
Generating Plans in Concurrent, Probabilistic, Over-Subscribed
Domains

Li Li Nilufer Onder
Department of Computer Science
Michigan Technological University

1400 Townsend Drive
Houghton, MI 49931

{lili,nilufer}@mtu.edu

Abstract

Planning in realistic domains involves reasoning
under uncertainty, operating under time and re-
source constraints, and finding the optimal set of
goals to be achieved. In this paper, we present
an algorithm called CPOAO* (Concurrent, Prob-
abilistic, Oversubscription AO*) that is based on
AO* and hence can reduce the size of the search
space using informative heuristic functions. We
introduce a novel dichotomy of concurrent actions.
We call the concurrent actions that serve the pur-
pose of decreasing the execution time “all-finish”
actions because each action serves a different pur-
pose and all must finish. We call the redundant,
concurrent actions that increase the expected re-
wards of a plan “early finish” actions because the
actions serve the same goal and the success of the
earliest finishing one is sufficient. We explain our
implemented algorithm, the heuristic functions we
use, the experimental results, and our future work
based on this framework.

Introduction

Generating plans for agents that operate in the real
world presents two main challenges. First, there is un-
certainty about the action effects as well as the state
of the world. Second, the resources for carrying out
the tasks are limited. Research in probabilistic plan-
ning deals with issues involving uncertainty (Kushm-
erick, Hanks, & Weld 1995; Bonet & Geffner 2005).
MDP-based planners (Boutilier, Dean, & Hanks 1999)
deal with both uncertain actions and resource limita-
tions. Heuristics have been developed for dealing with
time and resources in deterministic domains (Haslum &
Geffner 2001). Oversubscription planners must select a
subset of the goals to plan for because resource limita-
tions do not allow all the goals to be achieved (Smith
2004; Benton, Do, & Kambhampati 2005). Concurrent
planners generate plans with shorter execution times
(makespan) by using parallel actions (Mausam & Weld
2005; Little & Thiebaux 2006). Our work extends this
research by exploring the use of parallel actions to in-
crease expected rewards, and by providing a framework
to terminate actions to optimize resource usage.

The examples we use are inspired by the Mars rover
domain (Bresina et al. 2002). To motivate our work,
consider a problem where two pictures must be taken
within 5 minutes. For simplicity, we assume that ac-
tions have fixed known durations. The rover has two
cameras where cam0 succeeds with probability 0.6, and
takes 5 minutes; and cam1 succeeds with probability
0.5, and takes 4 minutes. In a case where both pictures
have a value of 10, the best strategy is to use cam0 for
one picture and cam1 for the other in parallel. Because
all the actions need to finish to collect the rewards, we
call this all-finish parallelism. The total expected re-
ward will be 10 × 60% + 10 × 50% = 11. In a differ-
ent case where the picture values are 100 and 10, the
best strategy is to use both cam0 and cam1 in parallel
to achieve the larger reward. When both cameras are
used for the same picture, if cam1 succeeds in achieving
the target reward, we can abort cam0 immediately. Be-
cause we use concurrent actions to achieve the same tar-
get reward and will abort all the other actions after the
earliest successful action finishes, we call this case early-
finish parallelism. Cam1 finishes earlier than cam0 and
the expected reward for using cam1 is 100× 50% = 50.
If cam1 fails, the expected remaining unachieved reward
will be 100×(1−50%) = 50. Then the expected reward
for action cam0 is 50× 60% = 30. Therefore, the total
expected reward is 50 + 30 = 80. This is larger than
the expected reward of using the cameras for different
pictures, which is, 100× 60% + 10× 50% = 65.

We have developed an algorithm called CPOAO*
(Concurrent, Probabilistic, Oversubscription AO*)
which extends the AO* framework to use concurrent
actions of both kinds defined above. Other AO* based
planners include LAO* (Hansen & Zilberstein 2001)
which finds solutions with loops, and HAO* (Mausam
et al. 2005) which deals with continuous resources and
stochastic consumptions. Recent concurrent planners
are CPTP (Mausam & Weld 2005), an MDP-based
planner, and Paragraph (Little & Thiebaux 2006) which
uses a Graphplan framework. Both planners use paral-
lel actions to decrease the total execution time of plans
and thus consider parallel actions that achieve different
goals. These algorithms prevent a pair of actions that
achieve the same goal from executing in parallel. Para-

graph (Little & Thiebaux 2006) implements this “re-
stricted” concurrency model because rewards are not
present in the model. In domains where an action cost
model is defined but explicit rewards are not assigned
to individual goals, there is no advantage in having par-
allel actions that serve the same goal, i.e., early-finish
parallel actions. In our approach, we provide means
for using redundant parallel actions to maximize ex-
pected rewards. To minimize resource consumption,
our algorithm aborts the remaining redundant actions
when the earliest finishing action establishes the com-
mon goal. Another example of the use of redundant ac-
tions comes from ProPL, a process monitoring language
(Pfeffer 2005) where processes might include redundant
parallel actions such as seeking task approval from two
managers when one approval is sufficient. The focus of
ProPL is on expressing and monitoring such actions.
Our focus is in generating plans that use redundant ac-
tions.

The Planning Problem

The planning problems we consider are probabilistic
and over-subscribed. The solution plans contain con-
current actions. A planning problem is formally defined
as a 5-tuple (S, A, s0, R, T) where S is the state space,
A is the set of probabilistic actions, s0 is the initial
state, R is the reward set, and T is the time limit for
plan execution.

A state s ∈ S is a triple (sp, sr, sa) where sp ⊆ P is a
set of propositions, P is the set of all the domain propo-
sitions, sr is a vector of numeric resource values, and
sa is the set of currently executing concurrent actions
(we define concurrent action sets (CASs) below). Each
resource is assumed to be discrete, we leave continu-
ous resources to future work (Younes & Simmons 2004;
Mausam et al. 2005).

An action a consists of a precondition list, a resource
consumption vector, and a set of possible outcomes.
An outcome oi is defined as a triple (add(oi), del(oi),
prob(oi)) where add(oi) is the add list, del(oi) is the
delete list, and prob(oi) is the probability that this out-
come happens. The total probability of all the possible
outcomes of an action should be 1. We adopt the com-
mon semantics for action execution. Before an action
can be executed, the preconditions must hold, and the
amount of each resource must be greater than or equal
to the value specified for that resource in the resource
consumption vector. After an action is executed, the
result is a set of states where for each outcome, the
resources used are subtracted, the propositions in the
add list are added, and the propositions in the delete
list are deleted. The probability of the new state result-
ing from outcome oi in state sj is the probability of sj

multiplied by prob(oi). The process of finding the re-
sults of an executed step is defined formally below after
concurrent action sets are defined. In addition to the
“regular” actions, the set of actions also includes a spe-
cial do-nothing action as explained in the next section.

Each reward in R is a proposition-value pair. When
a proposition is achieved, the corresponding value is
added to the total rewards. When it becomes false, its
value is subtracted from the total rewards. This way,
the value of a proposition can contribute at most once
to the total rewards collected. Our problem model does
not include hard goals, i.e., goals that must be achieved,
because a plan that guarantees the achievement of a
goal with probability 1.0 might not exist. Instead, im-
portant goals are represented by assigning large rewards
to them. In this regard, our probabilistic actions are
similar in spirit to PPDDL actions with the exception
of rewards being associated directly with propositions
rather than through state transitions (Younes et al.
2005, pp. 854-855).

The solution to a planning problem is an optimal con-
tingent plan which maximizes the expected reward of
the initial state s0 = (sp0, sr0, sa0). In state s0, the
propositions in sp0 hold, the propositions in P − sp0 do
not hold, the resources have the levels given in the vec-
tor sr0, and there are no actions that have been started
(sa0 = ∅). We formally define a plan as a set of (state,
cas) pairs where a cas is a concurrent action set.

For each action in a cas, we specify the number
of time units left to execute. The duration of casi

(dur(casi)) is defined as the duration of the shortest
action in it. This allows us to evaluate the states result-
ing from the termination of the earliest action. The re-
sult of executing a concurrent action set casi in a state
si = (spi, sri, sai) is a probability distribution over the
resulting states and is defined with respect to the action
that requires the minimum time to execute. Each state
in the probability distribution corresponds to a distinct
action outcome and is obtained by (1) merging sai and
casi to obtain casm, the set of all the concurrent ac-
tions that will be executing (2) using the add and delete
lists to find the new set of propositions that hold, (3)
using the resource consumption vector of the action to
update the resource levels, and (4) updating the actions
in the cas set to reflect the execution time that has
passed. Suppose that dur(casm) = tj and action aj has
this duration. This means that aj will be the first ac-
tion to complete in casm. Further suppose that aj has
n possible outcomes o1, . . . , on. Then, result (si, casi)
is defined as a probability distribution over n states
where each state is obtained by applying an outcome
to state si. The result of applying outcome ok to si is
a new state sk defined as: sk = (spk = spi−del(ok)+
add(ok), srk = sri − srj , sak). sak is obtained by sub-
tracting the action duration tj from all the action du-
rations in casm, and removing the completed action
aj from casm. The probability of the new state sk is
defined as prob(si) × prob(ok). If outcome ok repre-
sents a successful outcome then the redundant actions
achieving the same goal can be aborted. If outcome ok

represents an unsuccessful outcome, only the finished
action is removed.

If there are multiple actions which require tj time
units, then the effects of all of these actions are applied

in the above procedure. We assume that all action ef-
fects take place at the completion of the action. We
therefore make a simplifying assumption and do not
register any of the effects of the aborted redundant ac-
tions. One way to relax this assumption is to calculate
the resource consumption using the ratio of the time an
action executed to the total time it needs and subtract
a proportional amount of the resources.

The underlying theoretical model of our framework
can be thought of as a concurrent MDP (Mausam &
Weld 2004). In order to provide the ability to utilize
redundant parallel actions and to abort useless actions,
the concurrent MDP model must be extended. For
the former capability, the possible action combinations
should include redundant as well as non-redundant ac-
tions. For the latter capability, the set of actions de-
fined for the MDP should include all the possible abort
actions.

Our objective is to find an optimal contingent plan
which maximizes the expected reward of the initial state
s0. We use the following definition for the expected
reward of a state si with respect to a plan π:

Eπ(si) =

{ ∑
sj∈C(si)

P(i,j)Eπ(sj) if si is not a terminal state

Rsi if si is a terminal state

C(si) is the set of resulting states under plan π, P(i,j)

is the probability of entering state sj from state si, and
Rsi is the sum of the rewards achieved when ending in
state si. The terminal states are the leaves of the search
graph and are explained in the next section. Note that
a discount factor is not needed because a reward associ-
ated with a proposition can be received only once, and
the time limit given in the planning problem limits the
planning horizon.

The CPOAO* Algorithm
The CPOAO* algorithm depicted in Figure 1 extends
the AO* algorithm (Nilsson 1980). AO* is a heuristic
based search algorithm which searches in an “and-or”
graph. The hyperarcs in the “and-or” graph are partic-
ularly suitable to represent probabilistic actions. Each
hyperarc represents one probabilistic action and each
“and” set represents the set of possible results of one
action. The nodes represent the states. The input to
the CPOAO* algorithm is a planning problem, the out-
put is a function that maps the reachable states to con-
current action sets. The output function represents an
acyclic finite automaton, i.e., the solution plan does not
contain loops due to two reasons similar to the HAO*
framework (Mausam et al. 2005). First, the time limit
that is given as part of the planning problem bounds
the horizon. Second, every action has a non-zero du-
ration and time is part of the state. Thus, even if the
propositions and resources of the state remain the same
after the execution of an action, the time component of
the resource vector will be different.

The main data structure is a search graph called the
working graph (WORK-G) (Hansen & Zilberstein 2001;

Require: A planning problem (5-tuple).
Ensure: A solution plan that can contain concurrent ac-

tions.
1: WORK-G ← MakeRootNode(s0).
2: SOLN-G ← Insert(SOLN-G, s0)
3: while SOLN-G contains non-terminal tip states do
4: CHANGE-E ← ∅
5: for each s which is an unexpanded non-terminal tip

state in SOLN-G do
6: APP-CAS ← ComputeApplicableCAS(s)
7: for all ac in APP-CAS do
8: Apply ac on state s to generate the child states

of s.
9: Calculate the heuristic values of the expected re-

wards for newly generated children states.
10: end for
11: Find BEST-CAS, the best concurrent action set for

state s.
12: Expand SOLN-G to include BEST-CAS.
13: Update the expected reward of state s based on

BEST-CAS.
14: Add the ancestor states of s into the set CHANGE-

E if the expected reward of s has changed.
15: end for
16: while CHANGE-E is not empty do
17: Choose and remove a state s′ ∈ CHANGE-E that

has no descendant in CHANGE-E.
18: Update the expected reward of s′ by reselecting its

best CAS..
19: if The expected reward of s′ has changed then
20: Add the ancestor states of s′ into CHANGE-E.
21: end if
22: end while
23: Recompute the best solution graph B by following the

best CASs from the initial state s0 to the tip states.
24: end while
25: return SOLN-G

Figure 1: The CPOAO* algorithm.

Mausam et al. 2005). WORK-G is a hypergraph consist-
ing of nodes that represent states and hyperarcs that
represent the alternative concurrent action sets (CASs)
which can be executed in a state. Each ending node
of a hyperarc represents one possible outcome of the
CAS. In our implementation we represent a plan by a
solution graph (SOLN-G). CHANGE-E is a set that is
used to propagate the changes in the expected rewards
upward in the solution graph.

The main loop of the search starts at line 3, and
continues until the solution graph is “complete,” i.e.,
has no non-terminal tip states. The leaves of the search
graph are the terminal states. There are three types
of terminal states. The first type includes the states
in which there are no applicable actions due to lack of
preconditions or resources. The second type includes
the states where all the rewards have been collected,
and thus there is no need to execute any action. The
third type includes the states entered after executing
the special ”do-nothing” action from a state sj . In this
case, sj is a state where there are unachieved rewards
and resources available, but leaving the current state

might result in the loss of already achieved rewards.
For example, sj might be a state where the rover is at
the base location to which it needs to return, but the
amount of resources will not be sufficient to take the
rover back if it leaves. Thus, the best action to execute
at sj is the do-nothing action.

In line 5, all the unexpanded non-terminal tip states
in the solution graph are expanded. To expand a search
state s, we first find a set of all the applicable concur-
rent action sets using the procedure in Figure 2. In line
2 of the ComputeApplicableCAS procedure we find
all the single actions that are applicable and store it
in the set I. An action is applicable in a state if its
preconditions hold, there are sufficient resources, and
it is not already executing. Next, we generate Ip, the
power set of I. Each subset in Ip represents a set of
actions that are candidates for concurrent execution.
From Ip, we eliminate the subsets that contain incom-
patible actions. Two actions a1 and a2 are said to be
incompatible if (1) a proposition occurs in one of the
add lists of a1 and in one of the delete lists of a2, or (2)
a1 produces the opposite of a precondition of a2. We
assume that resources can be accessed in parallel, so
we do not consider resources while computing incom-
patible actions. As known, computing the power set of
the applicable actions generates an exponential num-
ber of subsets. Therefore, heuristics that can decrease
the number of concurrent actions sets are valuable. We
describe such a heuristic in the next section.

Require: A state.
Ensure: A set of applicable concurrent action sets.
1: Initialize I with all the unfinished actions of state s.
2: Add all applicable actions for state s into set I.
3: Generate Ip which is the power set of set I.
4: If a CAS contains incompatible actions, delete it from

set Ip. The resulting set,denoted Ic, contains all appli-
cable CASs for state s. For each applicable CAS, set its
duration to the duration of the shortest action in it.

5: return Ic.

Figure 2: The ComputeApplicableCAS algorithm.

After finding the set of concurrent actions applicable,
we apply each CAS to state s using the result procedure
defined in the previous section. The working graph is
updated to include the resulting states. The heuristic
value of each new state added to the working graph is
computed using a heuristic function which is described
in the next section. At the next step (line 11), the best
CAS for state s is found using the following formula:
argmaxcas∈APP-CASresult(s, cas). The best CAS and
its resulting states are marked to become part of the
best solution graph (line 12). In lines 13 through 21,
the expected value of the state s as well as its ancestors
in the solution graph are updated using the best CAS.

When every state in the current best solution graph is
either expanded or a terminal state, the optimal plan is
found. The algorithm returns the best solution graph
(SOLN-G) that encodes this plan. CPOAO* inher-
its the optimality property from AO* when an admis-

sible heuristic is used under the assumptions listed.
CPOAO* is guaranteed to terminate because a finite
time limit for plan execution is given in the planning
problem and each action takes a non-zero duration.

Heuristics

In our implementation of CPOAO* we used an opti-
mistic heuristic function where we consider each un-
achieved reward in a state and find the best action that
achieves it based on the costs and success probabili-
ties of the actions. The reward-cost ratio of a reward
ri is defined as: Ratio(ri) = maxa∈A((V alue(R) ×
Prob(a))/Cost(a)), where A is the set of actions,
cost(a) is the resource usage of action a, and prob(a)
is the success probability of action a.

To maximize the total expected rewards, we pick the
rewards with the higher ratios. If we select a reward
which is associated with a probabilistic action, only a
proportional amount of the reward is added to the to-
tal expected reward and we put the remaining reward
which is proportional to the probability of the failure
of this action back into the reward set. When we are
done, the total expected reward is taken as the heuristic
value for the state.

60% 40%

s0:T=7, ER=19.5

CAS0 = {cam0(picture-2), cam1(picture-1)}

s1:T=3, ER=27 s2:T=3, ER=12

s3:T=2,
ER=35

s4:T=2,
ER=15

60% 40%

s5:T=2,
ER=20

s6:T=2,
ER=0

50% 50%

CAS1 = {cam0(picture-2)}
CAS2 = {cam0(picture-2)}

Figure 3: Example working graph.

Figure 3 shows a portion of a working graph corre-
sponding to the above example. Each node represents a
state which could be reached under this plan. For each
node si, we show the time left (T) and the final expected
reward (ER) at this state. The concurrent action sets
(CAS) for each state are listed below the figure. For
the CASs which have probabilistic outcomes, the prob-
ability of each outcome is marked on the link. The left
branch corresponds to the successful outcome and the
right branch is the failed one.

In the above example, the only resource is time. In
case more resources are involved, we calculate the ex-
pected total rewards for each type of resource using
the above routine and we take the smallest one as the
heuristic value. The calculation of expected rewards
with concurrent actions is similar. We omit the details
due to space constraints.

We implemented a second heuristic to prune branches
of concurrent action sets (CASs) for domains which
have only time as a resource. The technique is based

on the fact that we do not need to have a branch for
a concurrent action set if there is another concurrent
action set which is always better than it. We say that
the concurrent action set A is always better than the
concurrent action set B if the expected total reward
which could be collected by following the concurrent
action set A is always greater than following the con-
current action set B. For example, when the actions do
not consume any resources other than time and action
preconditions are met, starting the actions earlier is al-
ways better than letting the operators be idle. We can
abort any action at any time if it turns out that we
should not wait for its completion. The following rules
can be used to determine whether or not two concur-
rent action sets have the “better” relation. (1) If the
shortest action a in CAS A does not consume any re-
source other than time or delete any propositions, then
CAS A is always better than CAS B = A-{a}. (2) Let
A = B ∪ {b}. If b is not the shortest action in A and
b does not consume any resource other than time, then
A is always better than B. (3) Suppose CAS A and
CAS B contain the same set of actions except action b.
If action b is a member of both CASs but action b in
A has a shorter remaining time than the action b in B,
then CAS A is always better than CAS B.

The first rule states that if an action consumes only
time, it does not harm to start it as early as possible.
The second rule states that even if an action is deleting
a proposition, it is still safe to start it as early as possi-
ble as long as it is not the shortest action in the action
set. If it is not the shortest action, we still have a chance
to abort it so that it will not delete any propositions.
The third rule states that there is no need to abort the
currently executing action and restart it immediately.

Empirical Evaluation
To evaluate our algorithm we conducted three sets of
experiments on Mars rover problems. In the first set, we
used CPOAO* with both of the heuristics and tested its
limits. In the second set, we performed ablation studies
to test the effects of the two heuristics. In the third set,
we evaluated a technique for caching node values. For
limit studies, we gradually increased the problem com-
plexity by using 5, 10, 12, and 15 locations. For each
number of locations, we created four different problems
by varying the connectivity of the locations and the
number of rewards. The problem names are coded as
“m-n-k” where m is the number of locations, n is the
number of paths and k is the number of the rewards
in the problem. We tested CPOAO* with execution
time limits of 20 and 40 given as part of the planning
problem. A “-” in the table indicates that the corre-
sponding problem was not solvable within 5 minutes.
The results in Table 1 show that the current implemen-
tation of CPOAO* can return the optimal plan for up
to 15 locations. As expected, the execution time and
the number of nodes generated increase exponentially
as the time limit increases due to the large branching
factor b at each internal node.

Problem TR T = 20 T = 40
ER NG ET ER NG ET

5-5-5 34 22.4 41 <1 23.84 524 <1
5-5-10 51 22.4 95 <1 29.6 7407 3
5-10-5 34 22.4 178 <1 26.08 11374 6
5-10-10 51 25.6 389 <1 32.96 87858 155

10-10-8 41 23.8 69 <1 25.89 1130 <1
10-10-21 84 25.3 265 <1 30.99 27538 19
10-17-8 41 22.4 122 <1 25.6 8179 2
10-17-21 84 23.9 332 <1 28.9 102484 190

12-12-12 52 23.8 124 <1 27.52 3625 1
12-12-23 97 25.3 301 <1 30.14 36344 32
12-21-12 52 22.4 196 <1 25.6 16724 8
12-21-23 97 23.9 396 <1 28.9 125959 272

15-16-14 58 23.8 184 <1 27.52 8664 3
15-16-31 116 25.3 450 <1 - - -
15-28-14 58 22.4 337 <1 27.4 51344 75
15-28-31 116 25.3 752 <1 - - -

Table 1: Performance of CPOAO*. TR: Sum of all
rewards. T: Time limit. ER: Expected total reward of
the optimal plan. NG: The number of nodes generated.
ET: Execution Time (sec.).

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 20 22 24 26 28 30 32 34 36 38

N
um

be
r

of
 n

od
es

 g
en

er
at

ed

Time Limit

CPOAO*
CPOAO*-A

Figure 4: CPOAO* vs. CPOAO*-A for problem 15-16-
14 (15 locations, 16 paths and 14 rewards)

To evaluate the effects of the heuristics we cre-
ated two variants of CPOAO*. The first one named
CPOAO*-A uses a constant heuristic function and the
pruning technique. The second one named CPOAO*-
B has the same heuristic function for estimating the
expected total reward as CPOAO* does, but does not
implement the rules of pruning the branches of CASs.
When expanding a state, it applies all the possible CASs
on this state. Figures 4 and 5 compare CPOAO* to
CPOAO*-A and CPOAO*-B. The number of generated
nodes is used as the metric of the efficiency of heuris-
tics. The results show that our heuristic function for es-
timating the expected total reward did prune a number
of states from the search graph. However, compared to
the total number of generated states, the gain is small.
This means that a more informative heuristic function
of estimating the expected total reward of the states
can improve the performance of the algorithm.

Because the shape of the search graph is much like a

 100

 1000

 10000

 20 22 24 26 28 30

N
um

be
r

of
 n

od
es

 g
en

er
at

ed

Time Limit

CPOAO*
CPOAO*-B

Figure 5: CPOAO* vs. CPOAO*-B for problem 15-16-
14 (15 locations, 16 paths and 14 rewards)

pyramid with a large number of nodes residing at the
lower levels, a heuristic function that is informative only
at the last several steps before reaching the leaves can
still effectively prune a large number of nodes. There-
fore, we are working on using regression from the leaves
to design an effective heuristic function. The results
with CPOAO*-B show that the pruning rules for the
action combinations did prune a large portion of the
reachable states from the search graph. Further re-
search is needed to minimize the set of applicable CASs
at each state.

Our final set of experiments is based on the obser-
vation that there are many similar states in the search
graph. In particular, there are states in which the set
of rewards collected and executing actions are the same
but the remaining times are different. In such a case,
the total expected reward for the state with the greater
remaining time serves as an upper bound for the state
with the lower remaining time. To exploit this fact,
we cache the expected rewards of the states that are
completely expanded. When a new state is generated,
we try to obtain its expected rewards from the cache,
if there are no cached states similar to it, we use the
heuristic function explained previously.

Our experimental results in Table 2 show that for
some cases, the planner with the cache generates 45%
less nodes than the planner without the cache. The
gains are negligible when the allowable execution time
is short. As the allowable execution time gets longer,
a bigger portion of nodes are pruned. This can be
explained by the fact that as the execution time gets
longer, more previously failed actions can be retried.
The nodes generated by these retried actions tend to
be similar to the nodes in the cache.

Conclusion

Our work is along the lines of improving search tech-
niques which deal with environment uncertainty for
plan execution. We have presented the design and eval-
uation of CPOAO*, an algorithm that provides a mod-
ular, heuristic-based framework which deals with re-
alistic planning problem features such as uncertainty,

Problem Without Cache With cache
NG ET NG ET

5-5-10 (T=20) 95 <1 93 <1
5-5-10 (T=40) 7404 3 4208 1
5-10-10 (T=20) 389 <1 320 <1
5-10-10 (T=40) 87858 155 59578 83

10-10-21 (T=20) 265 <1 252 <1
10-10-21 (T=40) 27538 19 16987 7
10-17-21 (T=20) 332 <1 316 <1
10-17-21 (T=40) 102482 190 53814 58

12-12-23 (T=20) 301 <1 279 <1
12-12-23 (T=40) 36344 32 21911 14
12-21-23 (T=20) 396 <1 348 <1
12-21-23 (T=40) 125959 272 72324 95

15-16-14 (T=20) 184 <1 176 <1
15-16-14 (T=40) 8664 3 6064 2
15-28-14 (T=20) 337 <1 343 <1
15-28-14 (T=40) 51344 75 24982 15

Table 2: Performance of CPOAO* with cache. T: Time
limit. NG: The number of nodes generated. ET: Exe-
cution Time (sec.).

over-subscription, and concurrency. An important con-
tribution of our algorithm is its ability to use concurrent
actions that achieve the same goal. Our experimental
results are promising, we are planning to compare our
system to Paragraph (Little & Thiebaux 2006), and
CPTP (Mausam & Weld 2005).

Our current implementation includes three heuris-
tics designed for concurrent domains with rewards and
gives insight into possible improvements in dealing with
complex domains. The current heuristic for estimating
node values does not take into account how to achieve
the preconditions of actions. Our future work involves
using reachability based heuristics and pruning tech-
niques and extending our framework to (1) consider the
resource cost of reaching the goals, (2) remove the as-
sumption that terminating an action before it finishes
does not have any effects on the world, and (3) develop
a theory of when it would be useful to abort already
started actions. In regards to item 2, we need to ex-
tend our model to consider the possibly unknown state
of the system after failures. In our current implementa-
tion, we only modeled the failure to achieve a goal and
assumed that the cameras would remain in a ready state
even if a picture cannot be taken. In regards to item 3,
currently we only consider aborting actions when the
goals they are serving are already achieved. In addi-
tion, resource consumption can be minimized by abort-
ing actions which no longer serve a useful purpose due
to failure of parallel actions.

Acknowledgements We thank the anonymous re-
viewers for their detailed comments.

References
Benton, J.; Do, M. B.; and Kambhampati, S. 2005. Over-
subscription planning with numeric goals. Proc. IJCAI-05.

Bonet, B., and Geffner, H. 2005. mGPT: A probabilistic

planner based on heuristic search. Journal of Artificial
Intelligence Research 24 24:933–944.

Boutilier, C.; Dean, T.; and Hanks, S. 1999. Decision
theoretic planning: Structural assumptions and computa-
tional leverage. Journal of Artificial Intelligence Research
11:1–94.

Bresina, J. L.; Dearden, R.; Meuleau, N.; Ramakrishnan,
S.; Smith, D. E.; and Washington, R. 2002. Planning under
continuous time and resource uncertainty: A challenge for
AI. In Proc. UAI-02, 77–84.

Hansen, E. A., and Zilberstein, S. 2001. LAO*: A heuristic
search algorithm that finds solutions with loops. Artificial
Intelligence 129((1-2)):35–62.

Haslum, P., and Geffner, H. 2001. Heuristic planning with
time and resources.

Kushmerick, N.; Hanks, S.; and Weld, D. 1995. An al-
gorithm for probabilistic planning. Artificial Intelligence
76:239–86.

Little, I., and Thiebaux, S. 2006. Concurrent probabilistic
planning in the graphplan framework. In Proc. ICAPS-06,
263–272.

Mausam, and Weld, D. 2004. Solving concurrent markov
decision processes. In Proc. AAAI-04, 716–722.

Mausam, and Weld, D. 2005. Concurrent probabilistic
temporal planning. Proc. ICAPS-05.

Mausam; Benazera, E.; Brafman, R.; Meuleau, N.; and
Hansen, E. A. 2005. Planning with continuous resources
in stochastic domains. Proc. IJCAI-05.

Nilsson, N. J. 1980. Principles of artificial intelligence.
Tioga Publishing.

Pfeffer, A. 2005. Functional specification of probabilistic
process models. In Proc. AAAI-05, 663–669.

Smith, D. E. 2004. Choosing objectives in over-
subscription planning. In Proc. ICAPS-04.

Younes, H. L., and Simmons, R. G. 2004. Policy generation
for continuous-time stochastic domains with concurrency.
In Proc. ICAPS-04, 325–333.

Younes, H. L.; Littman, M. L.; Weissman, D.; and Asmuth,
J. 2005. The first probabilistic track of the international
planning competition. Journal of Artificial Intelligence Re-
search 24:851–887.

