TDG
rests on the assumption that individual order constraints are
independent of one another. If that assumption is violated,
we can no longer rely on the partial-lattice structure of TDG
to represent how tests are related. Further work is needed
to generalize the TDG representation to handle cases where
the existence of necessary order relationships depends on
context. We are also interested in generating experiments
to test other method constructs, including branching condi-
tions and looping. In general, these extensions will require
moving beyond the purely syntactic combinatorics of step
re-ordering and taking more of the semantics of the domain
into account. Finally, we are interested in providing CMAX
a probabilistic representation of order constraints. This will
allow representation of prior knowledge about possible or-
dering constraints in terms of degrees of belief, and also

moves CMAX’s reasoning into the well-studied domain of
statistical active learning. Along these lines, we also plan to
incorporate a model of cost of actions and world state util-
itiess, turning the experiment formulation task into a cost-
based decision-theoretic problem.

Acknowledgments
We thank two anonymous reviewers for their helpful com-
ments. This research was supported in part by the Defense
Advanced Research Projects Agency (DARPA) Integrated
Learning program, through grant FA8650-06-C-7606, sub-
contract to BBN Technologies.

References
Birghtwell, G., and Winkler, P. 1991. Counting linear ex-
tensions is #P-complete. In Proceedings of the 23rd ACM
Symposium on Theory of Computation, 175–181.
Burstein, M.; Brinn, M.; Cox, M.; Hussain, T.; Laddaga,
R.; McDermott, D.; McDonald, D.; and Tomlinson, R.
2007. An architecture and language for the integrated
learning of demonstrations. In AAAI 2007 Workshop on
Acquiring Planning Knowledge via Demonstration.
Carbonell, J. G., and Gil, Y. 1990. Learning by experi-
mentation: The operator refinement method. In Machine
Learning, An artifical Intelligence Approach, volume 3.
Morgan Kaufmann.
Cohn, D. A.; Ghahramani, Z.; and Jordan, M. I. 1996.
Active learning with statistical models. Journal of Artificial
Intelligence Research 4:129–145.
Gil, Y. 1996. Planning experiments: Resolving interac-
tions between two planning spaces. In Proceedings of the
Third International Conference on Artificial Intelligence
Planning Systems (AIPS-96).
Mihaylova, L.; Lefebvre, T.; Bruyninchx, H.; Gadeyne, K.;
and Schutter, J. D. 2002. Active sensing for robots – a
survey. In Proceedings of the 5th International Conference
on Numerical Methods and Applications.
Morrison, C. T., and Cohen, P. R. 2007. Designing exper-
iments to test and improve hypothesized planning knowl-
edge derived from demonstration. In AAAI 2007 Workshop
on Acquiring Planning Knowledge via Demonstration.
Nau, D.; Au, T.-C.; Ilghami, O.; Kuter, U.; Murdock, J. W.;
Wu, D.; and Yaman, F. 2003. Shop2: An htn planning
system. Journal of Artificial Intelligence Research 20:379–
404.
Tae, K. S.; Cook, D. J.; and Holder, L. B. 1999.
Experimentation-driven knowledge acquisition for plan-
ning. Computational Intelligence 15(3).
Wang, X. 1996. Planning while learning operators. In
Proceedings of the Third International Conference on Ar-
tificial Intelligence Planning Systems (AIPS-96).
Winner, E., and Veloso, M. 2002. Analyzing plans with
conditional effects. In Proceedings of the Sixth Interna-
tional Conference on Artificial Intelligence Planning Sys-
tems (AIPS 2002).

