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Abstract

Hoffmann’s topological analysis of theh+ and hF F state
spaces explained why Fast Forward dominated the perfor-
mance on early planning domains (Hoffmann 2004). His tax-
onomy segmented domains according to the presence/size of
local minima and dead-end class. Surprisingly, the taxon-
omy has not been used to explain the performance of other
planners that use similar heuristics. In this paper, we extend
this analysis in several ways: 1) We apply the taxonomy to
10 heuristic search (including FF-2.3) and 17 non-heuristic
search planners to determine the extent to which it explains
planner performance. 2) We test model scalability by examin-
ing a subset of challenging problems to determine the extent
to which the topology explains performance. We conclude
that topological analysis is a valuable tool in explaining the
conditions under whichh+ is favored. Similar analyses of
newer domains and planners could benefit the community and
may lead to more informed application, extensions, or simpli-
fications of either the heuristics or the planners that use them.

Introduction
Linking search topology analysis with algorithm perfor-
mance has contributed to researchers’ understanding of
search algorithms and heuristics. It leads to insights such
as the search space for an oversubscribed scheduling ap-
plication is dominated by large plateaus (Barbulescuet al.
2006), the search space of job shop scheduling is domi-
nated by many small local minima (Watson, Howe, & Whit-
ley 2003), the search space of SAT depends on the prob-
lem instance (Frank, Cheeseman, & Stutz 1997) , and in
domain-independent planning,the search spaces are often
trivial (Hoffmann 2004). Researchers have used these in-
sights to both construct simpler algorithms and explain algo-
rithm behavior. In some cases, the explanations reveal how
these algorithms yield such dramatic improvements while
still guaranteeing bounded computation (Chen, Gomes, &
Selman 2001; Hoos & Stutzle 2004).

Hoffmann analyzedwhether the success of Fast Forward
(FF) could be explained in terms of local search topology.
Hoffmann’s (Hoffmann 2004) partitions 20 domains from
the first two International Planning Competitions (IPCs)
along two axes: the presence of local minima and the type of
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dead-end; dead-ends are states from which the goal cannot
be reached. He provided both empirical (Hoffmann 2001a)
and theoretical (Hoffmann 2001b) analyses showing that
many common benchmarks were easily solvable (some even
linearly) by heuristic search planners because either they
lacked significant minima or the heuristic easily addressed
them (Hoffmann 2004). In more recent work, Hoffmann ex-
tended these results to the newer problems from IPC3 and
IPC4 (Hoffmann 2005), but we focus on the earlier work as
our starting point.

Yet, little is known about when particular heuristics are
useful forother planners – especially in the context of newer
problems – and we believe the taxonomy has not been suf-
ficiently exploited as a tool for explaining planner perfor-
mance beyond FF. Hoffmann’s analysis is convincing in its
findings for FF; there is good reason to believe it might
extend to other planners. In this paper, we take prelimi-
nary steps to show that Hoffmann’s model explains planner
performance of other heuristic search planners that employ
h+ approximations. We address the following questions:
1. On problems too large to enumerate, is the performance

of FF sensitive to the taxonomy axes?
2. Is the performance ofh+ and non-h+ planners distinct

regardless of the taxonomy?
3. Is the performance ofh+ planners (as a group) sensitive

to the taxonomy axes?
4. Is the performance of non-h+ planners insensitive to the

taxonomy axes?
We explore these questions using a hypothesis driven exper-
iment design. We also use two data sets that are intended
to give us some information about whether the taxonomy is
also sensitive to problem difficulty.

Experiment Design
We apply Hoffmann’s two-dimensional taxonomy to addi-
tional planners on the original 20 domains. Table 1 shows
the 27 planners we included for this study; the heuristic
search planners in bold are those that directly use an approx-
imation of theh+ heuristic for state-space search. Our plan-
ners represent the variety of planning technologies present
from the International Planning Competitions – SAT-based,
POCL-based, Heuristic Search, and model checking.

We have reproduced Hoffmann’s taxonomy as a flat ta-
ble in Table 2 (right-most two columns). Domains either



altalt-1.0 blackbox-4.2 cpt-1.0
ff-2.3 hsp-2.0 hsp-2.0-b-h1plus
hsp-2.0-b-H2Max ipp-4.0 ipp-4.1
lpg-1.1 lpg-1.2 lpg-td-1.0
metric-ff 2002 mips-3 optop-1.6.19
prodigy-4.0 r-11 sapa-2.200406
satplan-2006 sgp-1.0b sgp-1.0h
sgplan-2006 simplanner-2.0 snlp-1.0
stan-3 ucpop-4.1 vhpop-2.2

Table 1: The 27 publicly available planners we ran in
our experiments; planners in bold use some version of the
h+ heuristic.

Domain Problem Sets Labels
(Symbol) H noH mO1 mType dType

Assembly (AS) 135 - - M1 DU
Blks-3op (B3) 150 - - M0 DC
Blks-4op (B4) 150 103 78 M1 DC
Briefcase(BC) 115 3 - M0 DC
Ferry (FY) 120 3 - MX DC
Freecell (FC) 110 100 98 M1 DU
Fridge (FR) 12 4 - M0 DC
Grid (GD) 139 5 5 M0 DH
Gripper (GP) 7 20 17 MX DC
Hanoi (HN) 3 - 2 M0 DC
Logistic (LG) 101 73 29 MX DC
Mic-ADL (MA) 107 150 - M1 DC
Mic-SIM (MC) 113 - - MX DH
Mic-Str (MS) 101 150 - MX DH
Movie (MV) 30 31 - MX DH
Mystery (MY) 112 72 38 M1 DU
M-prime (MP) 107 35 23 M1 DU
Schedule (SD) 191 150 - M1 DR
Tyreworld(TY) 1 11 - MX DH
TSP (TS) 8 - - MX DH
TOTAL 1814 910 290

Table 2: A flattened representation of the domains and prob-
lems we examine. The rightmost columns show the place-
ment of each domain into the appropriate ordered mType
{MX, M0, M1} and dType{DC,DH,DR,DU}. The second
through fourth columns list number of problems each do-
main contributes to the problem sets. Note thatmO1 is a
subset ofnoH.

have local minima (M1) or do not (M0) and some domains
that lack minima also have benches with a median exit dis-
tance less than a constant (MX). Along the dead-end axis the
topology divides domains into the presence of dead-ends: If
dead-ends do not exist the transition graph is either undi-
rected (DC) or directed but harmless (DH). When dead ends
exist they are heuristically recognized (DR) or heuristically
unrecognized (DU). It is important that the ordering of the
taxonomy categories listed in the caption implies that prob-
lems in the DU:M1 pairing are among the most challeng-
ing while those in the lowest pairing DC:MX are among the
most simple.

Planners and Problems
We collected all the publicly available problems we could
for these 20 domains; a total of 2724 problems came from
the IPC1,IPC2, IPC3, and UCPOP benchmarks as well as

Hoffmann’s study (Hoffmann 2004). These problems are
split into three subsets shown in Figure 2. Hoffmann’s origi-
nal problems are in the ‘H’ column and we exclude them for
any analysis in this paper because Hoffmann previously ana-
lyzed them. ThenoH problems exclude all ‘H’ problems but
include any other problem instance for the domain we could
locate. The median over one second data in themO1 column
attempts to focus our attention on the challenging problem
instances: an instance is included if it took more than half
the 27 planners at least a second to complete (fail or solve)1.
To collect our data, we run each planner on each problem
instance and save runtime and success.

Method
To answer our questions, we statistically measure the effect
of both topological axes in terms of ratio of success and run-
ning time. We judge a test significant ifp < 0.05 and highly
significant ifp ≪ 0.001. All analyses are performed using
R statistical package (R Development Core Team 2006) plus
a custom G-test package2. We will explain these tests as we
apply them in the following section.

Empirical Analyses
Is FF-2.3’s performance dependent on the
taxonomy axes for larger problems?
Hoffmann’s analysis required exhaustive enumeration of the
state spaces and so was restricted to small problem in-
stances. We used the domain taxonomy constructed to as-
sess whether larger instances conform to the expectations
derived from the smaller.

To test whether there is an impact for success ratio (the
dependent variable), we produce a contingency table of suc-
cesses and failures grouped by the category of interest (in-
dependent variable) then perform a G-test3. A significant
G-test indicates the likely presence of an effect other than
chance and can be interpreted that taxonomy category ef-
fectively predicts success. We report both the G-value and
p-value for each test.

We begin with instances fromnoH; a summary of the
groupings appears:

G-test and Contingency Table of FF-2.3 fornoH
mType dType

G = 0.58, p = 0.748 A G = 55.81, p ≪ 0.001

Succeed Fail Succeed Fail
MX 249 39 DC 177 29
M0 10 2 DH 159 38
M1 516 94 DR 150 0

DU 289 68
The top row of the contingency table shows the G-test re-
sults for each axis type on all problems (signified by the ‘A’
in the middle column). Thus, for thenoH data success is
highly dependent on dType (p ≪ 0.001) but not on mType

1Upon archived publication, we intend to provide public access
to our data sets and analysis code.

2We used Peter Hurd’s g.test code available at
http://www.psych.ualberta.ca/˜phurd/cruft/

3The G-test is the exact version of the more familiar approxi-
mation called theχ2 test; theχ2 was designed to overcome (now
outdated) limitations of hand calculating the log-likelihood.



(p = 0.75). This result suggests that performance on the
noH problems is impacted by the dead-end class much more
so than the presence of local minima.

We also examined the runtime of FF-2.3 for these problem
instances by grouping the data by each type and performing
several tests. The results for runtime analysis of FF-2.3 on
noH are summarized in the table:

ANOVA and Pairwise comparisons on FF-2.3 fornoH
mType dType

F = 11.43, p ≪ 0.001 TTC F = 20.47, p ≪ 0.001
F = 1.98, p = 0.139 TTS F = 4.96, p = 0.002
F = 13.36, p ≪ 0.001 TTF F = 26.518, p ≪ 0.001

MX M0 M1 DC DH DR DU
MX – cs s DC – cs cs
M0 cf – cs DH cf – cs
M1 cf – DR c c –

DU –

We start with a one-way analysis-of-variance (ANOVA) test
on a linear model of the data (this is a common and fairly
robust assumption). For this test, we report the F-statistic
and the p-value as seen in the top three rows where we
have split the data into time-to-completion (TTC), time-to-
success (TTS), and time-to-failure (TTF); space limitations
prohibit us from including the full ANOVA table for each of
the six entries. A significant ANOVA implies a true differ-
ence overall groupings and justifies a pair-wise comparison.

For pair-wise comparisons, we use the TukeyHSD test
because it is conservative in assigning grouping similarities
and because it is standard to our statistical software; thistest
is reported as p-value adjusted to control the experiment-
wise error atα = 0.05. An insignificant TukeyHSD pair-
wise comparison indicates that the two groupings are signif-
icantlysimilar. We show a summary of the pairwise compar-
isons of the groups for TTS (‘s’) in the upper triangle of each
sub-figure, TTF (‘f’) in the lower triangle, and TTC (‘c’) in
both. A letter for a pairing indicates that TukeyHSDdid not
find a significant difference between them – it means they
are statistically similar. In the cases where the ANOVA does
not yield a significant difference, we completely fill in the
appropriate part of the table for all pairwise comparisons;as
seen in the upper triangle of the mType box for TTS.

From the table, we see that all ANOVA results are highly
significant except mType on TTS. In the mType, there is lit-
tle to distinguish between the groupings for TTC, TTS, and
TTF. Only one pair, MX:M1, is distinct for TTF (lower tri-
angle). For TTS on both types (upper triangle), we note that
neither taxonomy axis significantly explains performance
with one key exception: DU is always viewed as a distinct
group from the others. This finding validates Hoffmann’s
conjecture (Hoffmann 2004) that problems in the DU group-
ing are more challenging for FF. It also suggests that the
presence of local minima has less impact than the dead-end
class on FF-2.3 performance for these problems.
The more challenging problems from mO1 produce differ-
ent results. The results are constructed:

G-test and Contingency Table of FF-2.3 formO1
mType dType

G = 24.92, p ≪ 0.001 A G = 2.38, p = 0.30

Succeed Fail Succeed Fail
MX 46 0 DC 100 26
M0 7 0 DH 5 0
M1 182 55 DU 130 29

The effect that each axis has on success ratio using a G-
test shows that the mType has a highly significant effect
(p ≪ 0.001), while the dType does not have a significant
effect (p = 0.30). The result reverses what we saw for the
noH problems above and could suggest that the predictive
power of the taxonomy is dependent upon problem size. The
ANOVA on TTS was insignificant for both dType (p = 0.08)
and mType (p = 0.55); there was no data for failures as seen
in the contingency table.

These results suggest that the taxonomy is useful for pre-
dicting success ofmO1 but not for predicting runtime. The
results also suggest that the presence of local minima has
more significant impact for challenging problems but that
the dead-end class has more impact on performance for sim-
pler problems. The finding is not terribly groundbreaking
since we know that FF uses enforced hill-climbing with
restarts and that its heuristic is an approximation ofh+. Af-
ter failing to find a solution using enforced hill-climbing,
FF-2.3 switches to best first search. We may need to con-
sider the problems on which FF switches to best-first search
to understand if switching confounds the findings.

In summary, we demonstrated our methodology and
showed that the actual performance of FF-2.3 corroborates
the model with one caveat: it appears that the effect of the
mType or dType may depend upon problem difficulty. We
showed that challenging problems are sensitive to the pres-
ence of local minima, while less challenging problems are
sensitive to the dead-end class.

Is the performance of h+ planners and
non-h+ planners distinct?
Before we examine if the taxonomy explains the groups of
h+ and non-h+ planners, we need to examine whether these
groups are distinct. To assess this question, we compare the
10 h+ planners against non-h+ planners on thenoH prob-
lems. For success ratio, the G-test comparing for the same
grouping of the 10h+ planners against the non-h+ control
was highly significant (G = 3655.92, p ≪ 0.001), which
simply validates the results of the recent competitions. We
perform an ANOVA of the runtime of the 10 planners against
a control group consisting of the other 17 non-h+ planners.
The ANOVA is significant (F = 81.57, p ≪ 0.0001) justi-
fying a pair-wise comparison. In comparing eachh+ plan-
ner to the non-h+ control, we note that only HSP-2.0r using
the H2Max heuristic (p = 0.51) had runtimes that were not
significantly different from the control.

Viewing the runtime data in terms of TTS or TTF yields
a slightly different picture. For TTS, the ANOVA is still
significant (F = 13.69, p ≪ 0.0001) justifying a pair-wise
comparison. Only four plannersdid perform significantly
different from the non-h+ control: FF-2.3 (p = 0.005) HSP-
2.0 (p = 0), LPG-1.1 (p = 0), MetricFF (p = 0.015). For
TTF, the ANOVA is significant (F = 115.43, p ≪ 0.0001)
and three plannersdid not perform significantly differently
from the non-h+ control: FF-2.3 (p = 0.999), HSP-2.0r
using H2Max heuristic (p = 1.0), and LPG-1.2 (p = 0.998).

In summary, for TTC, the results support the hypothesis
of a significant difference between theh+ planners and the
non-h+ planners for runtime and success ratio. We see dif-



ferences when we look only at TTF or TTS; primarily the
data seem to support the hypothesis that theh+ planners
have successful runtimes that appear very similar to non-
h+ planners but have failure runtimes that are different. The
result on successes could be a floor effect in that many prob-
lems are solvable regardless of the planning architecture.

Are the h+ planners distinguished from each other? If
all theh+ planners perform like one another in contrast to
non-h+ planners, it seems possible that there is no signifi-
cant performance difference between theh+ planners. We
examine this question using the same method as the previ-
ous section but without the non-h+ control. For success ra-
tio, the G-test is highly significant (G = 2729.414, p ≪
0.001). For runtime on TTC, the ANOVA is significant
(F = 76.32, p ≪ 0.001); a pair-wise comparison shows
the following pairs of planners are not significantly different
from each other:

Planner Planner p

hsp-2.0-b-H2Max hsp-2.0 0.133
sgplan-2006 metric-ff(2002) 0.286
sgplan-2006 lpg-td-1.0 0.336

lpg-1.2 hsp-2.0-b-h1plus 0.531
lpg-td-1.0 hsp-2.0-b-h1plus 0.685

metric-ff(2002) altalt-1.0 0.772
lpg-1.1 hsp-2.0-b-h1plus 0.871

metric-ff(2002) ff-2.3 0.908
sgplan-2006 ff-2.3 0.992

lpg-1.2 lpg-1.1 0.999

Some of the similarities make sense in light of planner
subfamilies. For example, the FF, LPG, HSP planners would
each comprise a subfamily. Other similarities are likely the
cause of similar underlying engine code. For example, in the
case of SGPlan-2006, the performance similarity to the FF
subfamily is to be expected since SGPlan-2006 uses Metric-
FF as its primary search engine. This only remaining pairs
are the similarity between LPG and other planners We plan
to examine this similarity further. We also plan to detail how
much the planners overlap on specific problems.

For TTS, the ANOVA was significant (F = 17.226, p ≪
0.001) and 17 of the pairs were significantly different from
each other; TTF had a significant ANOVA (F = 50.19, p ≪
0.001) with 15 pairs being similar.

We have shown that many of the 10h+ planners on all
data have distinct performance from one another with minor
surprises. When viewed by success or failure the differences
start to disappear, though still more than half of the pairwise
comparisons remain significant.

Do the dimensions in the taxonomy explain
performance of the h+ planners as a group?

To assess this hypothesis, we focus on theh+ planners and
measure the impact that the topology has on performance.
We group all problems attempted by the ten planners ac-
cording to the dType and mType then perform our statistical
analysis.

G-test and Contingency Table ofh+ planners fornoH
mType dType

G = 379.48, p ≪ 0.001 A G = 577.94, p ≪ 0.001

Succeed Fail Succeed Fail
MX 1536 1344 DC 1190 870
M0 73 47 DH 878 1092
M1 1975 4125 DR 322 1178

DU 1194 2376
ANOVA and Pairwise comparisons onh+ planners fornoH

mType dType
F = 199.38, p ≪ 0.001 TTC F = 126.35, p ≪ 0.001
F = 47.63, p < 0.001 TTS F = 19.38, p ≪ 0.001
F = 112.97, p ≪ 0.001 TTF F = 172.84, p ≪ 0.001

MX M0 M1 DC DH DR DU
MX – c s DC – s c
M0 cf – DH – s
M1 f – DR –

DU c –

As can be seen above, the G-test comparing success ra-
tio was highly significant for both mType and dType. All
ANOVA results for runtime are highly significant regardless
of the data subset. In the mType, we note that the M0 and
MX groups are similar for TTC and TTF data. Data subsets
in both types show that the most distant pairs (MX:M1 and
DC:DU) are similar; TTF further supports a distinction of
the all dType pairs and the MX:M1 pair. These results sug-
gest that for mType the taxonomy is less predictive (at the
extremes) for TTS but still predictive for TTF. For dType
the taxonomy is quite useful for predicting TTF and many
pairs for TTS and TTC but not very useful for predicting the
extremes on TTC.
The more challenging problems from mO1 show a signif-
icant G-test for both types. All ANOVAs were significant
except for TTS on dType, which suggests that predicting
successful performance does not depend on dType. Pairwise
comparisons for mType show that the taxonomy extremes
are still predictive.

G-test and Contingency Table ofh+ planners formO1
mType dType

G = 148.81, p ≪ 0.001 A G = 23.04, p ≪ 0.001

Succeed Fail Succeed Fail
MX 313 147 DC 585 675
M0 47 23 DH 36 14
M1 921 1449 DR – –

DU 660 930
ANOVA and Pairwise comparisons onh+ planners formO1

mType dType
F = 80.49, p ≪ 0.001 TTC F = 17.39, p ≪ 0.001
F = 18.22, p ≪ 0.001 TTS F = 1.158, p = 0.3144
F = 27.94, p ≪ 0.001 TTF F = 10.54, p ≪ 0.001

MX M0 M1 DC DH DR DU
MX – cs DC – cs - s
M0 cf – s DH cf – - s
M1 f – DR - - – s

DU f –

We have seen that at least some portions of the taxonomy
remain useful for predicting TTS, TTF, and TTC. For the
noH problems, both dType and mType are predictive of TTF
and it appeared that mType was still slightly more predictive
than dType. For themO1 problems, dType was not predic-
tive at all for TTS and marginally predictive for TTF, while



mType was still able to distinguish performance at the ex-
tremes. In comparison to the above results for FF-2.3, these
results are certainly more mixed. Although all theh+ plan-
ners use a similar heuristic, each planner searches in a dis-
tinct way. It may be possible to account for more variance
by grouping the planners according to subfamilies based on
search algorithm or other planner features.

Do the dimensions in topology explain performance
of the non-h+ planners as a group?

Given the previous results, we do not expect that the taxon-
omy will be informative for explaining the performance of
non-h+ planners. To confirm this intuition, we group the
non-h+ planners to determine if performance is sensitive to
the taxonomy. The results fornoH are summarized:

G-test and Contingency Table of non-h+ planners fornoH
mType dType

G = 636.64, p ≪ 0.001 A G = 904.34, p ≪ 0.001

Succeed Fail Succeed Fail
MX 1484 3412 DC 859 2643
M0 58 146 DH 1061 2288
M1 1347 9023 DR 132 2418

DU 837 5232
ANOVA and Pairwise comparisons on non-h+ planners fornoH

mType dType
F = 14.59, p ≪ 0.001 TTC F = 110.00, p ≪ 0.001
F = 0.56, p = 0.57 TTS F = 2.56, p = 0.053
F = 76.96, p ≪ 0.001 TTF F = 195.47, p ≪ 0.001

MX M0 M1 DC DH DR DU
MX – cs s DC – s s s
M0 cf – cs DH – s cs
M1 cf – DR – s

DU a –

The G-test is significant for both dType and mType; note
that both of the most challenging categories (M1 and DU)
are the least likely to show success. On runtime for dType,
the ANOVA is significant (p ≪ 0.001) on TTC. TTF reveals
a highly significant ANOVA (p ≪ 0.001) with all pairwise
comparisons being significantly different. TTS had an in-
significant ANOVA (p = 0.05) so pair-wise comparison is
unjustified. These results suggest that the difference in per-
formance for successful runs is not significantly impacted
by the dType model but that the failures can be explained by
the dType. But the results are mitigated by the fact that some
of these planners do in fact use theh+ heuristic to control
search (for example, VHPOP and some versions of MIPS)
or construct a problem representation based on the relaxed
plangraph (for example, SATPlan).

For mType, we see that the extremes MX and M1 lead to-
ward explaining performance; except for success. On TTC
the ANOVA is significant (p ≪ 0.001) with two insignifi-
cant comparisons: M1:M0 and MX:M0. TTF also had a sig-
nificant ANOVA (p ≪ 0.001) and the same two insignificant
comparisons. TTS had an insignificant ANOVA (p = 0.57).
These results suggest – counter to the intuition – that the
mType has impact on performance for failures suggesting
the taxonomy is useful for predicting TTF but not very use-
ful otherwise.

On the more challenging problems in mO1, neither G-test
was significant, which suggests that the taxonomy is useless
for predicting success on these problems. The remaining
results for TTF, TTS, and TTC look very similar to those for
noH so we skip detailed presentation of the results.

In summary, we can see that the taxonomy was very use-
ful for predicting TTF for both problem sets but that it is
not very useful in other ways. Even in comparison to the
mixed results we saw for the group ofh+ planners our re-
sults are not a very compelling for extensions of this work to
non-h+ planners with the exception of predicting TTF. We
may need to examine more closely planner subfamilies in
this group to get a better sense of whether the observation is
valid for individual non-h+ planners.

Limitations
The limitations of this work center on the planners, prob-
lems, and methodology and cause us to view our results as
suggestive rather than definitive.

In the case of the planners, it is clear that the planning
systems are complex and not designed with large-scale com-
parisons in mind. Some planners try one approach for a
specified time then switch approaches. Such switching algo-
rithms could disperse the performance one might see from a
pure implementation of a single algorithm and single heuris-
tic. We also did not control for a difference between optimal
and satisficing planners.

With respect to the problems, there are several mitigating
factors that could confound our findings. Intra-domain prob-
lem difficulty is hard to assess, but there may be an effect due
to the existence of simple (or challenging) problems in one
or more domains (for example, from a single grouping) that
led to success or failure. This was partly what themO1 data
set was designed to help alleviate. But much more work
could be done in examining specific problem instances.

We did control for at least one simple kind of error: We
examined the problems for which there was a failure and
found that all problems were solvable by at least one planner
and that these failures resulted from an actual failure to solve
the instance rather than a syntax or other error.

Another kind of limitation derives from our methodology.
We began our analysis at a coarse level, preferring to answer
questions about larger groupings of planners. This limits
the inference one can draw for specific planners, though our
findings do suggest it will be worthwhile to examine indi-
vidual planners from each grouping.

In some places, low cell counts limited our inference. For
example, in the first contingency table for FF-2.3, there were
only 5 entries for M0 and 7 entries for DH and the failure
entry was zero in MX. The missing/sparse data limits our
inferences but still allows us to ask whether the axes impact
performance on the larger extremes of the taxonomy.

Summary
Hoffmann studied problem instances from 20 domains to
determine whether performance of FF was sensitive to a
two-dimensional taxonomy: the presence of local minima
and the dead-end classification. The scope of this early



work was onsolvable problems for which the computation
of theNP-Completeh+ heuristic wastractable; the prob-
lems therefore limit the findings. His research showed that
the performance of FF was sensitive to the taxonomy axes;
in particular, problems in the upper right (the DU:M1 pair)
were among the most difficult.

We extended the work on the same 20 domains studied by
Hoffmann in several ways. First, we applied the taxonomy
to performance results for another 9 heuristic search plan-
ners. Second, we examined larger problems from the do-
mains; these problems may have had a solution but remained
unsolved by the planner in the allotted 30 minutes. Third, we
segmented the problems into subsets based on problem diffi-
culty. ThenoH problems consisted of any instance from the
20 domains that was not in the original set studied by Hoff-
mann. These problems were further split into themO1 prob-
lems, which were the set of problems for which at least half
the planners took over one second to complete. With these
two problem sets, we examined four questions.

For the question of FF-2.3’s sensitivity to the taxonomy,
we found that the performance depended on the taxonomy,
but that the degree varied with problem difficulty. For the
noH problems, FF-2.3 was sensitive to dType more so than
mType, while for themO1 problems FF-2.3 was more sen-
sitive to mType than dType.

In comparing theh+ and non-h+ planners, we showed
that the performance of the individualh+ planners is dis-
tinguished from the grouped non-h+ planners regardless of
the taxonomy. We also showed that, for the most part,
the performance ofh+ planners differed from one another.
Common similarities appeared to involve families or series
of h+ planners, though LPG was closely related to several
other heuristic search planners.

With respect to sensitivity of theh+ and non-h+ planners
to the taxonomy axes, we made several discoveries. For
non-h+ on both problem sets, we saw that taxonomy does
not sufficiently predict performance with the exception of
time-to-failure. Forh+, we saw mixed results that indicated
that the taxonomy was useful for predicting particular cat-
egories onnoH andmO1. In particular, we saw that TTF
seemed somewhat easy to predict regardless of taxonomy
type and we saw that mType was useful for separating the
extreme categories. We conjectured that one reason we saw
the mixed results was due to lumping the planners together.

Given these results we conclude that Hoffmann’s taxon-
omy appears to be a useful tool for explaining the perfor-
mance of other heuristic search planners using approxima-
tions of theh+ heuristic. The taxonomy appears sensitive
to problem difficulty and still shows some unaccounted for
variance, both of which suggest that more work could be
done to refine the taxonomy to control for these hidden fac-
tors. Not too surprisingly, the taxonomy does not appear
compelling as a tool for explaining the successful perfor-
mance of non-h+ planners. In closing, we see some poten-
tial areas for extending this work:

1. Perform a similar analysis of the newer IPC problems an-
alyzed in Hoffmann’s recent article (Hoffmann 2005).

2. Further explore intra-domain differences (and problem

difficulty) in the problem instance distributions. This is
the most critical area to address in our future work.

3. Add more control for differences in planner technology;
for example, optimal versus satisficing or planner family.

4. Characterize the performance on even more challenging
problems by using the problem generators for these do-
mains; we have already taken steps to incorporate these
larger problems into our study.

5. Link this research with recent domain specific complexity
analysis (Helmert 2006). We conjecture that doing so may
account for additional variance within subgroups of these
problems. Two-way ANOVA analysis may lead to further
refinement of the taxonomy as it relates to the theoretical
properties of domains.

6. Further characterize the behavior of new/existing
h+ planners and/or heuristics with respect to this taxon-
omy in the spirit of advancing our knowledge of when
and why it is appropriate to select a particular planner or
heuristic for a new problem.
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