
Developing Domain-Independent Search Control for Europa2

Sara Bernardini David E. Smith
Istituto per la Ricerca Scientifica e Tecnologica (IRST) NASA Ames Research Center

Via Sommarive 18, 38055 Trento, Italy Moffet Field, CA 94035–1000
bernardini@itc.it desmith@arc.nasa.gov

Abstract
In the last few years, classical planners have achieved im-
pressive results due to the development of problem relax-
ation techniques for computing distance estimates. In con-
trast, many large temporal planning systems used for practi-
cal applications have not benefitted from these techniques.
Instead, these systems rely on careful engineering of the
domain knowledge, together with carefully crafted domain-
dependent control information. In this paper, we explain
some of the characteristics of NASA’s EUROPA2 planning
system that make it difficult to directly apply the heuristic
techniques developed for classical planning. However, we
then borrow ideas from some of these methods to develop
domain-independent heuristic techniques for EUROPA2. We
show some promising initial results concerning their effec-
tiveness.

Introduction
In the last decade, there have been significant improvements
in the performance of automated planning systems. Key
to this improvement has been the development of domain-
independent heuristic techniques for estimating the distance
between states and goals. Generally, these techniques rely
on automatically generating a relaxed formulation of the
planning problem and using a solution of this relaxed prob-
lem as a distance estimate. One popular method for doing
this is to generate a plangraph (Blum & Furst 1997), extract
a relaxed plan from it, and use the cost of this solution as the
distance estimate (Hoffmann & Nebel 2001).
In contrast, many planners used for real-world applications,
such as EUROPA (Frank & Jonsson 2003), ASPEN (Chien
et al. 2000) and IxTeT (Ghallab & Laruelle 1994), have
not benefitted significantly from these advances. Instead,
these systems rely on careful engineering of the domain to-
gether with hand-crafted domain-dependent search control
information. This process is generally quite painful, time
consuming, and can lead to models that are not very ro-
bust to small changes in the domain or in the nature of the
problems being solved. It would therefore be quite useful
and desirable to have powerful domain-independent con-
trol techniques for these planning systems. Unfortunately,
there are difficulties involved in doing this: the representa-
tion languages for these systems are quite different, allowing

Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

much more complex temporal and metric constraints, and
the search strategies employed by these systems cannot be
characterized as either simple progression or regression. As
a result, it is difficult to directly map the techniques from
classical planning systems to these application systems.
In this paper, we develop novel domain-independent heuris-
tic guidance techniques for the EUROPA2 planning system,
currently being used for several NASA mission applications
including MAPGEN, the ground-based daily activity plan-
ning system for the Mars Exploration Rover mission (MER)
(Bresina et al. 2005). This planner has been shown to be ex-
tremely successful in solving complex real-world problems
by providing the user with a powerful modeling language
as well as a highly customizable solving engine. Never-
theless, EUROPA2 suffers from having little or no effective
domain-independent heuristic guidance. Our technique bor-
rows ideas from the work of Haslum and Geffner (2000),
and Helmert (2006). In particular, we build transition graphs
for the different state variables in EUROPA2, and use these
graphs to compute distance estimates for choosing and re-
solving flaws within EUROPA2’s plan refinement mecha-
nism.
In order to explain our technique it is necessary to have
some understanding of the EUROPA2 planning paradigm
and search algorithm. We give a quick overview of the
essentials in the next two sections. We then describe our
technique for automatically deriving domain-independent
heuristic estimates. We conclude by presenting some pre-
liminary experimental results.

EUROPA2: Paradigm and modeling language
For EUROPA2, planning domains and problems are de-
scribed using a declarative modeling language called NDDL
(New Domain Definition Language). A planning domainD
in NDDL is represented by the following elements:
• A set of timelines: T = {T1, T2, . . . , Tn}, which are es-

sentially variables capturing the evolution of a quantity or
component over time

• A set of mutually exclusive activities associated with each
timeline Ti: Act[Ti] = {a1(~x1, δ1), . . . , an(~xn, δn)}
where ~x is the vector of the activity’s parameters and
δ = [δmin, δmax] is a mathematical interval in N repre-
senting the duration of the activity

• A conjunction of temporal constraints associated with
each activity ai: C[ai] = c1 ∧ . . . ∧ cn, where a conjunct
cj can assume one of the following two forms:

– cj = ai temporal relation ak

Such a conjunct is called a compatibility. It is a qualita-
tive (meets, met by, etc.) or quantitative temporal
constraint between the activity ai and any other activ-
ity ak belonging to the same timeline T or to another
timeline Th. We talk about internal and external com-
patibilities and we indicate them as CI[ai] and CE[ai]).
The activity ai is called master and the activity ak is
called a slave.

– cj = (case γ = 1 : C−1); . . . ; (case γ = m : C−m)
A conjunct can also correspond to a choice be-
tween different conjunctions of compatibilities C−h ,
where C−h = {c1 ∧ . . . ∧ cl} and ci =
ai temporal relation ak. The choice between
the conjunctions is regulated by the variable γ, which
is called the guard of the case.

A rich set of temporal relationships is permitted in compati-
bilities, including: equal, meets, contains, after, starts, over-
laps and all their inverse relations. These relations are simi-
lar to the thirteen temporal relations defined by Allen (Allen
1983)1.
The above representation differs from a PDDL domain de-
scription in several respects: 1) it uses a variable/value rep-
resentation (timelines/activities) rather than a propositional
representation, and 2) there is no concept of state or action,
only of activities and constraints between them. In this re-
spect, models in NDDL look more like the schemas for SAT
encodings of planning problems than PDDL models.
A planning problem P is represented by a pair P = {H, I}
where:
• H ∈ N is the end of the planning horizon, meaning that

we only care about the behavior of the system with respect
to the temporal window [0,H].

• I is the initial configuration represented by a set of activ-
ities placed on their corresponding timelines. If we anno-
tate an activity a by a time interval τ(a) = [st(a), et(a)]
(indicating the temporal extent over which a holds), then,
for each activity ai in I, it is possible either to specify
the specific position of ai on the timeline, that basically
means fixing the start and end time of τ(ai), or to leave ai

floating on the timeline between the origin and the hori-
zon of the time axis.

The initial configuration I corresponds to both the initial
state and the goal state as they are defined in classical plan-
ning. The activities in I that are placed at the beginning of
the horizon correspond to the traditional initial state, while
all the others generalize the classical notion of goal since

1It is worth noting that, although the temporal relationships
defined by Allen are non-directional and can be inverted, com-
patibilities cannot be inverted. For example, the compatibility
ai meets ak has a different semantics from ak met by ai. The
former means that if ai exists on a timeline, ak must also exist,
while the latter means that if ak exists on a timeline, ai must exist.

they can be placed not only at the end of the horizon, but also
in any other position. The initial configuration is also the ini-
tial partial plan that is turned into a final plan by the planning
procedure. A final plan π is the configuration where all the
timelines of the domain are fully covered by contiguous ac-
tivities from the start to the end of the horizon. Some of the
activities are those that appear in the initial configuration,
the others are triggered by the applicable compatibilities as-
sociated with the initial activities and those that are incre-
mentally added to the plan. In fact, a compatibility c that
involves two activities ai and ak imposes that, once ai has
been chosen to be part of the plan and placed on its proper
timeline T , then the activity ak must be necessarily intro-
duced in the plan and placed over its timeline in such a way
that the temporal contraint stated by c is satisfied. If an appli-
cable temporal constraint contains a disjunction, that means
that, once the master activity has been chosen to be a part
of a plan, then at least one of its disjunctive slaves must be
part of the plan. A plan is consistent when all the timelines
are fully covered by activities, all the temporal contraints in-
volving those activities are satisfied and all the variables are
instantiated.
An example. As an illustration of a simple NDDL do-
main model, consider a rover equipped with a set of in-
struments to sample a geological site. We model the
following subsystems as timelines: Battery , Navigator ,
Controller , Instrument1, . . . , Instrumentn. Each subsys-
tem can only perform certain activities. An instrument,
for example, can perform one of the following operations:
TakeSample(rock, 1), Place(rock, 3), Stow(2), Unstow(2) and
Stowed([1, +inf]). The first activity consists in taking a sam-
ple of a rock at the site and lasts 1 time unit. The other
specifications are similar. The constraints that regulate the
behavior of an instrument are the following: in order to take
a sample of a rock, the instrument must be first unstowed
and then properly positioned in the vicinity of the rock. Af-
ter taking the sample, the instrument can be placed in an-
other position for performing another experiment or can be
stowed. Those constraints are expressed by means of the
internal compatibilities. We show just a few of them:
• Unstow() meets Place(rock i)
• Place(rock i) meets TakeSample(rock i)
• case γ = 0 : TakeSample(rock i) meets Stow();
case γ = 1 : TakeSample(rock i) meets Place(rockj)

Note that in this model, we have made no attempt to model
or allow intermediate state between Unstow , Place, and
TakeSample operations – something that is not possible in
PDDL.
The external compatibilities for Instrumentk govern its inter-
actions with the activities on other timelines. For example,
the instrument can take a sample of a rock only if the naviga-
tor has already reached that rock and persists in that position
while the instrument is taking the sample:
Instrumentk.TakeSample(rock i) contained by
Navigator .At(rock i).
An initial configuration I for the rover domain can, for ex-
ample, specify the level of the battery, the position of the

navigator and the status of the instruments at the start of the
planning horizon and, furthermore, can establish that a sam-
ple of a particular rock should be taken within a certain time
interval.

EUROPA2: search algorithm
The planning algorithm at the core of EUROPA2 can be
thought of as an instance of plan refinement search; given
a domain D and a problem P , the algorithm starts from the
initial configuration I and incrementally refines it by adding
activities to the timelines, ordering those activities and bind-
ing variables until a final consistent configuration is found.
This algorithm can also be seen as a search in the space of
partial plans (McAllister & Rosenblitt 1991), where a par-
tial plan Π consists of the following elements:
• For each timeline T ∈ D, a set of activities ActΠ =
{t1, t2, . . . , tn}, which are not necessarily contiguous on
time (actions in POCL)

• A temporal networkNΠ representing all the start and end
times of the activities in the plan and the constraints be-
tween them (ordering constraints in POCL).

• A set of flaws FΠ = {f1, f2, . . . , fm}, where a flaw is an
indication of a potential inconsistency in the partial plan.
There are three types of flaws:
– Open condition flaws: They arise when applica-

ble compatibilities are applied, triggering activities as
slaves of masters that are already in the plan Π. Those
slave activities are enforced to be part of the plan, but
they are not yet associated with any timeline. We call
them free activities (open preconditions in POCL).

– Ordering flaws: They arise anytime an activity is
placed on a timeline and an ordering is required for the
activity with respect to the other activities already on
that timeline (threats in POCL).

– Unbound variable flaws: They arise when variables
that have not yet been instantiated appear in the plan
Π. Those variables are said to be unbound. There are
two kinds of unbound variables: parameters of activi-
ties that are already in the plan and guards of applicable
temporal constraints.

Refining a partial plan means to pick a flaw and resolve it.
The process terminates when the set of flaws is empty. Each
kind of flaw is solved in a different way.
• Resolvers for open condition flaws

Flaws corresponding to free activities can be resolved in
two ways:
– Merging A free activity is merged with a matching ac-

tivity already in the plan (similar to add-link in POCL
planning). The operation of merging does not result in
the addition of any new flaws to the current plan. An
activity a is said to match an activity a′ if a and a′ unify
and the temporal constraints involving a are satisfied by
a′. Thus, a and a′ can be considered the same activity
and we do not need to introduce a in the plan. Conse-
quently, the slaves of a are not fired, because they have
been already triggered when a′ was introduced in the
plan.

– Activation We introduce a new activity a in the current
plan associating it with the proper timeline, but with-
out choosing a specific time slot for it (similar to add-
step in POCL planning). The compatibilities associated
with a are applied and the slaves fired by those compat-
ibilities are introduced as free activities. This results in
both an ordering flaw, corresponding to the just acti-
vated activity, and a number of open condition flaws,
corresponding to the added slaves.

• Resolvers for ordering flaws
Once we have decided to place a new activity on a time-
line, we need to choose where to put it with respect to
the other activities already on that timeline. For this pur-
pose, the temporal constraints involving the new activity
are checked against the current temporal network. An or-
dering flaw is resolved by imposing ordering constraints
among activities in such a way that the temporal network
remains consistent and all the constraints are satisfied.

• Resolver for unbound variable flaws
Unbound variable flaws are resolved by specifying a value
in the domain of the variable. If the variable is a guard,
the binding causes the introduction in the current plan of
the slave activities associated with the chosen value.

The basic algorithm in EUROPA2 is a depth-first search
characterized by flaw selection, flaw resolution and con-
straint propagation steps. Flaw selection identifies which
flaw to resolve next. This is not a backtracking point, but,
like variable ordering in constraint satisfaction, has a sig-
nificant impact on the amount of search and backtracking
required to find a solution. Flaw resolution deals with re-
solving a flaw by subsequently trying all the resolution op-
tions (activation and merging for open condition flaws, var-
ious activity orderings for ordering flaws and possible vari-
able bindings for unbound variable flaws). This is a back-
tracking point because if a resolution option does not work,
the algorithm tries another option until all options are ex-
hausted. Operations of plan refinement are interleaved with
constraint propagation on the constraint network underly-
ing the current partial plan. Contraint propagation is mainly
used to test partial plans for consistency, and discovers dead
ends, which are either inconsistent partial plans or partial
plans with flaws that cannot be solved. However, it also
plays another major role: it provides the algorithm with a
look-ahead capability that allows it to filter away infeasi-
ble flaw resolvers before the algorithm actually commits to
them.

The search control problem

Through a combination of careful domain engineering and
the crafting of domain-dependent search control informa-
tion, a user can customize and control search, flaw selection
and flaw resolution in EUROPA2. However, this process is
painful, time consuming, and often leads to models that are
not robust to further enhancements or changes. If EUROPA2
is run in the absence of domain-dependent heuristics, it in-
evitably experiences serious control problems. Plans are not
found within a reasonable amount of time even for problems
that are trivial for IPC planners.

As mentioned in the introduction, there has been consider-
able work in the classical planning community on devising
domain-independent heuristics. Generally, these techniques
involve solving some relaxed form of the planning prob-
lem in order to obtain heuristic distance estimates, which
are then used to guide search. Simple but effective ways to
obtain relaxed problems are, for instance, ignoring PDDL
operator delete lists or decomposing the goal set of atoms
into smaller subsets (Bonet & Geffner 2001), (Haslum &
Geffner 2000). The computation of some of those heuris-
tics rely on the explicit construction of a reachability graph
(Blum & Furst 1997), (Hoffmann & Nebel 2001), while
other methods perform shortest path calculations on a suit-
ably defined atom space (Haslum & Geffner 2000). In ad-
dition to “distance-based” heuristics, other techniques have
been proposed that work on multi-valued representations of
planning problems. Fast Downward (Helmert 2006) extracts
a heuristic function by constructing a causal graph of the do-
main and a domain transition graph for each state variable
in the domain. The fist graph represents the critical inter-
actions between state-variables, while the second graph de-
scribes the dependancies between the values of a single state
variable.
Although plangraph distance estimates have been used ef-
fectively to guide POCL planners like RePop (Nguyen
& Kambhampati 2001) and VHPOP (Younes & Simmons
2003), to date, EUROPA2 has not benefited from any of
these techniques. There are several reasons for this, includ-
ing: the variable/value representation, the lack of distinction
between state and action, the lack of distinction between fact
and goal, the lack of causality in the compatibilities, the
large number of exogenous events and time constraints in
many practical problems, and the bidirectional nature of the
search strategy (which appears essential for domains involv-
ing many time constraints and exogenous events). All these
factors make it difficult to directly map existing domain-
independent search control strategies to EUROPA2. (Sim-
ilar issues exist for other temporal planners like ASPEN
(Chien et al. 2000) and IxTeT (Ghallab & Laruelle 1994).)
In the next section, we develop a domain-independent con-
trol strategy for EUROPA2 that builds on the ideas of
distance-based estimations presented in (Haslum & Geffner
2000) and the construction of transition graphs described in
(Helmert 2006).

A search control strategy for EUROPA2
In order to effectively guide search in EUROPA2, we need a
method of assessing the impact of each possible flaw resolu-
tion on the cost of completing a partial plan. To do this, we
build a set of transition graphs and use these graphs during
planning to do distance estimation. More specifically, we
construct a graph for each timeline in the domain, describ-
ing the possible transitions between the activities on that
timeline. The nodes in the graph represent activities and the
transitions are induced by the information available in the
compatibilities for the activities participating in the transi-
tion. Constructing a useful transition diagram for a timeline
essentially requires that we reconstruct the causality hidden

in the compatibilities for the different activities. This turns
out to be a non-trivial task. For the sake of brevity, we do not
discuss the topic here. Furthermore, a cost is associated with
a transition that identifies the temporal distance between the
activities involved in the transition. We calculate the cheap-
est path from any activity to any other activity by running an
all-pairs shortest path algorithm on each graph.
Given a domain D and a timeline T ∈ D, the Activ-
ity Transition Graph for T is a directed weighted graph
GA[T] = {V,E,LE}, where V is the set of vertexes, E
the set of edges and LE is a weight function that assigns
a numeric weight to each edge in the graph. The graph is
developed as follows:
• We create a node v ∈ V for each grounded activity a that

can appear on T .
• For each activity a that belongs to T , we examine the

internal and external compatibilities for a, respectively
CI[a] and CE[a], with the purpose of defining the tran-
sitions in the graph. In particular, the set CI[a] will spec-
ify the edges appearing in the transition diagram, while
the set CE[a] will dictate additional conditions on those
edges.

• Consider the set CI[a] of internal compatibilities for a.
All of these compatibilities must be either generalized
meets or met by, because activities on the same time-
line cannot overlap. We define the transitions into a and
out of a as follows:
– The possible transitions out of a are described by
meets compatibilities: for each c ∈ CI[a] such that
c = a meets a′, we add a directed edge e ∈ E be-
tween the node corresponding to a and the node corre-
sponding to a′. The edge e is labelled with the lower
bound of the duration δ of the activity a.

– The possible transitions into a are described by
met by compatibilities: for each c ∈ CI[a] such that
c = a met by a′, we add a directed edge e ∈ E be-
tween the node corresponding to a′ and the node cor-
responding to a. The edge e is labelled with the lower
bound of the duration δ of the activity a′.

Note that there may be more than one edge into or out
of a because of the presence of unbound guards in the
specification of the temporal constraints involving a.

• We now consider the external compatibilities CE[a] for a
and divide them into two further categories:
– meets, starts and contains compatibilities,

which specify that the activity a must start at a par-
ticular time at or before the start of another activity
a′. We will assume that these compatibilities are de-
scribing “side effects” of the activity a and we will ig-
nore the compatibilities in this category. (These side
effects might cause interference with the behavior of
other timelines, but we neglect this point here.)

– met by, ends and contained by compatibil-
ities, which specify that the activity a must start after
the start of another activity a′, or that only specify that
a must start after some particular time. We will assume
that these compatibilities describe “requirements” for

the activity a.2 For such compatibilities, we do not add
any edge in the graph, but we keep track of them by
associating a set of conditions with the appropriate in-
coming edge for the node representing a (we call the
set Cond(a)).

For the rover example, Fig. 1 shows the activity transition
graph for the Instrumenti timeline, assuming there are only
two rocks in the domain.

Place_rock1

Place_rock2

Stow

Unstow

Stowed

TakeSample
_rock1

TakeSample
_rock2

2

2

3

3

1

1

1

1

2

1

Figure 1: Activity Transition Graph for Instrumenti

Given an activity transition graph GA[T] for a timeline T ,
we define CostSP(a1, a2) to be the cost of the shortest path
between a1 and a2 in the graph. Using an all pairs shortest-
path algorithm we can precompute and store this informa-
tion for each timeline prior to beginning planning.
We now consider how to make use of this information to do
flaw resolution. Consider a partial plan Π with an open con-
dition or ordering flaw f , and suppose that f has a possible
resolution r. We define the cost of the resolution, Cres(r),
as follows for merging and placement:
• Merging the activity a with some existing activity a′ on

the timeline T :
Cres(r) = 0

• Placing the activity a in an empty slot s on the timeline
T . The activity a can be compatible with more than one
empty slot on T . Given one of those empty slots s, the
activity ai preceding the slot s, and the activity ai+1 fol-
lowing the slot s (see Fig. 2):

Cres(r) =
CostSP(ai, a) + CostSP(a, ai+1)− CostSP(ai, ai+1)

The first definition corresponds to the intuition that the op-
eration of merging has little cost, since it does not mod-
ify the partial plan except for adding new temporal con-
straints. Moreover, it narrows the current set of flaws while
not adding any new flaws. The second definition estimates
how well the activity a fits in the empty slot s on T . Without
a, there is a cost CostSP(ai, ai+1) of going from the activity
ai preceding s to the activity ai+1 following s. By insert-
ing a in the slot s, we instead incur the cost CostSP(ai, a) of
getting from ai to a, plus the cost CostSP(a, ai+1) of getting

2The causality for contains and contained-by compatibilities in
NDDL is not always clear. The contained interval could be a tem-
porary effect of the containing activity, or it could be a condition
that must hold in order for the containing activity to function as
desired. For present purposes we will assume that the contained
interval is an effect rather than a condition.

from a to ai+1. The difference of these costs is an indication
of the penalty incurred by placing a in the slot s. It repre-
sents the difference between the shortest path to go from ai

to ai+1 going through a and the direct shortest path from ai

to ai+1. Clearly, if a is part of the direct shortest path, the
measure is zero.

a
i

a
i+1

a

s

T

Figure 2: Placing the activity a on the timeline T

If R[f] = {r1, . . . , rk} is the set of possible resolutions for
a flaw f , we define the Cheapest Local Resolution as:

CLR(f) = minri∈R[f]Cres(ri)

By using the CLR(f) for a placement flaw f , we prefer to
place the activity in a slot where it causes the smallest in-
crease in the net cost for the timeline T . This provides an
initial good estimate of cost since it generally prefers merg-
ing (cost zero) to other possibilities, prefers slots with low
cost paths to higher cost paths, and avoids slots where no
transition is possible (infinite cost).
The above scheme is fairly simple because it does not con-
sider the interactions between an activity a and activities on
other timelines. In particular it neglects the requirements
that must be satisfied on other timelines when placing a in
a slot s. It also does not consider the side-effects that might
result on other timelines by placing a in slot s. Omitting
the side-effects is similar to “ignoring delete lists” used in
many current planning systems, and we do not consider it
further here. However, if we want to compute a better esti-
mation of the cost of placing an activity on a timeline, we
should consider the costs of the conditions that must be sat-
isfied on the other timelines in order to make the placement
possible. The information regarding conditions is available
in the transition graph for the activity, since each edge is an-
notated with a set of conditions involving activities on other
timelines (and hence appearing in other transition graphs).
There are a number of possibilites for estimating the costs of
satisfying these conditions. All those options basically try to
estimate the cost of achieving a condition a′ on a timeline T ′
by analyzing the transition graph for T ′ and calculating the
CLR(f ′), where the flaw f ′ corresponds to the placement
of a′ on T ′. Two issues must be addressed when following
conditions back to their transition graphs:
• Duplication: Conditions may be repeated for several

edges along a shortest path, so we must avoid including
the cost of a single condition more than once.

• Recursion: We could continue chasing back the condi-
tions along the shortest path for each condition ci, trying
to get a better estimate of the cost of obtaining it. This
process might never end, because conditions for achiev-
ing ci might belong to the original timeline.

We have developed an algorithm for calculating costs of con-
ditions that gets around those problems by first recursively
collecting all the conditions into a set, and then adding up the

CLRs of the conditions. This approach avoids double count-
ing and recursion because each condition can appear at most
once in the set. Space limitations prevent us from presenting
the details of the algorithm so we give only a sketch here.
Given a flaw f for placing an activity a on a timeline T , the
process aims at collecting the set of all the conditions on all
the timelines that should be satisfied in order to perform that
placement. The final cost of the placement is then taken as
the sum of the CLR of the flaw f (as before) plus the costs
for this set of conditions. The set is developed by recursively
going backward to the graphs of the conditions for a, find-
ing the paths to achieve them, and unioning their conditions
to the set, while taking particular care that no duplicates are
added. Since there are a finite number of nodes and edges in
the transition graphs of the domain, this process will termi-
nate. By doing this, we are in essence collecting the entire
set of steps (over all timelines) that are necessary in order to
place a on T . This set can be seen as a relaxed plan for a.
So far, we have presented the algorithm used by the flaw
resolution procedure when it has to estimate the cost of re-
solvers for open condition and ordering flaws. Due to space
limitations we do not give the details of the algorithm to
treat unbound variable flaws, which is based on the same
concepts and mechanisms that we have just described. In
fact, choosing a resolver for an unbound variable flaw means
choosing a value for a guard variable, which in turn cor-
responds to enforcing one set of compatibilities instead of
another. In order to rank the different possible choices for
a guard variable, we need to evaluate how difficult it is to
achieve the compatibilities associated with that choice. Each
compatibility will raise an open condition flaw or an order-
ing flaw and we have shown how to estimate the cost of
resolving these kinds of flaws. Once we have the cost of
each flaw triggered by binding the unbound variable with a
certain value, we pick the value associated with the lowest
cost and assign it to the guarded variable. As far as the flaw
selection procedure is concerned, we can repeat the same
argument. We have also considered other more traditional
heuristics for flaw selection, such as choosing the variable
with “Minimum Domain Size”, but these heuristics resulted
in very poor performance.

Implementation and Experimental Results

We have some preliminary experimental results for the pro-
posed heuristics within EUROPA2. The current implemen-
tation is in C++ and the results were obtained using a Pen-
tium IV machine running at 1.8GHz with 1Gb of RAM.
Our current implementation includes pre-processing to con-
struct the activity transition graphs and shortest-path ta-
bles, and the simple versions of the flaw resolution and
flaw selection procedures. We have not yet fully imple-
mented the more complex heuristics that recursively chain
back through transition graphs to account for the conditions
on graph edges. The unavailability of a benchmark set of
domains written in NDDL makes performing experimenta-
tions within EUROPA2 very laborious, since domains and
problems have to be manually provided. In order to carry
out a more comprehensive evaluation of the performance

of EUROPA2, we are developing an automatic translator
from PDDL2.1 to NDDL, building on the translator from
PDDL2.1 to SAS+ tasks presented in (Edelkamp & Helmert
1999) and (Helmert 2004). The translator will provide us
with the opportunity to use the benchmark sets developed
for the International Planning Competition. Although these
results are preliminary, we present them as an indication of
the fact that it is possible to successfully export key tech-
niques developed by the classical planning community into
a very different framework such as EUROPA2. In particu-
lar, we aim at showing that, if we introduce automatically
derived heuristics into EUROPA2, it can work reasonably
well on domains that are not specifically tailored to fit its
features, without the use of hand written control rules.
We discuss the tests of the proposed heuristic on two stan-
dard domains: TOWER-n and LOGISTICS. Both these do-
mains are particularly difficult for the standard version of
EUROPA2, because they involve many causal disjunctive
constraints and just a few simple temporal constraints. In
our translation, an activity can correspond to either an ac-
tion or a proposition. The constraints involving actions de-
scribe the conditions and the effects of actions on the behav-
ior of the other activities. The constraints involving atoms
basically express the different kinds of axioms that occur
in SAT encodings of planning problems. For each activ-
ity, they explain under which circumstances that activity can
be started and terminated. Frame axioms are particularly
critical for EUROPA2 for two reasons. First, they intro-
duce many disjunctions in the domain specification. Second,
since EUROPA2 works bi-directionally, it can happen that a
constraint explaining how an activity can be terminated is
prematurely applied. That results in an early action com-
mitment that is completely unmotivated with respect to the
achievement of the goal. The proposed heuristic overcomes
the two problems by postponing those kinds of constraints
and binding disjunctive guards in an effective way.
We compare EUROPA2 with a closely related planner, CPT
(Vidal & Geffner 2006), which was awarded distinguished
performance in optimal planning for temporal domains at
IPC-2006. CPT is based on a simple extension of the
STRIPS language where concurrent actions with an integer
duration are allowed. A contraint programming formulation
is extracted from the initial problem specification. The do-
main theory is hence expressed in terms of variables, their
domains and constraints corresponding to disjunctions, rules
and temporal restrictions. The inference machinery over this
CP formulation provides a powerful pruning mechanism for
discarding partial solutions generated by a classical POCL
branching schema. The novelty of CPT is the ability to per-
form inference not only on the actions already in the partial
plan, but on all the actions in the domain. Constraint propa-
gation in EUROPA2 offers some look-ahead capability, but
not the full reachability analysis provided in CPT.
The TOWER-n domain deals with the construction of a
tower made of n blocks b1, . . . , bn. Eventually, the block
b1 should be on top and bn on the table. We consider two
different initial configurations: (1) all the blocks are on the
table; (2) all the blocks are on the table, except for bn which

is on top of b1. If the original planner is run on those prob-
lems without the use of hand written control rules, it does not
manage to find a plan within a time bounds of hours, even for
instances with only three blocks. On the other hand, when
we introduce the heuristic estimators, EUROPA2 performs
extremely well. If we consider the initial configuration (1), a
solution is found by pure inference and no search. In Figure
3, we show the performance of EUROPA2 on this problem
considering instances from two to fifty blocks. CPT, like
EUROPA2, does not rely on search to solve this problem
and outperforms other planners such as BLACKBOX (Kautz
& Selman 1999). Considering the initial configuration (2),
EUROPA2 finds a plan with only shallow backtracking and
the performance is comparable with that shown in Figure 3.
Although this problem appears trivial for classical planners,
powerful systems such as FF (Hoffmann & Nebel 2001) can-
not solve it.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 5 10 15 20 25 30 35 40 45 50

Ti
m

e
(s

ec
.)

Number of blocks

E2/CPT (Fast vers.) Tower domain

E2
CPT

Figure 3: Results for the Tower domain

LOGISTICS is the classical problem of moving packages
between different cities using trucks and planes. This prob-
lem differs from TOWER since it presents many indepen-
dent subgoals, while TOWER is characterized by many de-
pendent subgoals. The performance for LOGISTICS fol-
lows the same trend we showed for TOWER. The original
version of EUROPA2 fails to find a plan with time bounds
of hours for trivial instances, such as those involving three
packages and two cities, while it succeeds in solving big in-
stances without search when it uses the proposed heuristics.

Conclusions

We have developed novel domain-independent search con-
trol techniques for the EUROPA2 planning system. These
techniques construct transition graphs for each timeline in
the domain model and use these graphs to estimate the
cost of resolving flaws in different ways. This informa-
tion is used to guide both flaw selection, and flaw res-
olution. Although our experimental results are prelimi-
nary, they suggest that EUROPA2 can get by with far less
domain-dependent guidance, and can successfully function
as a general purpose engine if it makes use of these powerful
domain-independent heuristics.

Acknowledgements

We thank Jeremy Frank, Javier Barreiro, and the anony-
mous reviewers for their comments on the paper. We thank
Nicola Muscettola for early discussions about search control
in EUROPA. We are grateful to Michael Iatauro and David
Rijsman, who provided assistance with modifying the EU-
ROPA2 system. We thank Malte Helmert for making his
code available for translating PDDL problems into a vari-
able/value representation, and we thank Peter Jarvis for dis-
cussion and assistance with this process. This work was sup-
ported by the Association for International Practical Train-
ing (AIPT), and by the Automation for Operations project of
the NASA ETDP program.

References

Allen, J. 1983. Maintaining knowledge about temporal
intervals. Communications of the ACM 26(11):832–843.

Blum, A., and Furst, M. 1997. Fast planning through plan-
ning graph analysis. Artificial Intelligence 90:281–300.

Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129((1-2)). Special issue on
Heuristic Search.

Bresina, J.; Jonsson, A.; Morris, P.; and Rajan, K. 2005.
Activity planning for the Mars Exploration Rovers. In
Proc. of the Fifteenth International Conference on Auto-
mated Planning and Scheduling (ICAPS-05), 40–49.

Chien, S.; Rabideau, G.; Knight, R.; Sherwood, R.; Engel-
hardt, B.; Mutz, D.; Estlin, T.; B.Smith; Fisher, F.; Barret,
T.; Stebbins, G.; and Tran, D. 2000. ASPEN - Automated
planning and scheduling for space missions operations. In
International Conference on Space Operations (SpaceOps
2000).

Edelkamp, S., and Helmert, M. 1999. Exhibiting knowl-
edge in planning problems to minimize state encoding
length. In Proc. of the Fifth European Conference on Plan-
ning (ECP’99), 135–147.

Frank, J., and Jonsson, A. 2003. Constraint based attribute
and interval planning. Journal of Constraints 8(4):339–
364. Special Issue on Planning.

Ghallab, M., and Laruelle, H. 1994. Representation and
control in ixtet, a temporal planner. In Proc. of the Second
International Conference on Artificial Intelligence Plan-
ning Systems (AIPS-94), 61–67. AAAI Press.

Haslum, P., and Geffner, H. 2000. Admissible heuris-
tics for optimal planning. In Proc. of the Fifth Interna-
tional Conference on Artificial Intelligence Planning and
Scheduling (AIPS-00, 140–149.

Helmert, M. 2004. A planning heuristic based on
causal graph analysis. In Proc. of the Fourteenth Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS-04), 161–170.

Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.

Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: fast plan generation through heuristic search. Journal
of Artificial Intelligence Research 14:253–302.
Kautz, H., and Selman, B. 1999. Unifying sat-based and
graph-based planning. In Proc. of the Sixteenth Interna-
tional Joint Conference on Artificial Intelligence (IJCAI-
99).
McAllister, D., and Rosenblitt, D. 1991. Systematic non-
linear planning. In Proc. of the Ninth National Conference
on Artificial Intelligence (AAAI-91), volume 2, 634–639.
AAAI Press.
Nguyen, X., and Kambhampati, S. 2001. Reviving par-
tial order planning. In Proc. of the Seventeenth Interna-
tional Joint Conference on Artificial Intelligence (IJCAI-
01), 459–466.
Vidal, V., and Geffner, H. 2006. Branching and pruning:
An optimal temporal pocl planner based on constraint pro-
gramming. Artificial Intelligence 170(3):298–335.
Younes, H., and Simmons, R. 2003. Vhpop: Versatile
heuristic partial order planner. Journal of Artificial Intelli-
gence Research 20:405–430.

