
Logical Encodings With No Time Indexes for Defining
and Computing Admissible Heuristics for Planning

Miquel Ramirez
Universitat Pompeu Fabra

Passeig de Circumvalació 8
08003 Barcelona Spain

miquel.ramirez@upf.edu

Blai Bonet
Departamento de Computación

Universidad Siḿon Boĺıvar
Caracas 1080-A, Venezuela

bonet@ldc.usb.ve

Héctor Geffner
ICREA & Universitat Pompeu Fabra

Passeig de Circumvalació 8
08003 Barcelona Spain

hector.geffner@upf.edu

Abstract

A limitation of the SAT approach to planning and the more
recent Weighted-SAT approach to planning with preferences
is the use of logical encodings where every fluent and action
must be tagged with a time index. The result is that the com-
plexity of the encodings grows exponentially with the plan-
ning horizon, and for metrics other than makespan, the opti-
mality achieved is conditional on the planning horizon used.
In this work, we consider the use of logical encodings in
planning but for defining and computingadmissible heuris-
tics only, for which no time indices or planning horizons are
required. The basic logical formulation, following a recent
proposal by Bonet and Geffner in KR-06, captures a gener-
alization of the optimal delete-relaxation heuristic, which is
then extended withimplicit plan constraintsfor boosting their
values by capturing information lost in the delete-relaxation,
and with a structural relaxation scheme for CNF formulae re-
cently proposed by Ramirez and Geffner in CP-07 that re-
duces thetreewidthof the theory to any boundw, producing
thuspoly-time admissible heuristicshw that are able to han-
dle costs and rewards, and (some) delete information.The
experimental results, although preliminary, show that in some
domains, these heuristics are cost-effective and can be com-
petitive with the best known heuristics.

Introduction
Propositional encodings form the basis of the SAT approach
to planning where planning problems are translated into
CNF formulae that are fed into state-of-the-art SAT solvers
(Kautz & Selman 1996). This approach has been recently
extended to deal with planning with preferences where the
use of SAT solvers is replaced with MAX-Weighted SAT
or Weighted CSP solvers (Brafman & Chernyavsky 2005;
E. Giunchiglia 2007). While progress in SAT and Weighted-
SAT solver technology has been significant in recent years,
a limitation of these approaches is that the complexity of the
encodings grows exponentially with the planning horizon,
and that for metrics other than makespan, the optimality of
the resulting plans is conditional on the planning horizon
used.

In this work, we build on a recent proposal for using logi-
cal encodings with no time indices for defining and comput-
ing admissible heuristics (Bonet & Geffner 2006), so that the

Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

heuristic of a states is given by the cost of the best model of
the theory conditioned ons. The basic heuristic corresponds
to a generalization of the optimal delete-relaxation heuristic
capable of dealing with rewards as well. We then consider
two extensions of this idea: the use of validplan constraints
to boost the heuristic by capturing information lost in the
delete-relaxation, and the use of a relaxation scheme, pro-
posed recently in (Ramirez & Geffner 2007), that reduces
the theorytreewidthto any boundw, producingpoly-time
admissible heuristicshw able to handle both costs and re-
wards, and (some) delete information, closely related to the
mini-buckets heuristics(Dechter & Rish 2002). The experi-
mental results, although preliminary, show that in some do-
mains, these heuristics are cost-effective and can be com-
petitive with the best known heuristics likeh2 (Haslum &
Geffner 2000).

Planning Model
Following (Bonet & Geffner 2006), abbreviated BG from
now on, we deal with planning problems where actions have
non-negative costs and fluents have costs that can be posi-
tive, negative, or zero. Fluents with positive costs are called
calledpenalties, and those with negative costsrewards. For
simplicity, we deal only with Strips operators and no condi-
tional effects.

A planning problem is thus a tupleP = 〈F, I, O, G〉
whereF is the set of relevant atoms or fluents,I ⊆ F and
G ⊆ F are the initial and goal situations, andO is a set
of grounded actionsa with preconditions, adds, and deletes
Pre(a), Add(a), andDel(a), all subsets ofF .

A plan π is an applicable action sequencea0, a1, . . . , an

with ai ∈ O for i = 0, . . . , n, that transforms the initial state
s0 associated withI into a final statesn+1 where the goalG
holds.

In this work, we are interested in plansπ that minimize
the costc(π), defined as

c(π) def=
∑
ai∈π

c(ai) +
∑

p∈F (π)

c(p) (1)

whereF (π) is the set of fluents made true by planπ at
any time point during the execution, while c(ai) and c(p)
stand for the cost of the actionai and the cost of the fluent
p respectively. Action costsc(a) are assumed to benon-



negative, while fluent costsc(p) can bepositive(penalties),
negative(rewards), orzero(assumed by default).

We denote byc∗(P ) the cost of the best plan forP

c∗(P ) def= min{c(π) : π is a plan forP} (2)

and setc∗(P ) to∞ whenP admits no plan.
We call the planning cost model captured by (1) thepenal-

ties and rewardsmodel, abbreviated asPR. This model is
similar to the one used in over-subscription or partial-goal
planning where due to constraints or preferences, it may not
be possible or convenient to achieve all the goals (Smith
2004; Van den Brielet al. 2004). The main difference is that
that atoms inPR can be rewarded when they are achieved
anytimeduring the execution of the plan, not only when they
are achieved at theend. Yet, if the atomsp with positive re-
ward (i.e., negative costs) arepersistent(cannot be deleted),
the two models are the same, otherwise soft goals can be
expressed as rewards by a simple transformation described
in BG. The model is not fully general but is general enough
for our purposes, as it extends the cost model for classical
planning significantly, and in particular, ‘hard goals’ are not
needed as they can be expressed as highly rewarded ‘soft
goals’.

Heuristic h+
c

The heuristic formulated by BG for thePR model builds on
the optimal delete-relaxation heuristic proposed in classi-
cal planning. IfP+ is the delete-relaxation of problemP ,
i.e., the planning problem obtained by dropping the deletes
Del(a), the heuristich+

c (P ) that provides an estimate of the
cost of solvingP given the cost functionc is defined as

h+
c (P ) def= c∗(P+) . (3)

wherec∗(P+) is the optimal cost of the delete-relaxation.
For the0/1 cost function that characterizes classical plan-
ning, where the cost of all fluents is0 and the cost of
all actions is1, this definition yields the (optimal) delete-
relaxation heuristic which provides an estimate of the num-
ber of steps to the goal. Expression (3) generalizes this
heuristic to the larger class of cost functions where actions
may have non-uniform costs and atoms can be rewarded or
penalized. In all cases, the heuristics isadmissible:1

Proposition 1 (Admissibility) h+
c (P ) ≤ c∗(P ).

If P [I = s] andP [G = g] refer to the planning prob-
lems that are likeP but with initial situationI = s and
goal situationG = g respectively, then (optimal) forward
heuristic-search planners aimed at solvingP need to com-
pute the heuristic valuesh+

c (P [I = s]) for all statess en-
countered, while regression planners need to compute the
heuristic valuesh+

c (P [G = g]) for all encountered subgoals
g. Since each such computation is intractable, even for the
0/1 cost function, classical planners like HSP and FF settle
on polynomial but non-admissible approximations. In BG,
a different approach is taken: rather than performing an in-
tractable computation forevery search stateencountered, an

1In the presence of conditional effects, additional requirements
are needed for admissibility; see BG.

intractable computation is performedonceby compiling a
suitable propositional theory. We review this next and then
consider other uses of this theory.

Encoding the Heuristics in Logic
MinCostSAT is a variant of SAT where thebest satisfying
truth assignmentover a given CNF formula is sought with
the cost of an assignment given by the sum of the costs of the
literals it makes true(Li 2004; Fu & Malik 2006).

MinCostSAT is closely related to Weighted-MAX SAT
(Larrosa & Heras 2005; Li, Manyá, & Planes 2006), where
the cost of an assignment is given by the sum of the costs
of the clauses it violates, and it is rather simple to express
instances of one in terms of the other. Both formulations
have many applications, and as the last Weighted-MAX SAT
competition shows,2 there are many good MinCostSAT and
Weighted-MAX SAT solvers, most of which are based on
DPLL-style search. MinCostSAT can also be solved without
search by compiling the theory into d-DNNF, and moreover
once a theoryT is compiled into d-DNNF,all the MinCost-
SAT problemsT ∪ S for any set of literalsS in T can be
computed in linear-time from the compiled representation
(Darwiche & Marquis 2004). Bonet and Geffner take advan-
tage of this property for computingall the heuristic values
h+

c (P [I = s,G = g]) in time linear in the size of the com-
pilation of a logical encodingL(P ) of the planning problem
P with the initial and goal situations removed.

The logical encodingL(P ) avoids the use of time indices
and is built using ideas from Logic Programming (Lloyd
1987), as the logic program made up of the rules

p← Pre(a), a (4)

for each (positive) effectp of an actiona with preconditions
Pre(a) in P , and rules

p← set(p) . (5)

for each fluentp, whereset(p) is ’dummy’ action for ‘set-
ting’ the initial situation tos when computing the heuristic
valuesh+

c (P [I = s]) in a progression search. No such en-
coding trick is needed to support a regression search.

The logic programL(P ) is mapped into a propositional
formula wffc(L(P )) whose models encode the intended
models of the program: the models in which each fluentp
has awell-founded supportin terms of actions that are true
in the model. This completion can be obtained fromL(P )
by a polynomial transformation along the lines of (Lin &
Zhao 2003).

If I(s) stands for the collection of unit clausesset(p) that
represent a states, namelyset(p) ∈ I(s) iff p ∈ s, and
¬set(p) ∈ I(s) iff p 6∈ s, the correspondence between
heuristicsand the cost of the best models of a theoryT ,
called the cost or rank of the theory and denoted asr∗(T ),
can be expressed as:

Proposition 2 For any initial situations, goal g, and cost
functionsc,

h+
c (P [I = s,G = g]) = r∗(wffc(L(P )) ∪ I(s) ∪ g)

2http://www.maxsat07.udl.es.



where the costr(l) of positive literalsl is c(l), and the cost
of negative literals is0.

From this result and the properties of d-DNNF formula,
Bonet and Geffner obtain:
Theorem 3 LetΠ(P ) refer to the compilation of the theory
wffc(L(P )) into d-DNNF. Thenfor any initial and goal sit-
uationss andg, and anycost functionc, the heuristic value
h+

c (P [I = s,G = g]) can be computed fromΠ(P ) in linear
time.

Since the costr∗(T ) of a theory in d-DNNF can be com-
puted by a circuit obtained fromT by replacing ANDs by
Sums and ORs by Mins (Darwiche & Marquis 2004), Propo-
sition 2 and Theorem 3 can be understood as asserting that
the heuristic valuesh+

c (P [I = s,G = g]) for any s and
g can be computed by means of a circuit obtained from the
compiled formulaΠ(P ), whose input are the initial and goal
situationsI = s andG = g and whose output is the heuristic
valueh+

c (P [I = s,G = g]).

Boosting the Heuristic: Plan Constraints
The logical formulation of the heuristich+

c suggests a num-
ber of improvements. We consider first an extension that re-
sults from takingvalid plan constraintsinto account; these
are constraints satisfied by some optimal plan (if there is a
plan at all) that have no effect on theoptimal cost of a prob-
lembut can boost theheuristic functionby capturing infor-
mation that is lost in the delete-relaxation (Bonet & Geffner
2007).

A plan constraintC is a propositional formula over the
sets of actions and fluentsA andF . A planπ for a problem
P satisfies a constraintC, writtenπ |= C, if C is true over
the interpretation that makes true only the actions and fluents
in π andF (π). Thus, a plan constraintp ∨ q whenp andq
are fluents is satisfied byπ when π makesp or q true at
some point in the execution, whileπ satisfies¬p∨¬q when
at least one the two fluentsp or q is never made true by
π. Notice that a mutex(p, q) says something else; namely,
that no reachable state can make bothp andq at the same
time, and hence does not express necessarily a valid plan
constraint. On the other hand, the constraint that prevents
two moves away from one vertex in a TSP, is an example of
a valid plan constraint. Plan constraints as defined above are
not as expressive as modal or temporal formulae, yet they are
simple and sufficient for illustrating how they can be used to
improve the delete-relaxation heuristic once the heuristic is
formulated in logic.

Plan constraints are not used to modify the definition of
plans but rather theircosts, so that plans that do not comply
with the constraints get an infinite cost. Theconstrained cost
of a plan is thus defined as

c(π,C) def=
{

c(π) if π |= C
∞ otherwise (6)

where theconstrained optimal costof a problem as

c∗(P,C) def= min
π

c(π,C) (7)

with π ranging over the plans forP . Clearly if C is a valid
constraint for problemP , it cannot change the cost ofP ,

and hencec∗(P,C) = c∗(P ). WhenC is valid inP but not
valid in the delete-relaxationP+, however,C can boost the
value of the heuristic defined as

h+
c (P,C) def= c∗(P+, C) (8)

Theorem 4 (Admissibility and Boosting) Let C be valid
plan constraint forP under the cost functionc. Then

h+
c (P ) ≤ h+

c (P,C) ≤ c∗(P,C) = c∗(P ) ,

where both inequalities can be strict.

This is important as it says that the value of the delete-
relaxation heuristich+

c can be increased, while preserving
admissibility, by making explicit certain valid but implicit
plan constraints. The logical account of this new heuristic is
a direct extension of Proposition 2 above:

Proposition 5 (Constrained Heuristic and Ranks) For
any initial situation s, goal g, cost functionc, and plan
constraintC,

h+
c (P [I = s,G = g], C) = r∗(wffc(L(P ))∪C∪I(s)∪g)

for r such thatr(l) = c(l) for positive literalsl andr(l) = 0
otherwise.

From this result and the properties of formulae in d-DNNF,
once again we obtain:

Theorem 6 (Computing Constrained Heuristics)
Let Π(P,C) refer to the compilation of the theory
wffc(L(P )) ∪ C into d-DNNF. Thenfor any initial and goal
situationss and g, and anycost functionc, the heuristic
value h+

c (P [I = s,G = g], C) can be computed from
Π(P,C) in linear time.

Once the heuristics are formulated in logic, they can
be computed using MinCostSAT or Weighted-Max SAT
solvers. The appeal of the compilation-based approach cap-
tured in Theorems 3 and 6 is that it yields a circuit that
map situations into heuristic values in linear time. On the
other hand, the size of these circuits can be exponential in
the number of variables, a problem that we address next.

Heuristics and Treewidth Relaxation
The compilation of a CNF formula into d-DNNF, as many
operations over graphical models (CNFs, CSPs, Bayesian
Networks, etc.) is exponential in the modeltreewidth(Dar-
wiche 2001), a parameter that measures the degree of inter-
action among the variables in the model as captured in the
underlying interaction graph (Dechter 2003).

Recently, Ramirez and Geffner have introduced a scheme
for relaxing graphical models, and in particular SAT encod-
ings, so that their induced treewidth can be bound by a given
parameterw (Ramirez & Geffner 2007).3 This is accom-
plished in a simple way bymapping different occurrences of
the same variablexi in T , into different (new) variablesxj

i .
By choosing the variablesxi to rename along with their new

3Actually, the scheme reduces thehypertree widthof the the-
ory which unlike the standard treewidth is not affected by the arity
of the clauses (Gottlob, Leone, & Scarcello 2001). Here we will
ignore this difference.



names, a relaxed theoryT− can be obtained with treewidth
bounded by any givenw. This can be done for example, by
selecting aw-cutset ofT , and then ensuring that each occur-
rence of each variable in thew-cutset, gets a different name
in T−. A w-cutset is a set of variables inT whose instantia-
tion ensures that the resulting theory has treewidth bounded
by w (Dechter 1990).

This relaxation scheme was used in (Ramirez & Geffner
2007) for developing a MinCostSAT solver that searches for
a min-cost assignment forT using lower bounds obtained
from the d-DNNF compilation of the relaxationT−. Here
we use it for defining a family of heuristicshw

c exponential
in the treewidth boundw. For this, we replace the theory
T = wffc(L(P )) ∪ C in Proposition 5 by its relaxationT−:

Definition 7 (Heuristics hw
c ) For any initial situation s,

goalg, cost functionc, and plan constraintC,

hw
c (P [I = s,G = g], C) def= r∗(T− ∪ I(s) ∪ g)

whereT− is the theory obtained fromT = wffc(L(P )) ∪ C
by renaming fully the variables in aw-cutset ofT .

In analogy to Theorem 6, the heuristic valueshw
c (P [I =

s,G = g], C) can be computed for anys, g, andc in linear
time from the compilation of the relaxed theoryT−, an op-
eration that is now exponential in the target treewidthw that
we control.

For any fixedw, hw
c is apoly-time and admissible heuris-

tic capable of handling both costs and rewards, using the
delete information that is captured in the planning con-
straintsC. It is an heuristic different from the existing ones
that explicitly builds on the theory of graphical models, with
close connections to themini-buckets heuristicsused in con-
strained optimization problems (Dechter & Rish 2002).

Of course, there is a trade off: asw increases the heuristic
hw

c approaches the value of the heuristich+
c (with or without

constraints) but its compilation becomes more difficult and
the computation of the heuristic values becomes slower, as
the compiled d-DNNF representation gets larger as well.

Preliminary Experimental Results
Experimental results on the use of the generalized delete-
relaxation heuristich+

c for optimal planning with costs and
rewards are reported in (Bonet & Geffner 2006). Here, we
add a few more results, considering the use of plan con-
straints and the treewidth relaxation. The search algorithm
is a slight variant of the A* algorithm that ensures optimal
solutions even in the presence ofnegative costswhen the
heuristic ismonotonic(all the heuristics above are mono-
tonic; implying that the evaluation functionf(n) = g(n) +
h(n) does not decrease along any path in the search). The
search is backwards from the goal, and a table of structural
mutexes is built prior to the search, so that states reached
in the regression that contain a mutex, and hence are not
reachable from the initial state, are pruned (Bonet & Geffner
2001).

Two domains are considered: Serialized Logistics, a se-
rialized version of the Logistic instances in the Second IPC
(Bacchus 2001) and Rock Analyst, a version of the domain
discussed in (Smith 2004) where rocks of different classes

must be picked and analyzed from various locations. The
data is reported in Tables 1 and 2, showing the compilation
time (C), the search time (S), and the number of expanded
nodes (N). In the first domain, results for the heuristicsh+

c
andhw

c are reported, withw set in each case to the value
that minimizes overall time (search plus compilation). Se-
lecting the value ofw automatically remains a topic for fu-
ture research. In the second domain, the two heuristics are
reported in two forms: with a valid plan constraint and with-
out it (constrained and unconstrained). In the two tables, the
data for the heuristich2 (Haslum & Geffner 2000) is also
included as a reference , reporting the time to precompute
this heuristic in the H column.

We can see in Table 1 that the heuristicsh+
c andhw

c for
suitable values ofw, scale up better thanh2 in the Serialized
Logistics domain. The heuristich2 can be computed faster
than eitherh+

c or hw
c but is less informed. E.g., in the largest

problem solved usingh2, the search expands99827 nodes,
while h+

c andhw
c expand727 and2129 nodes respectively.

The heuristichw
c is weaker thanh+

c but can be computed
faster. As a result, in the largest 4 instances, it expands 4-6
times more nodes but the search takes 4-5 times less.

Rock Analyst is a variation of the TSP in which there are
a number of rocks of different classes at various locations
and the goal is to analyze a rock from each class. The op-
timal plan thus includes a minimum cost path that travels
along the locations that contain rocks of all classes but with-
out having to visit all locations. The problem combines two
tasks that are both intractable: the selection of the rock in
each class to visit (Set Cover), and the selection of the tour
to visit them (TSP). In the constrained heuristics,C is the
valid plan constraint that rules out moving away from the
same location twice (the constraint is valid given that the
costs are Euclidean).

Table 2 shows the compilation and search results for prob-
lems withn locations and3n rocks classified inton classes.
In this case, the heuristicsh+

c andhw
c do much better with

the constraintC than without, with the constrainedhw
c do-

ing best for suitable values of the treewidth parameterw, and
both heuristics expanding very few nodes. The heuristich2

expands a much larger number of nodes, but expands them
much faster, and thus the overall search time is only slightly
worse thanhw

c . The preprocessing for computing the heuris-
tic h2 is also expensive in this domain: as expensive as the
compilation in the largest problems and more expensive than
the compilation in the smallest ones. Yet, the time for com-
puting h2 grows polynomially, while the time of the com-
pilation grows exponentially. The opposite happens on the
other hand with the number of expanded nodes. So none of
these heuristics end up solving the problem forn = 10.

Summary
The h+

c heuristic is a logical formulation of the delete-
relaxation heuristic, defined in terms of logic programs and
their well-founded completions, that uses no time-indexed
propositions and handles both penalties and rewards. By
compiling the resulting theory into d-DNNF, a circuit is
obtained that maps situations into their heuristic values in
linear-time. The semantic limitation of the formulation



h2 h+
c hw

c
N/H/S N/C/S w/N/C/S

4–0 4,295/0.7/0.2 40/0.2/0.0 16/1,135/0.2/0.1
4–1 7,079/0.7/0.3 109/0.2/0.1 16/2,455/0.2/0.2
4–2 537/0.6/0.0 25/0.2/0.0 16/424/0.2/0.0
5–0 118,389/0.6/5.7 490/0.2/0.5 16/16,407/0.2/1.4
5–1 7,904/0.6/0.4 103/0.2/0.1 16/2,123/0.2/0.2
5–2 143/0.6/0.0 8/0.2/0.0 16/33/0.2/0.0
6–0 316,175/0.6/18.1 668/0.2/0.7 16/14,718/0.2/1.3
6–1 1,489/0.7/0.1 19/0.2/0.0 16/413/0.2/0.0
6–2 301,054/0.7/17.6 517/0.2/0.4 14,654/0.2/1.3
6–3 99,827/0.7/5.6 727/0.2/0.5 16/2,129/0.2/0.2
7–0 — 4,973/1.1/58.6 24/57,392/1.4/32.6
7–1 — 175,886/1.1/2,648.4 25/4,456,121/1.4/904
8–0 — 591/1.0/5.4 24/13,126/1.4/6.4
8–1 — 12,913/1.1/191.6 24/427,943/1.5/978.7
9–0 — 3,083/1.0/42.0 24/60,834/1.5/43.2
9–1 — 81/1.1/0.6 24/4,056/1.4/1.8
10–0 — — 32/463,490/7.3/1472.6
10–1 — 20,220/5.6/997.7 32/90,628/7.5/215.8
11–0 — 20,143/5.2/1,855.8 32/133,778/7.5/533.6
12–0 — 23,556/5.1/1,769.8 32/128,004/8.1/446.7

Table 1: Compilation and Search for Serialized Logistics over first 18 instances from 2nd IPC. N stands for the number of
nodes expanded, H for the time spent computing theh2 heuristic, C for the compilation time, and S for search time.w denotes
the value ofw for which the heuristichw

c showed best performance (min search+ compilation time).

h2 h+
c unconstr. h+

c constr. hw
c unconstr. hw

c constr.
n N/H/S N/C/S N/C/S w/N/C/S w/N/C/S
4 16/0.8/0.0 5/0.0/0.0 5/0.0/0.0 4/39/0.0/0.0 11/5/0.0/0.0
5 19/3.8/0.0 6/0.1/0.0 6/0.1/0.0 12/75/0.1/0.0 17/75/0.1/0.0
6 29/13.0/0.0 13/0.4/0.0 13/0.3/0.0 20/157/0.2/0.0 29/13/0.2/0.0
7 914/37.1/0.5 43/4.4/1.6 35/1.7/1.0 36/195/1.5/0.5 54/35/1.0/0.1
8 7,298/91.6/6.5 19/71.5/15.0 10/30.9/4.6 12/22,086/18.0/64.0 54/10/24.1/0.4
9 14,052/205.1/16.0 –/–/– 11/253.3/58.4 12/19,326/333.4/521.7 64/11/209.6/4.7

Table 2: Search and Compilation for Rock Analyst withn locations and3n rocks classified inton classes. The heuristicsh+
c

andhw
c used with and without the plan constraintC that prevents moving away twice from the same location (constrained

and unconstrained). N stands for the number of nodes expanded, H for the time spent computing theh2 heuristic, C for the
compilation time, and S for search time.w denotes the value ofw for which the heuristichw

c showed best performance (min
search+ compilation time).



in (Bonet & Geffner 2006) is that it is still based on the
delete-relaxation, while its computational limitation is that
the compilation can be exponential in the treewidth of the
theory. In this work we have addressed these limitations by
extending the formulation with valid plan constraints that
capture information that is lost in the delete relaxation, and
by introducing a family of weaker heuristicshw

c , that for
a fixedw can be computed by circuits of polynomial size.
The experimental results, although preliminary, show that in
some domains, these heuristics are cost-effective and can be
competitive with the best known heuristics. Topics of fu-
ture research include the automatic derivation of valid plan
constraints, the automatic selection of the target treewidth
parameterw, and the development of more effective relax-
ation schemes that maximize the value of the heuristicshw

c
for a givenw.

Acknowledgements. H. Geffner is partially supported by
Grant TIN2006-15387-C03-03 from MEC, Spain.

References
Bacchus, F. 2001. The 2000 AI Planning Systems Compe-
tition. Artificial Intelligence Magazine22(3).
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search.Artificial Intelligence129(1–2):5–33.
Bonet, B., and Geffner, H. 2006. Heuristics for planning
with penalties and rewards compiled knowledge. InProc.
KR-06.
Bonet, B., and Geffner, H. 2007. Heuristics for planning
with penalties and rewards formulated in logic and com-
puted through circuits. Technical report, UPF.
Brafman, R. I., and Chernyavsky, Y. 2005. Planning with
goal preferences and constraints. InProc. ICAPS-05, 182–
191.
Darwiche, A., and Marquis, P. 2004. Compiling proposi-
tional weighted bases.Artif. Intell. 157(1-2):81–113.
Darwiche, A. 2001. Decomposable negation normal form.
J. ACM48(4):608–647.
Dechter, R., and Rish, I. 2002. Mini-buckets: A general
scheme for approximating inference.Journal of the ACM
107–153.
Dechter, R. 1990. Enhancement schemes for constraint
processing: Backjumping, learning, and cutset decomposi-
tion. Artificial Intelligence41(3):273–312.
Dechter, R. 2003.Constraint Processing. Morgan Kauf-
mann.
Fu, Z., and Malik, S. 2006. Solving the Minimum Cost Sat-
isfiability Problem using SAT Based Branch-and-Bound
Search. InProc. of ICCAD’06.
Giunchiglia, E., and Maratea, M. 2007. Planning as
satisfiability with preferences. InProc. AAAI-07. At
http://www.star.dist.unige.it/
Gottlob, G.; Leone, N.; and Scarcello, F. 2001. Hyper-
tree decompositions: A survey. In Sgall, J.; Pultr, A.; and
Kolman, P., eds.,Mathematical Foundations of Computer
Science 2001, 26th International Symposium, 37–57.

Haslum, P., and Geffner, H. 2000. Admissible heuristics
for optimal planning. InProc. of the Fifth International
Conference on AI Planning Systems (AIPS-2000), 70–82.
Kautz, H., and Selman, B. 1996. Pushing the envelope:
Planning, propositional logic, and stochastic search. In
Proceedings of AAAI-96, 1194–1201. AAAI Press / MIT
Press.
Larrosa, J., and Heras, F. 2005. Resolution in Max-SAT
and its Relation to Local Consistency in Weighted CSPs.
In Proc. of IJCAI-05, 193–199.
Li, C. M.; Manyá, F.; and Planes, J. 2006. Detecting
Disjoint Inconsistent Subformulas for Computing Lower
Bounds for Max-SAT. InProc. AAAI’06.
Li, X. Y. 2004. Optimization Algorithms for the Minimum–
Cost Satisfiability Problem. Ph.D. Dissertation, North Car-
olina State University.
Lin, F., and Zhao, J. 2003. On tight logic programs and yet
another translation from normal logic programs to propo-
sitional logic. InProc. IJCAI-03, 853–858.
Lloyd, J. 1987. Foundations of Logic Programming.
Springer-Verlag.
Ramirez, M., and Geffner, H. 2007. Structural relax-
ations by variable renaming and their compilation for solv-
ing mincostsat. InProc. CP-07. To Appear.
Smith, D. E. 2004. Choosing objectives in over-
subscription planning. InProc. ICAPS-04, 393–401.
Van den Briel, M.; Nigenda, R. S.; Do, M. B.; and Kamb-
hampati, S. 2004. Effective approaches for partial satis-
fation (over-subscription) planning. InProc. AAAI 2004,
562–569.


