
Fluent Merging: A General Technique to
Improve Reachability Heuristics and Factored Planning

Menkes van den Briel
Department of Industrial Engineering

Arizona State University
Tempe AZ, 85287-8809

menkes@asu.edu

Subbarao Kambhampati
Department of Computer Science

Arizona State University
Tempe AZ, 85287-8809

rao@asu.edu

Thomas Vossen
Leeds School of Business

University of Colorado at Boulder
Boulder CO, 80309-0419

vossen@colorado.edu

Abstract

Fluent merging is the process of combining two or more
fluents (state variables) into a single “super” fluent. By
compiling in some of the inter-fluent interactions, fluent
merging can (1) help improve informedness of relaxed
reachability heuristics, and (2) improve the efficiency
of factored planning as it removes some of the inter-
variable dependencies. Although some special cases of
fluent merging have been around (under other names),
the technique in its full generality has not been ex-
ploited or analyzed. In this paper, we discuss the gen-
eral motivations for and tradeoffs in fluent merging.
We will argue that existing techniques are too conser-
vative in identifying mergeable fluents. We will then
provide some novel techniques based on causal graph
analysis for identifying mergeable fluents.

Introduction

In this paper we describe fluent merging, the process
of combining two or more state variables into a sin-
gle “super” state variable. Fluent merging, when done
judiciously, can lead to better heuristic estimates and
more effective factored planning.

Let us start with an informal example to illustrate the
idea of fluent merging (we shall formalize this later). In
a simple Logistics problem instance with one truck, one
package, and two locations, we may combine the fluents
at(truck1, loc1) and at(truck1, loc2), which take values
from {T, F}, into a super-fluent. This new fluent takes
values from {T, F} × {T, F}.

On the face of it, fluent merging seems like a rather
quixotic idea as it runs counter to the conventional
wisdom that it is advantageous to represent and rea-
son with domains in terms of individual fluents (the so
called “factored representations”). After all, the strat-
egy of merging fluents can, in the extreme, lead us to a
non-factored representation where a single super-fluent
has an exponential domain size, with each domain value
corresponding to each of the states in the domain.

The reason merging winds up being useful in some
cases is that if we merge fluents that have strong de-
pendencies, then their effective domain can be much

Copyright c© 2007, Association for the Advancement of Ar-
tificial Intelligence (www.aaai.org). All rights reserved.

smaller than the Cartesian product of the individual
variable domains. In the logistics example above, the
merging process can explicate the fact that only the val-
ues (T, F) and (F, T) are reachable for the merged flu-
ent. Thus it removes the value combinations (T, T) and
(F, F) from consideration. The ensuing domain reduc-
tion as well as the compilation of negative interactions
turns out to be quite useful, as we shall see below.

Notice that when we merge fluents, we naturally wind
up with super-fluents that are multi-valued (even if we
started with boolean fluents). The popular idea of con-
verting a domain from boolean to multi-valued repre-
sentation, as described by (Edelkamp & Helmert 1999;
Fox & Long 1998; Gerevini & Schubert 2000; Helmert
2006) can thus be seen as just a special case of fluent
merging. Specifically these methods focus on merging
fluents that have strict mutual exclusion relationships.
Fluent merging does not however have to be confined to
fluents with strict mutual exclusions. We shall see that
merging fluents with strong inter-causal dependencies
can also be advantageous.

The most important aspect of fluent merging is that
it “compiles-in” some of the negative interactions be-
tween the fluents. This is illustrated well in the logis-
tics example above. The negative interaction between
at(truck1, loc1) = T and at(truck1, loc2) = T is ef-
fectively removed by the fact that the merged fluent
doesn’t have {T, T } in its domain. This has a significant
impact on two modern ideas for speeding up planning:1

• Relaxed reachability heuristics which do reachability
analysis by ignoring negative interactions can do a
more informed job of distance estimation after fluent
merging (since some of the negative interactions have
already been compiled-in).

• Factored planning techniques that attempt to find
plans for individual fluents and combine them can
benefit if fluents with dependencies are merged up
front (since this means that the merging phase will

1While we focus on the compilation of negative interac-
tions, it is worth noting that the earlier work by Edelkamp
et. al. (Edelkamp & Helmert 1999) motivates fluent
merging from the perspective of minimizing state encoding
length.

likely have fewer backtracks).

Both these advantages have been amply, if indirectly,
established in the planning literature. Part of the rea-
son for the improved performance of Fast-Downward
planner (Helmert 2006) can be attributed to the fact
that it does fluent merging (in converting boolean flu-
ent domain description into multi-valued fluent descrip-
tion). Our own recent work (van den Briel et al. 2007)
shows that this type of informedness advantage also
holds for more general forms of fluent merging. The
advantage of fluent merging for factored planning is es-
tablished by our work (van den Briel, Vossen, & Kamb-
hampati 2005) which shows that multi-valued repre-
sentations can lead to significant performance improve-
ments.

While the foregoing paints a mostly positive picture
of fluent merging, as exhorted at the outset, fluent
merging can only be good in scenarios where the orig-
inal domain description contains a significant number
of strongly dependent fluents. Specifically, while merg-
ing reduces the number of fluents, it increases their do-
main sizes. The latter increase can be exponential in
the number of variables merged. This worst case occurs
when the merged variables are completely independent.
However, the increase can be offset with domain reduc-
tion if the variables are strongly dependent.2

The problem with existing fluent merging methods
however is not so much that they don’t lead to computa-
tional advantages, but rather that they are too conser-
vative. In particular, the mutual-exclusion based multi-
valued models found by (Edelkamp & Helmert 1999;
Helmert 2006) consider merging fluents only when the
effective domain size goes from exponential to linear.
Specifically, they will merge m boolean fluents that
form a mutex clique into a single multi-valued vari-
able with m values (which is a reduction of domain
size from 2m to m). While these merging strategies
will give considerable computational advantages when
they are applicable, they are too conservative and are
often not applicable. Specifically, we may have sets of
boolean fluents that have strong dependencies and yet
do not quite form a mutex clique. Finding and merg-
ing such sets of fluents could still be quite useful. The
domain reduction in such cases may only be from 2m

to mk (for some small k) instead of m–and yet it is
impressive nonetheless. For example, our recent work
(van den Briel et al. 2007) shows that more aggressive
merging can improve heuristic informedness. The chal-
lenge of course is to come up with approaches that can
identify such fluent sets automatically.

2It is even possible to have domains where merging all the
fluents can still be a good idea. Consider the extreme exam-
ple with n atoms, two legal states (T, ..., T) and (F, ..., F),
one action that toggles all variables from T to F , and one
action that toggles all variables from F to T . In this case,
we are better off merging all fluents into a single super-
fluent that describes the complete reachable state space of
the problem.

In the remainder of the paper, we provide some first
steps towards formally defining the fluent merging prob-
lem and developing methods that are more aggressive
in identifying mergeable fluents. Towards the latter, we
describe some techniques based on novel analysis of the
causal graph. In a way, our work can be seen as an
applied approach to the work on factored planning by
Brafman and Domshlak 2006.

This paper is organized as follows. First, we provide
some background and define the process of fluent merg-
ing more formally. Second, we discuss the potential use
of fluent merging in improving heuristic estimates and
factored planning. Some conclusions are given at the
end.

Fluent Merging

We assume that we are given a SAS+ planning task
Π = 〈C, A, s0, s∗〉, which allows both boolean and
multi-valued state descriptions, where:

• C = {c1, ..., cn} is a finite set of state variables, where
each state variable c ∈ C has an associated domain
Vc and an implicitly defined extended domain V +

c =
Vc ∪ {u}, where u denotes the undefined value. For
each state variable c ∈ C, s[c] denotes the value of
c in state s. The value of c is said to be defined
in state s if and only if s[c] 6= u. The total state
space S = Vc1

× ... × Vcn
and the partial state space

S+ = V +
c1

× ... × V +
cn

are implicitly defined.

• A is a finite set of actions of the form 〈pre, post, prev〉,
where pre denotes the pre-conditions, post denotes
the post-conditions, and prev denotes the prevail-
conditions. For each action a ∈ A, pre[c], post[c]
and prev[c] denotes the respective conditions on state
variable c. The following two restrictions are imposed
on all actions: (1) Once the value of a state variable
is defined, it can never become undefined. Hence, for
all c ∈ C, if pre[c] 6= u then pre[c] 6= post[c] 6= u; (2)
A prevail- and post-condition of an action can never
define a value on the same state variable. Hence, for
all c ∈ C, either post[c] = u or prev[c] = u or both.
We use AE

c
to denote the actions that have an effect

in state variable c, and AV
c to denote the actions that

have a prevail condition in c.

• s0 ∈ S denotes the initial state and s∗ ∈ S+ denotes
the goal state. We say that state s is satisfied by
state t if and only if for all c ∈ C we have s[c] = u
or s[c] = t[c]. This implies that if s∗[c] = u for state
variable c, then any defined value f ∈ Vc satisfies the
goal for c.

Two important constructs that we use are the so-
called domain transition graph and causal graph. The
domain transition graph DTGc = (Vc, Ec) of state vari-
able c is a labeled directed graph with nodes for each
value f ∈ Vc. DTGc contains a labeled arc (f, g) ∈ Ec

if and only if there exists an action a with pre[c] = f
and post[c] = g or pre[c] = u and post[c] = g. Each arc
is labeled by the set of actions with corresponding pre-

and post-conditions. For each arc (f1, f2) with label a
in DTGc we say that there is a transition from f1 to f2

and that action a has an effect in c. The causal graph
CGΠ = (V, E) of a planning task Π is a directed graph
with nodes for each state variable c ∈ C. CG contains
an arc (c1, c2) ∈ E if and only if there exists an action
a that has a prevail condition or precondition in c1 and
an effect in c2.

We define fluent merging as the composition of two
or more state variables as follows. The term composi-
tion is also used in model checking to define the paral-
lel composition of automata (Cassandras & Lafortune
1999).

Definition (Composition) Given the domain transi-
tion graph of two state variables c1, c2, the composition
of DTGc1

and DTGc2
is the domain transition graph

DTGc1||c2
= (Vc1||c2

, Ec1||c2
) where

• Vc1||c2
= Vc1

× Vc2

• ((f1, f2), (g1, g2)) ∈ Ec1||c2
if f1, g1 ∈ Vc1

, f2, g2 ∈ Vc2

and there exists an action a ∈ A such that one of the
following conditions hold.

– pre[c1] = f1, post[c1] = g1, and pre[c2] = f2,
post[c2] = g2

– pre[c1] = f1, post[c1] = g1, and prev[c2] = f2,
f2 = g2

– pre[c1] = f1, post[c1] = g1, and f2 = g2

We say that DTGc1||c2
is the composed domain transi-

tion graph of DTGc1
and DTGc2

.

Example Consider the set of actions A = {a, b, c, d}
and the set of state variables C = {c1, c2} whose
domain transition graphs have Vc1

= {f1, f2, f3},
Vc2

= {g1, g2} as the possible values, and Ec1
=

{(f1, f3), (f3, f2), (f2, f1)}, Ec2
= {(g1, g2), (g2, g1)} as

the possible transitions as shown in Figure 1. Merg-
ing state variables c1 and c2 creates a new state vari-
able whose domain is defined by the Cartesian prod-
uct Vc1

× Vc2
as shown in Figure 1. Note that some

value combinations become disconnected components,
such as (f3, g2). These disconnected components are
unreachable from the initial state and thus can safely
be ignored. Also, note that some actions generate mul-
tiple instances in the composition, such as actions c and
d. These multiple instances are generated if an action
has an effect in one fluent, but no effect or prevail con-
dition in the other fluent3.

The composition of more than two state variables
can be obtained by creating a composition over one
or more composed domain transition graphs. For ex-
ample, DTGc1||c2||c3

can be obtained by creating the
composition between DTGc1||c2

and DTGc3
.

3As we shall see later, one consideration in picking effec-
tive merging strategies is to ensure that they don’t increase
the number of actions too much.

Identifying Mergeable Fluents

Previously, mergeable fluents have been identified by
looking at the boolean fluents that form a mutex clique.
These type of fluent mergings are good since they elim-
inate many unreachable value combinations. We intro-
duce two other ways to identify mergeable fluents based
on causal graph analysis.

First, in order to identify mergeable fluents we look
for cycles in the causal graph. Causal cycles are unde-
sirable as they describe two-way dependencies between
state variables. That is, changes in state variable c1

will depend on conditions in state variable c2, and vice
versa. While it is possible that causal cycles involve
more than two state variables, we only consider 2-cycles
(cycles of length two). In particular, we merge two flu-
ents c1 and c2 if they form a 2-cycle in the causal graph
and if the following condition hold.

• For all a ∈ AE
c1

we have a ∈ (AE
c2

∪ AV
c2

)

• For all a ∈ AE
c2

we have a ∈ (AE
c1

∪ AV
c1

)

In other words, for every action a that has an effect in
state variable c1 (c2) we have that action a has an effect
or prevail condition in state variable c2 (c1). The main
reason for requiring this additional condition is to en-
sure that the actions do not generate multiple instances
in the composition. This condition is quite restrictive,
but as shown by the next example effective neverthe-
less. Moreover, van den Briel et al. 2007 show that this
type of fluent merging leads to improved network flow
based reachability heuristics.

Example Figure 2 shows an example of how fluent
merging can remove causal 2-cycles from the causal
graph. The figure on the left shows the causal graph
for a typical state description of a Zenotravel prob-
lem with two airplanes, two passengers, and any
number of cities. The state description is deter-
mined by six state variables: one for each passenger
Loc(person1) and Loc(person2) with values that de-
note the location of the passengers, one for each air-
plane Loc(airplane1) and Loc(airplane2) with values
that denote the location of the airplanes, and one for
the fuel tank of each airplane Fuellevel(airplane1)
and Fuellevel(airplane2). The figure on the right
shows the causal graph of the same problem, but is
based on a state description in which the state vari-
ables Loc(airplane1) and Fuellevel(airplane1), and
Loc(airplane2) and Fuellevel(airplane2) have been
merged into super state variables. The advantageous of
the resulting state description should be clear. Fewer
cycles in the causal graph will lead to better hierarchical
decompositions, which could lead to improved planning
performance.

Second, in order to identify mergeable fluents we look
at pairs of atoms (f1, f2) such that there exists an ac-
tion that has f1 as a prevail condition and f2 as a delete
effect. Specifically, we look for causal links in the causal
graph that are introduced by the actions with a prevail
condition in one fluent and an effect in another flu-

ent. Some hierarchical based planners can handle such
causalities quite well and simply incorporate them di-
rectly into the hierarchical structure.

For example, in the Logitics domain a hierarchical
planner may first find a plan for each package, use
these plans to impose ordered conditions on the trucks,
and then find a plan for each truck. However, reach-
ability heuristics that do not exploit hierarchies may
sometimes give poor estimates even in some very sim-
ple planning tasks.

Example Figure 3 shows an example of how fluent
merging can improve heuristic estimates. The figure
considers a simple Logistics problem with one truck,
one package, and two locations. In the initial state we
have the truck at 2 (= at(truck1, loc2)) and the package
at 1 (= at(package1, loc1)). Several known reachability
heuristics, including FF’s relaxed plan heuristic (Hoff-
mann & Nebel 2001), fail to recognize that the truck
needs to drive back to location 2 in order to unload the
package. The figure shows the merged atom pairs and
their corresponding transitions. If FF’s relaxed plan
heuristic considers the atom pairs as single atoms, it
would have detected that it needs to drive to location 1
to load the package and then drive back to unload the
package.

Conclusions

We described the process of fluent merging and showed
how it can help improve reachability heuristics and fac-
tored planning. While fluent merging has been around
under the idea of converting boolean to multi-valued
representations, we introduced methods that are more
general in identifying mergeable fluents.

Our recent work (van den Briel et al. 2007) shows
that we can derive more informed heuristics by merging
fluents without experiencing too much computational
overhead. We believe, however, that there may be other
ways to identify mergeable fluents, which either extend
or generalize the ways that we described.

References

Brafman, R., and Domshlak, C. 2006. Factored plan-
ning: How, when, and when not. In Proceedings of
the 21st National Conference on Artificial Intelligence
(AAAI-2006), 809–814.

Cassandras, C., and Lafortune, S. 1999. Introduction
to Discrete Event Systems. Kluwer Academic Publish-
ers.

Edelkamp, S., and Helmert, M. 1999. Exhibiting
knowledge in planning problems to minimize state en-
coding length. In Proceedings of the European Confer-
ence on Planning (ECP-1999), 135–147.

Fox, M., and Long, D. 1998. The automatic infer-
ence of state invariants in TIM. Journal of Artificial
Intelligence Research 9:367–421.

Gerevini, A., and Schubert, L. K. 2000. Discovering
state constraints in DISCOPLAN: Some new results.

In Proceedings of the 17th National Conference on Ar-
tificial Intelligence (AAAI-2000), 761–767.

Helmert, M. 2006. The Fast Downward planning sys-
tem. Journal of Artifical Intelligence Research 26:191–
246.

Hoffmann, J., and Nebel, B. 2001. The FF planning
system: Fast plan generation through heuristic search.
Journal of Artificial Intelligence Research 14:253–302.

van den Briel, M.; Benton, J.; Kambhampati, S.; and
Vossen, T. 2007. An LP-based heuristic for optimal
planning. In Proceedings of the International Confer-
ence of Principles and Practice of Constraint Program-
ming (CP-2007). (To appear).

van den Briel, M.; Vossen, T.; and Kambhampati, S.
2005. Reviving integer programming approaches for
AI planning: A branch-and-cut framework. In Pro-
ceedings of the International Conference on Automated
Planning and Scheduling (ICAPS-2005), 161–170.

f3

f2

f1

g2

g1

b

c

d

DTGc1 DTGc2

a

b

f1,g2

f2,g1

f2,g2

f3,g1

f3,g2

f1,,g1

DTGc1 || c2

a

a

b

c

c

d

d

Figure 1: Two domain transition graphs and their composition. Small in-arcs denote the initial state of each state
variable.

Loc(person1) Loc(person2)

Loc(airplane1) Loc(airplane2)

Fuellevel(airplane1) Fuellevel(airplane2)

Loc(person1) Loc(person2)

Loc(airplane1)

Fuellevel(airplane1)

Loc(airplane2)

Fuellevel(airplane2)

Figure 2: Fluent merging removes causal 2-cycles from the causal graph for a typical state description of the Zenotravel
domain.

1,1 1,2

2,1 2,2

T,1 T,2

DTG(Package1,Truck1)

Drive(l2,l1)

Drive(l1,l2)

Drive(l2,l1)

Drive(l1,l2)

Drive(l2,l1)

Drive(l1,l2)

Load(p1,t1,l1)

Unload(p1,t1,l1)

Unload(p1,t1,l2)

Load(p1,t1,l2)

Figure 3: Fluent merging improves heuristic estimates in the Logistics domain.

