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Abstract

Knowledge acquisition is one major bottle-neck in using
planning systems. Model-lite planning reduces this burden
by placing responsibility on the planning system to cope with
partially specified models. For example, eliciting the plan-
ning objective can be difficult in applications where it is nec-
essary to reason about multiple plan metrics, such as cost,
time, risk, human life, etc. Traditional approaches, often re-
quire a (sometimes subjective) combination of these objec-
tives into a single optimization metric. For example, decision
theoretic planners combine plan cost and probability of goal
satisfaction into a single reward metric. However, users may
not know how to combine their metrics into a single objective
without first exploring several diverse plan options.

To avoid premature objective function commitments at plan
synthesis time (and even plan execution time), we develop the
notion of multi-option plans. Much like conditional plans that
branch to deal with execution-time observations, multi-option
plans branch to deal with execution-time assessments of plan
objectives. That is, a multi-option plan is a compact represen-
tation of the diverse Pareto set of plans, where at each step the
user can execute one of several non-dominated options.

We formulate multi-option planning within the context of
conditional probabilistic planning, where plans satisfy the
goal with different probabilities and costs. Our approach
is based on multi-objective dynamic programming in state
space, where each plan node maintains a set of non-
dominated sub-plan options, that are each a conditional plan.

Introduction
In contrast with traditional knowledge intensive planning
models, model-lite planning (Kambhampati, 2007) seeks
to ease the knowledge acquisition bottleneck. Users pro-
vide potentially incomplete domain models, and the plan-
ning system must still assist the user in their planning task.
In this paper, we consider the issue of having a weakly de-
fined planning objective function. That is, the user identi-
fies the objectives of interest (e.g., cost, risk, and makespan,
etc.), but does not or cannot commit to an objective function
(e.g., the weights for a linear combination). We not only
consider such user indecisiveness at plan synthesis time, but
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also during plan execution. Users may change their objec-
tive function during execution because uncertain events turn
out (un)favorable, or factors not present in the model arise.

To support dynamic objective functions, we develop the
notion of multi-option plans. A multi-option plan is a suc-
cinct representation of a diverse set of non-dominated plans,
where each constituent plan optimizes the planning objec-
tives in a unique way. To better understand the relation-
ships between constituent plans (and to better support their
synthesis), we represent the set much like a conditional
plan. The correspondence can become explicit if we were
to model the user’s objective function as an uncertain ac-
tion or state feature. However, instead of using a (potentially
nonintuitive and large) transformation of the state and action
model, we provide a new search space and plan synthesis al-
gorithm.

Using a state space representation, we generalize the tra-
ditional mapping from each plan state to a single best ac-
tion to a set of best actions (where each action is optimal
for some subset of the non-dominated sub-plan options).
Then in each state, the plan executor has multiple options,
each satisfying objectives differently. We formulate a multi-
objective Bellman equation to compute the set of best ac-
tions for each state and use a variant of the LAO* algorithm
to compute the multi-option plan. We investigate conditional
probabilistic planning, where the multi-option plan provides
a range of choices for satisfying the goal with different prob-
ability at different costs. The motivation for a multi-option
conditional plan is to allow the executor to adjust their plan
cost budget as it proves more or less likely they will achieve
the goal; consider the following example:

Example: The multi-option conditional plan in Figure 1
starts with action a, which provides two observations and
has an execution cost of one. In the branch corresponding
to the first observation (whose probability is 0.2) it is possi-
ble to execute π1 to achieve the goal with 1.0 probability and
expected cost 50 or option π2 with 0.5 probability and cost
10. In the branch for the second observation (whose proba-
bility is 0.8) it is possible to execute π3 to achieve the goal
with 0.75 probability and cost 30 or π4 with 0.0 probability
and cost 0. The result is a set of diverse plan options:
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Figure 1: Example of multi-option conditional plan.

Options E[Cost(π)] Pr(G|π)
a, [π1|π3] 1+(.2)50+(.8)30 = 35 (.2)1+(.8).75 = .8
a, [π2|π3] 1+(.2)10+(.8)30 = 27 (.2).5+(.8).75 = .7
a, [π1|π4] 1+(.2)50+(.8)0 = 11 (.2)1+(.8)0 = .2
a, [π2|π4] 1+(.2)10+(.8)0 = 3 (.2).5+(.8)0 = .1

By executing a, the executor does not need to commit to
an objective function. After executing a and (by chance) fol-
lowing the second branch, the executor must decide between
options π3 and π4. The executor may have been hoping for
the first branch (to execute π2), but at this point they can give
up and select π4 or expend more cost in π3. In many cases
the executor does not need to commit to a specific objective
function, and in other cases they may have their choice of
several options.

There are many ways to execute a multi-option plan. If the
executor commits to an objective function, they can choose
the option that most closely matches. If they do not com-
mit to an objective function, they may want to choose ac-
tions that “keep their options open”, preferring actions that
are consistent with the most options, or the most diverse set
of options. We define these two execution strategies and
compare them with a plan executor that chooses random op-
tions to illustrate some of the benefits of multi-option plans.
While we examine an execution strategy for keeping plan
options diverse, we do not take steps to make the plans di-
verse, aside from enforcing option diversity through Pareto
optimality. In our discussion of future work, we outline
some of the issues in guiding plan synthesis toward finding
diverse options.

In the next section, we formally define our planning
model. We then show how our novel multi-objective formu-
lation enables us to find multi-option plans in the successive
section. The next section describes our empirical evalua-
tion of multi-option plan synthesis, empirical evaluation of
multi-option plan execution, a discussion of related work,
and conclusions.

Background & Representation
We describe our planning models in terms of flat Markov
decision processes (MDPs), but note that our underlying

implementation is propositional (based on OBDDs (Bryant,
1986)). We are interested in partially observable planning,
but to simplify later sections, we describe the partially ob-
servable model as an equivalent fully-observable belief state
MDP.

Full Observability: The fully-observable model is given
by (S,A, T, sI , G), defined as a set of states S, a set of
actions A, a state transition relation T (s, a, s′), an initial
state sI , and a goal state function G(s). The state transition
relation describes a probability distribution: T (s, a, s′) =
Pr(s′|a, s). A subset of actions A(s)⊆A∪⊥ is applicable
in each state s. The ⊥ action signifies no action is per-
formed in s. The goal state function G : S → [0, 1] maps
each state to a probability it satisfies the goal. In this model,
G(s) = 1 or G(s) = 0 for every state (later we will see that
0 ≤ G(s) ≤ 1 in belief state MDPs). Applying an action
incurs a cost c(a), which we will assume (without loss of
generality) is uniform (with the exception that c(⊥) = 0).

Partial Observability: The partially-observable MDP
model is given by (S,A, T, bI , G,O,Ω), defined as before,
and by an initial belief state bI , an observation function
O(s, a, o), and a set of observations Ω. A belief state
b : S → [0, 1] is a probability distribution that maps each
state to a probability, such that

∑
s∈S b(s) = 1.0. We

say that s ∈ b for all states where b(s) ≥ 0. The set
A(b) = ∩s∈bA(s) contains all actions applicable in a belief
state b. The observation function O(s, a, o) = Pr(o|a, s) is
the probability distribution over observations o ∈ Ω received
upon transitioning to state s after executing action a.

We define the belief state ba reached by applying a in
belief state b as ba(s′) =

∑
s∈S b(s)T (s, a, s′). The be-

lief state bo
a is the belief state after receiving observation o

in belief state ba, defined as bo
a(s′) = αO(s′, a, o)ba(s′),

where α is a normalization factor. The probability of receiv-
ing observation o in belief state ba is T (b, a, o, bo

a) = α =∑
s∈S ba(s)O(s, a, o).

Belief state MDPs: To clarify the correspondence be-
tween the fully-observable and partially observable model,
consider the following transformation, called a belief state
MDP. The belief state MDP (S̃, A, T̃ , s̃bI

, G̃) for the
partially-observable MDP (S,A, T, bI , G,O,Ω) is given by
several equivalences, where each state s̃b ∈ S̃ corresponds
to a belief state b, and s̃bI

is the initial (belief) state. A
is an unchanged set of actions, where A(s̃b) = A(b) is
the set of actions applicable in b. The transition rela-
tion T̃ (s̃b, a, s̃bo

a
) is equivalent to T (b, a, o, bo

a). G̃ is the
probability each (belief) state satisfies the goal, such that
G̃(s̃b) =

∑
s∈S b(s)G(s). In the following, we ignore all

distinctions between belief state MDPs and fully-observable
MDPs, where possible, given the above equivalences.

Multi-objective Q-value Formulation
We introduce a multi-objective dynamic programming for-
mulation for multi-option planning that is based on Q val-
ues. In traditional MDPs, Q values denote the expected
value of executing an action in a state. The value V for
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a state is simply the maximal Q value of actions applied
in the state, which in turn defines the plan π. Many MDP
algorithms, such as value iteration, start with an initial Q
value for each state action pair, and at each iteration uses the
Bellman equation to update the value. Our contribution re-
defines these V values as sets of non-dominated Q values,
where each Q defines a unique vector of objective values
for a state and action pair. We also define a multi-objective
Bellman equation used to update these values. In the next
section, we describe a variation of the LAO∗ algorithm to
compute values. We present a general multi-objective for-
mulation and point out specific details for computing the ex-
pected cost and probability of goal satisfaction objectives
that are needed in conditional probabilistic planning.

Our extension to the value function turns V (s)
into a Pareto set. Each option of the Pareto set
Q(s, a) ∈ V (s) represents a vector of n objectives, such
that Q(s, a) = (Q0(s, a), Q1(s, a), ..., Qn−1(s, a)), and
V (s) = {Q(s, a)|¬∃Q′(s,a′)∈V (s)Q

′(s, a′) ≺ Q(s, a)},
where V (s) contains only non-dominated options. A
option Q′(s, a′) dominates another Q(s, a) if it is as
good in all objectives, and strictly better in at least one:
Q′(s, a′) ≺ Q(s, a) ⇔ ∀iQ

′
i(s, a

′) ≤ Qi(s, a)∧
∃iQ

′
i(s, a

′) < Qi(s, a)
Each option is mapped to a best action by π (i.e.,
π(s,Q(s, a)) = a), making it possible for two sub-plan op-
tions to start with the same action but have different values.

Each Q(s, a) ∈ V (s) is computed in terms of the succes-
sors of applying a in s. Because each successor (s′, s′′, ...)
is associated with a Pareto set (V (s′), V (s′′), ...), it is pos-
sible to define a different Q(s, a) from each element (w =
{Q(s′, a′), Q(s′′, a′′), ...}) of the cross product of the Pareto
sets (W = V (s′) × V (s′′) × ...). We saw this in the exam-
ple (Figure 1), where it is possible to have |V (s̃bI

)| = 4
because |V (s̃b1)| = |V (s̃b2)| = 2. The cross product
of V (s̃b1) and V (s̃b2) contains four elements, and each
w ∈ V (s̃b1)×V (s̃b2) is used to define an element of V (s̃bI

).
The actual number of elements in a Pareto set may be less
because some elements will be dominated.

For each w ∈ W , we define expected cost and probability
of not satisfying the goal objectives for probabilistic condi-
tional planning, Q(s, a) = (Q0(s, a), Q1(s, a)), such that:

Q0(s, a) = c(a) +
∑

Q′(s′,a′)∈w

T (s, a, s′)Q′
0(s

′, a′)

Q1(s, a) =
∑

Q′(s′,a′)∈w

T (s, a, s′)Q′
1(s

′, a′)

(1)
We also define Q0(s,⊥) = 0 and Q1(s,⊥) = 1 − G(s)
when no action is applied.

From the example, V (s̃bI
) = {(35, 0.2), (27, 0.3),

(11, 0.8), (3, 0.9)}. The first element of V (s̃bI
) is de-

fined by (Q(s̃b1 , (50, 0.0)), Q(s̃b2 , (30, 0.25))) ∈ V (s̃b1) ×
V (s̃b2) as Q0(s̃bI

, a) = 1 + (0.2)50 + (0.8)30 = 35 and
Q1(s̃bI

, a) = (0.2)0.0 + (0.8)0.25 = 0.2.

Computing the Multi-objective Bellman Equation: Com-
puting the multi-objective Bellman equation once for a state
s can take O(|A(s)||V (s′)||S|) time because |A(s)| actions
are applicable in s, each results in at most |S| successor

MOLAO∗()
1: i = 0
2: repeat
3: Z = ExpandPlan(sI , i

++)
4: AddAncestors(Z)
5: VI(Z)
6: until (ConvergenceTest(sI) == T)

ExpandPlan(s, i)
1: if expanded(s) < i then
2: Z = Z ∪s
3: if expanded(s) == 0 then
4: expanded(s) = i
5: ExpandState(s)
6: else
7: expanded(s) = i
8: for Q(s, a) ∈ V (s)s.t. ¬solved(Q(s, a)) do
9: for s′ ∈ S : T (s, a, s′) > 0 do

10: Z’ = ExpandPlan(s′, i)
11: Z = Z ∪ Z’
12: end for
13: end for
14: end if
15: end if
16: return Z

Figure 2: MOLAO∗ Search Algorithm.

states s′, and there are |V (s′)| Pareto optimal sub-plan op-
tions for each state s′. In a later section, we identify ways to
reduce this complexity by limiting the size of the Pareto sets
V (s). Limiting the size of V (s) equates to a form of limited
option plans, akin to limited contingency plans (Meuleau &
Smith, 2003).

Multi-option LAO∗

Hansen & Zilberstein (2001) introduce Looping AO*
(LAO∗) search as a technique for solving stochastic short-
est path and MDP problems. Unlike the traditional value
iteration and policy iteration techniques for solving MDP
problems, LAO∗ generalizes AO* search (Nilsson, 1980)
to handle loops in the search graph. The idea is to expand
a reachable region of the state space, over which value it-
eration is used to identify a partial plan. In each iteration,
LAO∗ expands unexpanded fringe states of the partial plan,
and performs value iteration.

The main generalization needed for a multi-option LAO∗
(MOLAO∗) is to reinterpret the V -values as V -sets and
compute them as such. This also means that there may be
several non-dominated plan options that MOLAO∗ can ex-
pand each iteration. Figures 2 and 3 describe the MOLAO∗
search algorithm using V -sets to find a Pareto set of condi-
tional plans. The MOLAO∗ function in Figure 2 contains
the outer loop that calls ExpandPlan to compute a set of
states Z that are reachable by the set of non-dominated par-
tial plans. To Z, AddAncestors adds all states that can
reach a state s ∈ Z with a non-dominated plan. The set
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VI(Z)
1: while error > ε do
2: for s ∈ Z do
3: error(s) = Backup(s)
4: end for
5: error = max

s∈Z
error(s)

6: end while

Backup(s)
1: V ′(s) = ∅
2: for a ∈ A(s) do
3: W = ×

s′:T (s,a,s′)>0
V (s′)

4: for w ∈ W do
5: Q0(s, a) = c(a) +

∑

Q′(s′,a′)∈w

T (s, a, s′)Q′
0(s

′, a′)

6: Q1(s, a) =
∑

Q′(s′,a′)∈w

T (s, a, s′)Q′
1(s

′, a′)

7: solved(Q(s, a)) =
∧

Q′(s′,a′)∈w

solved(Q′(s′, a′))

8: UpdateDominance(Q(s, a), V ′(s))
9: end for

10: end for
11: error = ComputeError(V ′(s), V (s))
12: V (s) = V ′(s)
13: return error

Figure 3: MOLAO∗ VI and state value Backup algorithms.

of partial plans is revised by calling VI(Z) to update V (s)
for each s ∈ Z. When ConvergenceTest indicates that
V (sI) has converged (i.e, all non-dominated solutions are
labeled solved, and upper and lower bounds on their values
is below a threshold), it is possible to stop.

The ExpandPlan function recursively traces each par-
tial option (lines 7-13) to find leaf states to expand (lines
4-5). The ExpandState function applies each action
a ∈ A(s) to generate successor states. Each successor state
s′ has its Pareto set V (s′) initialized and expanded(s′) is set
equal to zero. Initializing V (s′) involves adding an option
Q(s′,⊥) where solved(Q(s′,⊥)) is true, indicating that it
is possible to end the plan at s′. We can also add heuris-
tic options Q(s, ∗) to V (s) that indicate heuristic estimates
of non-dominated sub-plan options. Each heuristic option
is marked unsolved. Through dynamic programming, each
V (s) will contain some heuristic options that indicate the
value of partial sub-plan options rooted at s. Later, we dis-
cuss which and how many heuristic options we use.

The VI function performs value iteration on a set of states
(i.e., iteratively calling Backup, Figure 3, for each state un-
til the maximum change in some V (s) falls below a thresh-
old). The Backup function computes V (s) by applying ev-
ery action in the loop (lines 2-10). For each action, W is the
cross product of Pareto sets of successor states (line 3). For
each element w ∈ W , an option Q(s, a) is computed (lines
5-6). Each new option is marked solved if each of the suc-
cessor options is solved (line 7). The UpdateDominance
function (line 8) maintains the Pareto set by checking if each

new option is dominated, or dominates options already in the
Pareto set.

We deliberatively leave ConvergenceTest and
ComputeError undefined because space precludes a
thorough analysis of the solution error. Instead, in the fol-
lowing, we introduce a variation on MOLAO∗ that we use
to compute a subset of plan options. Many of the speed-ups
involved will affect completeness and admissibility. In
future work, we will analyze the value iteration error and
conditions for optimality by using the notion of hyperarea
difference (Wu & Azram, 2001).

MOLAO∗ Speedups
In the following, we describe four improvements to
MOLAO∗ that help find feasible, but suboptimal, multi-
option plans quickly. The first is a modified version of
MOLAO∗, named mMOLAO∗. The second describes
heuristics. The third involves Pareto set approximations.
The fourth simulates the current partial plan to focus syn-
thesis, similar to RTDP (Barto, Bradtke, & Singh, 1995).

mMOLAO∗: The variation of MOLAO∗ that we pursue
is very similar to the “efficient” version of LAO∗ presented
by Hansen & Zilberstein (2001) (c.f. Table 7). The idea is to
combine value iteration with solution expansion by calling
the Backup function for each state after recursively calling
ExpandPlan for each of child state reached by an action
in V (s). Figure 4 describes our version of the MOLAO∗
algorithm that combines value iteration with solution expan-
sion. We omit the convergence test used in LAO*, and stop
when there is at least one plan option where the probabil-
ity of goal satisfaction is above a threshold τ . We use this
stopping criterion because, following from the undecidabil-
ity result for partially observable conditional probabilistic
planning (Madani, Hanks, & Condon, 1999), it is (in gen-
eral) impossible to know when we have found all possible
plan options. In other words, in some cases it may always
be possible to find plan options that achieve the goals with
higher probability. Because it is also possible that we can-
not find a plan that exceeds τ , we experiment with increasing
values of τ .

MOLAO∗ Heuristics: Adding heuristic options increases
the size of V -sets, which we previously noted as a major
source of complexity in computing state backups. There
are two techniques we use to mitigate the increase in V -set
size. First, we use a single heuristic option that estimates
the cost to satisfy the goal with probability 1. Second, we
limit how solved and not solved options are combined in the
state backups. Specifically, we only combine solved options
with solved options, and not solved options with not solved
options. Formally, we replace W in line 3 of Backup with
W ′:
W ′ = W\{w|Q(s, a), Q′(s′, a′) ∈ w,w ∈ W ,

solved(Q(s, a)) �= solved(Q′(s′, a′))}
If we let Vsol(s) denote all solved options and Vh(s) de-

note all not solved (heuristic) options for a state s, then re-
stricting the combination of solved and not solved options
will bring the complexity of computing the multi-objective
Bellman equation from O(|A(s)|(|Vsol(s)|+ |Vh(s)|)|S|) to
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mMOLAO∗()
1: i = 0
2: repeat
3: mExpandPlan(sI , i

++)
4: until ∃Q(sI ,a)∈V (sI)feasible(Q(sI , a))

mExpandPlan(s, i)
1: if expanded(s) < i then
2: if expanded(s) == 0 then
3: expanded(s) = i
4: ExpandState(s)
5: else
6: expanded(s) = i
7: for Q(s, a) ∈ V (s) s.t. ¬solved(Q(s, a)) do
8: for s′ ∈ S : T (s, a, s′) > 0 do
9: mExpandPlan(s′, i)

10: end for
11: end for
12: end if
13: Backup(s)
14: end if

Figure 4: Modified MOLAO∗ Search Algorithm.

O(|A(s)|(|Vsol(s)||S|+|Vh(s)||S|)). Notice that because we
use a single heuristic option per Pareto set and combine op-
tions in this fashion, there will only be a single partial plan
expanded in line 7 of mExpandPlan (i.e., ∀s|Vh(s)| = 1).

The specific heuristic that we use is extracted from the
McLUG (Bryce, Kambhampati, & Smith, 2006). It esti-
mates the cost to satisfy the goal with at least a given prob-
ability (which we set to 1.0) by computing a relaxed plan.
The McLUG relaxed plan estimates the conformant prob-
abilistic plan cost, which can be seen as an additional re-
laxation that ignores observations. We also compare with a
non-heuristic strategy where we set the cost to reach the goal
with 1.0 probability to zero.

Approximating Pareto Sets: As with most multi-objective
optimization problems, a Pareto set can contain an exponen-
tial number of non-dominated options. There exists a range
of techniques for computing these Pareto sets and we ex-
plore one idea to reduce their size. It relies on the notion of
ε-domination (Papadimitriou & Yannakakis, 2003) to prune
solutions. By inflating each objective of other options by a
factor of 1 + ε, it is possible to approximate the Pareto to
within a relative error of ε in each objective by using a dif-
ferent definition of domination:

Q′(s, a′) ≺ε Q(s, a) ⇔ ∀iQ
′
i(s, a

′) ≤ (1 + ε)Qi(s, a)
The resulting Pareto set is polynomial sized in the number
of sub-plan options and 1

ε (c.f. Theorem 1, Papadimitriou
& Yannakakis, 2003), but may still take exponential time to
compute. However, because the number of options tends
to increase during bottom-up dynamic programming (i.e.,
a parent’s Pareto set is exponential in its childrens’ Pareto
sets) pruning more options can have a large effect. In future
work where we analyze the error in MOLAO∗, we intend to
incorporate the error introduced by approximating the Pareto

sets.
This strategy for pruning some of the plan options is one

possible way to enforce diversity between options. In the
conclusion and discussion of future work, we outline a few
additional ways to enforce diversity (in conjunction with
techniques for pursuing diverse options).

Randomized Expansions: Instead of expanding every leaf
state of the current partial plan, it is possible to expand a sin-
gle leaf state that is reached by simulating the partial plan.
This variation of MOLAO∗ called MOLAO∗r samples a
single successor state s′ from the transition relation in line
8 of mExpandPlan instead of iterating over every succes-
sor. The intuition for this variation is to concentrate plan
synthesis on the most likely plan branches.

Empirical Evaluation: Plan Synthesis
We implemented MOLAO∗ within the POND planner to
take advantage of its reachability heuristics computed from
the McLUG. In the following, each reference to MOLAO∗
is with respect to the modified version (described above).

We use two partially observable domains for evaluation:
First-Responders (FR) and Grid. The following lists the
number of Actions |A|, Propositions |P |, and observations
|O| in each problem, which is quite large for partially ob-
servable planning.

Problem |A| |P | |O|
FR1 82 29 22
FR2 116 45 28
FR3 200 54 42
Grid 5 20 2

The First-Responders domain is inspired by the planning
required of dispatchers in disaster scenarios. There may be
multiple victims (of unknown health) that need to be treated
on the scene (with a lower probability of improvement) or
taken to the hospital by an ambulance (where their health
will improve with high probability). There may also be fires
at several locations that fire trucks can extinguish. Both fire
trucks and ambulances can report what they observe at a lo-
cation. The goal is to bring each victim to health and extin-
guish all fires. We use three instances: FR1 has two fires,
two victims, and four locations; FR2 has two fires, four vic-
tims, and four locations; and FR3 has two fires, two victims,
and nine locations.

The Grid domain is an adaptation of the grid problem first
described by Hyafil & Bacchus (2004) to include an action
with observations. Like the original domain, a robot is mov-
ing about a 10x10 grid. The robot starts in the center of the
grid and must reach a given corner. Its actions move it in
the intended direction with 0.8 probability and in an adja-
cent direction with 0.1 probability. A sensory action allows
the robot to perfectly sense the presence of a wall.

To characterize how well our planner performs while find-
ing multi-option plans, we report results for finding an op-
tion with an increasing probability of goal satisfaction (τ ) –
as higher probability options are typically more difficult to
find. The results for the First-Responders and Grid domains
are shown in Table 1. All the results are the average of 5 runs
and correspond to a single plan option, whose probability of
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MOLAO∗r MOLAO∗h MOLAO∗hr

τ T(s) E[C] PS DS TS T(s) E[C] PS DS TS T(s) E[C] PS DS TS
FR

1

0.25 314.8 9.8 101.0 3.0 19.0 41.0 12.1 165.2 14.8 20.2 14.5 12.0 42.6 1.2 13.8
0.50 352.7 19.1 185.0 13.0 24.0 56.8 21.9 335.2 31.8 31.0 30.9 22.5 85.8 4.4 17.0
0.75 370.2 25.6 277.0 25.0 27.0 62.1 26.8 448.2 47.2 37.4 42.4 27.5 160.2 10.0 20.8
0.95 - - - - - 81.7 30.1 533.6 65.8 31.8 145.8 29.0 330.8 29.5 30.8

FR
2

0.25 - - - - - 291.9 15.5 447.2 65.4 39.0 160.3 18.0 86.6 2.6 17.2
0.50 - - - - - 318.6 26.3 469.4 53.4 31.4 130.9 24.7 115.4 5.6 19.6
0.75 - - - - - 370.1 32.8 585.4 77.8 37.0 231.9 31.1 218.6 17.4 25.4
0.95 - - - - - 457.4 39.3 816.8 98.8 41.2 292.2 37.5 373.0 35.0 30.0

FR
3

0.25 - - - - - 420.9 12.8 392.0 34.2 33.0 252.8 15.0 69.0 1.8 15.2
0.50 - - - - - 468.2 23.5 553.3 50.0 39.3 265.0 27.0 141.6 4.4 20.2
0.75 - - - - - 623.7 40.67 741.0 51.0 45.0 459.2 35.3 248.0 13.0 26.4
0.95 - - - - - 624.6 39.2 865.0 70.0 49.0 - - - - -

G
ri

d

0.25 - - - - - 32.3 10.8 21.2 0.0 6.8 21.7 13.2 19.8 0.0 6.8
0.50 - - - - - 356.7 19.4 153.2 0.2 36.8 55.5 19.0 54.8 0.2 14.8
0.75 - - - - - 954.5 23.6 537.6 0.8 104.8 161.3 21.5 150.6 0.0 29.8

Table 1: Results using MOLAO∗r , MOLAO∗h, and MOLAO∗hr .
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Figure 5: E[C] vs. τ over time on FR1, using MOLAO∗h.

goal satisfaction is maximal. We compare three versions of
the modified MOLAO∗ where the superscript “r” corre-
sponds to using randomized expansions, and the superscript
“h” corresponds to using the relaxed plan heuristic (instead
of zero) for heuristic options. The version of MOLAO∗ that
does not use planning graph heuristics or randomized expan-
sions was not able to solve any problems. In each version we
use ε = 0.1 and 10 samples within each McLUG (Bryce,
Kambhampati, & Smith, 2006). The table reports total time
in seconds “T(s)”, plan cost “E[C]”, number of unique belief
states in the plan where an action is executed “PS”, number
of belief states with more than one parent in the plan “DS”,
and the number of terminal belief states “TS”.

We see that the probabilistic conformant planning graph
heuristic does indeed improve scalability, as we hoped.
MOLAO∗r is only able to find a plan options for the small-
est First-Responder instance up to a 0.75 probability of goal
satisfaction. However, using the heuristic in MOLAO∗h

and MOLAO∗hr allows POND to find high probability
plan options for every instance. While the expected cost is
slightly better without using the heuristic, we see the benefit
of using an inadmissible, but informative heuristic. In the
instances requiring the heuristic, the number of plan belief
states (PS) is quite large, testifying to the scale of the plans.

The number of plan belief states with more than one par-
ent (DS) shows the benefit of using MOLAO∗ to find more
compact digraph plans. The number of terminal belief states
(TS) attests to the number of branches in the plans (modulo
the number of collapsed branches, captured by DS).

To visualize how our planner identifies plan options over
time, consider Figure 5. The figure shows the values for
the set of plan options starting in bI over time (after each
iteration in ExpandPlan) in the FR1 domain while us-
ing MOLAO∗h. Each line represents a solution satisfying
the goal with the indicated probability and cost. The set of
plan options steadily increases over time, suggesting how
MOLAO∗ can be used in an anytime fashion.

Empirical Evaluation: Execution
To this point, we have mostly discussed multi-option plan
synthesis, but now turn to execution strategies. Recall that
in the absence of an objective function, the plan executor can
try to “keep their options open”. We explore three strategies
for plan execution (i.e., option selection) that keep options
open: preferring actions that appear in the most options, pre-
ferring actions that appear in the most diverse set of options,
and preferring actions by sampling from the set of options.

Most Options: An executor may wish to keep as many op-
tions available during the entire execution, and in each state
s execute the action a, where

argmaxa∈A(s) |{Q(s, a)|Q(s, a) ∈ V (s)}|
Most Diverse: An executor may be willing to sacrifice the
sheer number of options for having a diverse set of options.
The action that gives the most diverse options has the largest
average distance between its options

argmaxa∈A(s)

∑

Q(s,a),Q′(s,a)∈J(s)
dist(Q(s,a),Q′(s,a))

|{Q(s,a)|Q(s,a)∈J(s)}|
where, and dist(Q(s, a), Q′(s, a)) is the Euclidean distance
between the points.

Random: As a baseline for comparison an executor may
change their objective function at each step randomly,
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Figure 6: E[C] vs. Pr(G) .

choosing an action at random.
We compare these three strategies informally in the plots

in Figure 6, showing a sample plan execution in terms of
the options available at each plan step. At each plan step,
there are a set of options that differ by their cost and prob-
ability of goal satisfaction. The choices made by the plan
executor dictate the options available at the next plan step.
While the results in the plots only compare a single execu-
tion of the same plan under three execution strategies, we
see some interesting relationships. The random plan execu-

tor quickly runs out of options, where selecting actions in
the most options or the most diverse options leads to more
options throughout execution. Preferring the actions in the
most diverse options leads to many options in more points
in the plan. At the last few steps of the plan, choosing the
diverse option action leads to more options than choosing
the action with the most options. We hope to expand upon
these results in future work and support diverse execution by
exploring diverse plan synthesis.

Related Work & Discussion
Our formulation of multi-option conditional probabilistic
planning is based on existing work techniques for vector-
valued MDPs (Henig, 1983). We define cost and probability
of goal satisfaction as values optimized in the MDP. Where
previous work concentrates on value iteration, we extend the
LAO∗ algorithm to deal with multiple objectives.

Multi-option plans are also connected to work on finding
sets of diverse plans (Myers & Lee, 1999; Srivastava et al.,
2007). A multi-option plan contains several options that are
diverse in terms of the objectives that they optimize. We
view this as an alternative notion of diversity that relies on
quantitative plan metrics, as opposed to qualitative (Myers &
Lee, 1999) or subjective plan distance functions (Srivastava
et al., 2007).

Using Pareto sets to represent multi-option plans gives us
a foundation for representing diverse plan options – non-
dominated plans are diverse because they satisfy the plan
metrics in some unique way. However, our search algorithm
does not actively pursue diverse plans. We intend to develop
extensions of MOLAO∗ that guide the search to find a di-
verse set of plans through carefully crafting which heuristic
points Q(s, �) we add to the Pareto sets. We can analyze
Pareto sets to find regions that have relatively few options
and insert heuristic points to estimate and guide the search
for options in the regions.

In contrast with finding more options in specific regions
of the plan metric space, we often have too many options.
We presented ε-domination as a way to reduce the number
of options, and increasing ε ensures that the options are in-
creasingly diverse. However, like limited contingency plan-
ning (Meuleau & Smith, 2003), we may want to have a small
number of options within some constant. It is reasonably
straight-forward to constrain the number of options to a con-
stant number, keeping those that are the most diverse or clos-
est to a hypothesis of the user’s objective function.

Conclusion & Future Work
To support model-lite planning, where users have ill de-
fined and changing optimization criterion, we have pre-
sented multi-option plans. Multi-options plans give the user
a set of diverse options relevant to their current state. By see-
ing the set of options, it should be easier for users to decide
on the most meaningful optimization criterion.

Our multi-option plans can also be seen as a new type of
conditional plan, where in addition nature selected “chance”
contingencies, there are “choice” contingencies. These
choice contingencies (options) allow the executor to delay
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their choice of planning objective and/or change their objec-
tive multiple times.

In addition to this work on poorly defined objective func-
tions, we see an important follow-on to this work in model-
lite planners. When the user does not even specify the indi-
vidual planning objectives (e.g., cost, makespan, etc.), it is
up to the planner to identify objectives that make the plan
options diverse. This can be seen as feature selection from
a set of possible plan features, where the data (partial plans)
are changing over the search episode.
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